AN IMPROVED

MEASUREMENT OF DIRECT CP VIOLATION PARAMETERS IN

B* J/V K* AND

B[±] -> J/\ π[±] DECAYS

Beauty 2013

Iain Bertram

9 April 2013

SM expectations

$$A^{J/\psi h} = \frac{\Gamma(B^- \to J/\psi h^-) - \Gamma(B^- \to J/\psi h^+)}{\Gamma(B^- \to J/\psi h^-) + \Gamma(B^- \to J/\psi h^+)}$$

- Require new sources of CP-violation.
- $B^{\pm} \rightarrow J/\psi h^{\pm}$ decays provide a clean test for direct CP-violation.
- In B[±] → J/ΨK[±] the SM predicts that the tree and penguin contributions have the same weak phase and thus no direct CP violation is expected (a maximum asymmetry of 0.3%).
- $B^{\pm} \rightarrow J/\psi \pi^{\pm}$ decays could have CP violating effects of a few percent.

Current Best Measurements

Belle(2010) :
$$A^{J/\psi K} = [-0.76 \pm 0.55] \%$$

$$D0(2008) : A^{J/\psi K} = [0.75 \pm 0.68] \%$$

LHCb(2012) :
$$A^{J/\psi\pi} = [-0.5 \pm 2.9] \%$$

Method

- ullet Use the same methods as being used in the a_{sl} and anomalous dimuon analyses (see Monday) . Data Selection to optimise significance
- Re-weight data to based on magnet polarity
- Simultaneous sum and difference fit to extract asymmetry

$$A_{\text{raw}}^{J/\psi K} = \frac{N_{J/\psi K^{-}} - N_{J/\psi K^{+}}}{N_{J/\psi K^{-}} + N_{J/\psi K^{+}}},$$

$$A_{\text{raw}}^{J/\psi \pi} = \frac{N_{J/\psi \pi^{-}} - N_{J/\psi \pi^{+}}}{N_{J/\psi \pi^{-}} + N_{J/\psi \pi^{+}}},$$

Correct for kaon asymmetry (in J/ψK channel)

$$A^{J/\psi K} = A_{\text{raw}}^{J/\psi K} + A_K,$$

$$A^{J/\psi \pi} = A_{\text{raw}}^{J/\psi \pi} + A_{\pi},$$

$$A_K = \frac{\epsilon(K^+) - \epsilon(K^-)}{\epsilon(K^+) + \epsilon(K^-)}.$$

Event Reconstruction

- Trigger off single/di-muons.
- Combine two muons to form J/ψ and constrain to PDG mass.
- Combine with charged hadron track to form vertex.
- No kaon/pion separation. Assign hadron the mass of the kaon (dominant decay).
- Apply multivariate likelihood ratio to reduce background.
- Fit invariant mass distribution.

Unbinned maximum likelihood fit

 $G_K(m)$: J/ ψK - Double Gaussian with width and normalisation depending on kaon energy

 $G_{\pi}(m)$: J/ $\psi\pi$ - Double Gaussian with width and normalisation depending on kaon energy

T(m): J/ψh - Threshold Function representing partially reconstructed B-hadrons

 $\chi 2 = 76.2$ for 47 d.o.f. N(J/ ψ K) = 105, 562 ± 370

 $N(J/\psi\pi) = 3,110 \pm 174$

E(m): Combinatorics exponential background function

Data - Fit

Difference

$$\mathcal{L} = (1 - q_h A_{\text{raw}}^{J/\psi K}) G_K(m) + (1 - q_h A_{\text{raw}}^{J/\psi \pi}) G_{\pi}(m) + (1 - q_h A_T) T(m) + (1 - q_h A_E) E(m),$$

Unbinned maximum
Likelihood fit of sum and
difference.

$$\chi^2 = 58.5$$
 for 61 d.o.f.

$$A_{\text{raw}}^{J/\psi K} = [-0.46 \pm 0.36 \text{ (stat)}]\%,$$

 $A_{\text{raw}}^{J/\psi \pi} = [-4.2 \pm 4.4 \text{ (stat)}]\%.$

$$A_T = [-1.3 \pm 1.0 \text{ (stat.)}] \%,$$

$$A_E = [-1.1 \pm 0.6 \text{ (stat.)}] \%.$$

Projection of fit in momentum bins

Projection of fit in momentum bins

Fit Systematics

- Mass Range: the lower edge is varied from 4.95 to 5.01 GeV, and the upper edge from 5.73 to 5.79 GeV. $\Delta A^{J/\Psi K}$ of 0.022% and in $\Delta A^{J/\Psi \Pi}$ of 0.55%.
- Fit Function: Vary Parameters of fit functions. $\Delta A^{J/\psi K}$ of 0.011% and in $\Delta A^{J/\psi \pi}$ of 0.69%.
- Asymmetry Modelling: A_E is set equal to A_T , A_E =0, A_T =0, A_E = A_T =0 When extracting $A^{J/\psi K}$, $A^{J/\psi K}$ =0, When extracting $A^{J/\psi K}$ =0 $\Delta A^{J/\psi K}$ of 0.038% and in $\Delta A^{J/\psi \pi}$ of 1.6%.

$$A_{\text{raw}}^{J/\psi K} = [-0.46 \pm 0.36 \,(\text{stat}) \pm 0.046 \,(\text{syst})] \,\%,$$

 $A_{\text{raw}}^{J/\psi \pi} = [-4.2 \pm 4.4 \,(\text{stat}) \pm 1.82 \,(\text{syst})] \,\%.$

Kaon Correction

- Taken directly from Bd asymmetry analysis (see Mondays talk)
- Fit used to get number of B[±] events in momentum and pseudo rapidity bins
- Extract A_K (for K⁺ K⁻)

$$A^{J/\psi K} = A_{\text{raw}}^{J/\psi K} + A_K,$$

$$A^{J/\psi \pi} = A_{\text{raw}}^{J/\psi \pi} + A_{\pi},$$

$$A_K = \frac{\epsilon(K^+) - \epsilon(K^-)}{\epsilon(K^+) + \epsilon(K^-)}.$$

$$A_K = [1.05 \pm 0.04 \text{ (syst.)}] \%.$$

Final Result

$$A^{J/\psi K} = [0.59 \pm 0.36 \text{ (stat)} \pm 0.08 \text{ (syst)}] \%,$$

 $A^{J/\psi \pi} = [-4.2 \pm 4.4 \text{ (stat)} \pm 1.8 \text{ (syst)}] \%.$

Type of uncertainty	$A^{J/\psi K}$ (%)	$A^{J/\psi\pi}$ (%)
Statistical	0.36	4.4
Mass range	0.022	$\overline{0.55}$
Fit function	0.011	0.69
Asymmetry modeling	0.038	1.59
$\Delta A_{ m tracking}$	0.05	0.05
ΔA_K	0.043	n/a
Total systematic uncertainty	0.08	1.8
Total uncertainty	0.37	4.8

Stability Tests

Model

Repeat analysis using pairs of orthogonal sub-sets of the data to check stability

- Forward/Backward
- Forward/Central
- Low/High Momentum
- Early/Late Running

Model

All measurements are consistent

Closure

- To test the sensitivity of the fitting procedure, the charge of the charged hadron in the data is randomised to produce samples with no asymmetry, -1%, -0.5% and 1%.
- 1000 trials are performed for each asymmetry.
- The central value of the asymmetry distribution is consistent with the input asymmetry and for zero asymmetry we find
 - $A^{J/\psi K}$ width of 0.37% and a mean of +0.008 ± 0.011%
 - $A^{J/\psi\pi}$ width of 4.8% and a mean of +0.08 ± 0.17%
- This is consistent with the statistical uncertainty found in data.

New World Averages

World Averages calculated using PDG procedure.

Summary

$$A^{J/\psi K} = [0.59 \pm 0.37] \%$$
 $A^{J/\psi \pi} = [-4.2 \pm 4.8] \%$

- New measurements of $A^{J/\psi K}$ and $A^{J/\psi \pi}$ submitted to PRL hep-ex/1304.1655.
- $A^{J/\psi K}$ total uncertainty of 0.37% significantly improves on the previous best measurement 0.55%.
- Both measurements consistent with standard model predictions.
- $A^{J/\psi\pi}$ has been significantly improved over the previous measurement.