BEAUTY 2013

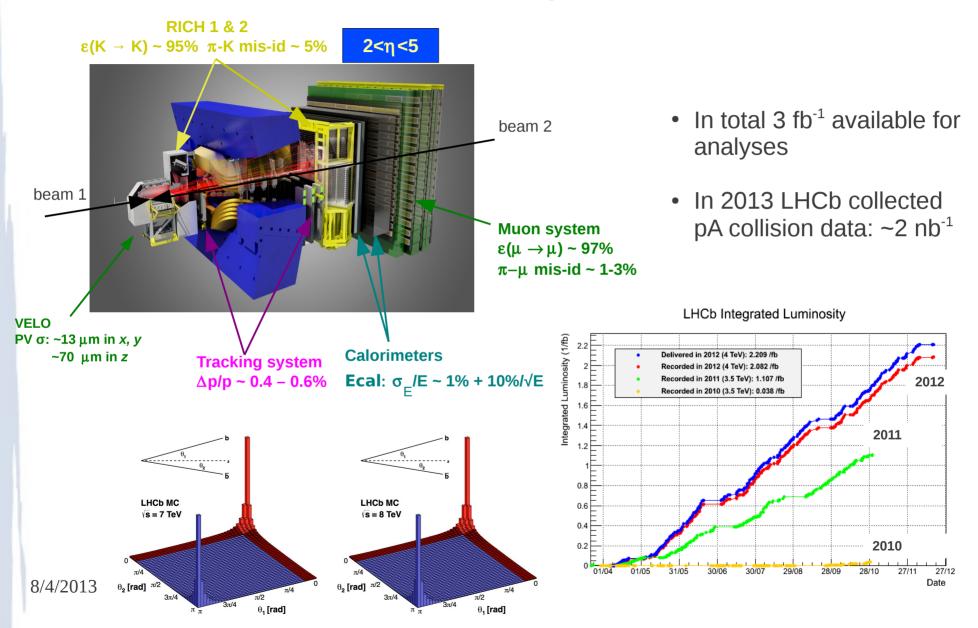
14th International Conference on B-Physics at Hadron Machines

Bologna 8-12 April 2013

LHCb results on production, polarization and production asymmetries

Giovanni Sabatino[†] on behalf of the LHCb Collaboration

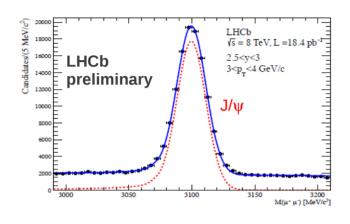
[†]Università degli Studi della Basilicata and INFN Sezione di Roma

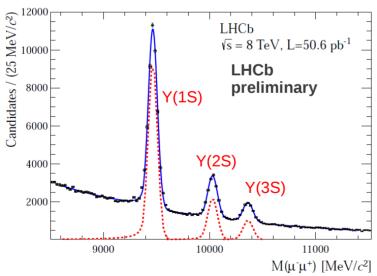


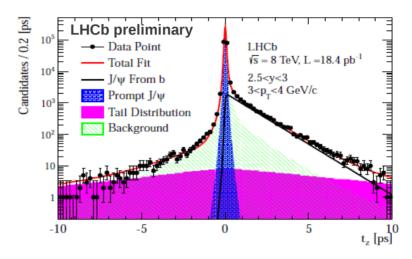
Outline

- The LHCb experiment
- Heavy flavour production: recent results
 - J/ ψ and Y(nS) production at $\sqrt{s} = 8$ TeV
 - $\Lambda_b^0 \to J/\psi \Lambda$ decay amplitudes and Λ_b^0 polarization
 - Forward-central $b\bar{b}$ production asymmetry
- Conclusions

The LHCb experiment


J/ψ and Y(nS) production at $\sqrt{s} = 8$ TeV (I)


LHCb-PAPER-2013-016


- LHCb has already published cross-sections at lower energies
 - EPJC 71 (2011), 1645, J/ψ at $\sqrt{s}=7$ TeV
 - EPJC 72 (2012), 2025, Y(nS) at √s=7 TeV
 - JHEP 1302 (2013), 041, J/ψ at √s=2.76 TeV
 - Many other papers on quarkonium production
- \sqrt{s} =8 TeV measurement: **a new input for theorists**
- Experimental facts
 - p_{T} <15 GeV/c for Y(nS) and p_{T} <14 GeV/c for J/ ψ ; 2.0<y<4.5 for both
 - Data collected in April 2012: 51 pb⁻¹ for Y(nS) and 18 pb⁻¹ for J/ψ
 - Dimuon decays to exploit excellent trigger performances

J/ ψ and Y(nS) production at \sqrt{s} = 8 TeV (II)

LHCb-PAPER-2013-016

• J/ ψ : prompt and from *b* decays components separated using t_{φ}

$$t_z = \frac{(z_{J/\psi} - z_{PV}) \times M_{J/\psi}}{p_z}$$

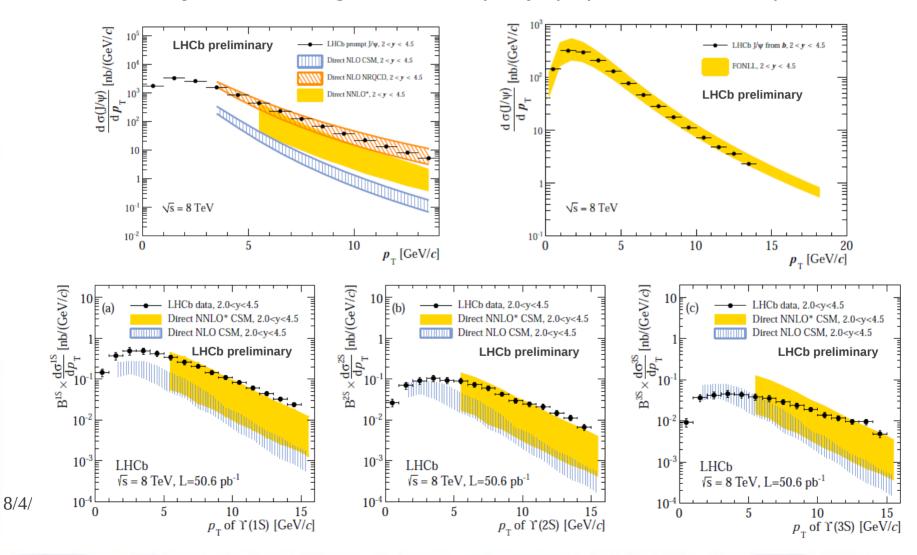
 Invariant mass distributions modelled with Crystal Ball functions (radiative tail) and exponential background

J/ψ and Y(nS) production at $\sqrt{s} = 8$ TeV (III)

LHCb-PAPER-2013-016

Vector meson P double differential cross-section

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}y\mathrm{d}p_{\mathrm{T}}} = \frac{N\left(P \to \mu^{+}\mu^{-}\right)}{\mathcal{L} \times \epsilon_{\mathrm{tot}} \times \mathcal{B}\left(P \to \mu^{+}\mu^{-}\right) \times \Delta y \times \Delta p_{\mathrm{T}}}$$


- Efficiency evaluated with MC and validated with data
- Many systematic uncertainties considered
- Polarisation: extreme scenarios would produce further variations between 1-40 % (bin dependent)
 - final result given in the hypothesis of unpolarised mesons

Systematic source	%	_
Correlated between bins		
Mass fits	0.7 to 2.2	
Radiative tail	1.0	
Muon identification	1.3	
Tracking efficiency	0.9	reducible
Vertexing	1.0	reducible
Trigger	4.0	
Luminosity	5.0	
$\mathcal{B}(J/\psi \to \mu^+\mu^-)$	1.0	_
Uncorrelated between bir	ns	
Model dependence	1.0 to 6.0	
Applied only to J/ψ from	b fraction	_
t_z fit	1.0 to 12.0	_
Applied only to $\sigma(pp \to b\overline{b}X)$		6
$\mathcal{B}(b \to J/\psi X)$	8.6	_

J/ψ and Y(nS) production at $\sqrt{s} = 8$ TeV (IV)

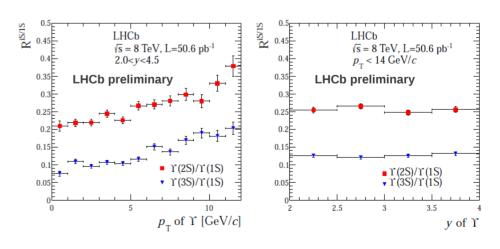
LHCb-PAPER-2013-016

• Preliminary results: integrated over rapidity (unpolarised mesons)

J/ψ and Y(nS) production at $\sqrt{s} = 8$ TeV (V)

LHCb-PAPER-2013-016

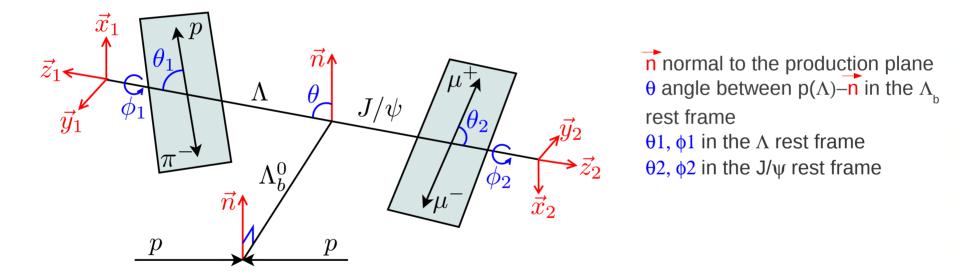
Preliminary results


$$\sigma \left(\text{prompt } \textit{J/ψ} \,, p_{\text{T}} < 14 \text{ GeV/}c, \, 2.0 < y < 4.5 \right) \, = \, 10.94 \pm 0.02 \pm 0.79 \, \text{μb}$$

$$\sigma \left(\textit{J/ψ} \, \text{from } b, \, p_{\text{T}} < 14 \, \text{GeV/}c, \, 2.0 < y < 4.5 \right) \, = \, 1.28 \pm 0.01 \pm 0.11 \, \text{μb}$$

J/ ψ cross-section LHCb J/ ψ from b, 2 < y < 4.5, p_{T} < 14 GeV/c 1.5 LHCb preliminary 1.5 $\sqrt{s} = 8 \text{ TeV}$ $\sqrt{s} [\text{TeV}]$

8/4/2013


p₋<15 GeV/c

$$\sigma(pp \to \Upsilon(1S)X) \times B^{1S} = 3.241 \pm 0.019 \pm 0.160 \,\mathrm{nb}$$

 $\sigma(pp \to \Upsilon(2S)X) \times B^{2S} = 0.761 \pm 0.008 \pm 0.038 \,\mathrm{nb}$
 $\sigma(pp \to \Upsilon(3S)X) \times B^{3S} = 0.369 \pm 0.005 \pm 0.019 \,\mathrm{nb}$

$\Lambda^0_{\ b} \rightarrow J/\psi \ \Lambda \ decay \ amplitudes \ and \ \Lambda^0_{\ b} \ polarization (I)$

- Λ_{h}^{0} in pp collisions expected to be transversally polarized (HQET)
- Not yet measured at any hadron collider
- $\Lambda_b^0 \rightarrow \Lambda J/\psi (\frac{1}{2} \rightarrow \frac{1}{2} + 1)$ with $\Lambda \rightarrow (p\pi)$ and $J/\psi \rightarrow (\mu \bar{\mu}^+)$

• Decay dynamics can be probed looking at 5 angles (3 angles integrating over azimuthal ϕ_1 and ϕ_2). Sensitive to polarization and squared amplitudes

$\Lambda^0_{L} \rightarrow J/\psi \Lambda$ decay amplitudes and Λ^0_{L} polarization (II)

$$\frac{d\Gamma}{d\Omega_{3}} = \frac{1}{16\pi} \sum_{i=0}^{7} f_{i}(a_{+,}a_{-,}b_{+,}b_{-}) g_{i}(P_{b},\alpha_{\Lambda}) h_{i}(\cos\theta,\cos\theta_{1},\cos\theta_{2})$$

$$a_{+}\equiv\mathcal{M}_{+\frac{1}{2},0}$$
 $a_{-}\equiv\mathcal{M}_{-\frac{1}{2},0}$
 $b_{+}\equiv\mathcal{M}_{-\frac{1}{2},-1}$
 $b_{-}\equiv\mathcal{M}_{+\frac{1}{2},+1}$
Helicity amplitudes

i	$f_i(\alpha_b, r_0, r_1)$	$g_i(P_b, \alpha_A)$	$h_i(\cos\theta,\cos\theta_1,\cos\theta_2)$
0	1	1	1
1	α_b	P_b	$\cos \theta$
2	$2r_1 - \alpha_b$	α_{Λ}	$\cos \theta_1$
3	$2r_0 - 1$	$P_b \alpha_A$	$\cos\theta\cos\theta_1$
4	$\frac{1}{2}(1-3r_0)$	1	$\frac{1}{2}(3\cos^2\theta_2 - 1)$
5	$\frac{1}{2}(\alpha_b - 3r_1)$	P_b	$\frac{1}{2}(3\cos^2\theta_2-1)\cos\theta$
6	$-\frac{1}{2}(\alpha_b + r_1)$	α_{Λ}	$\frac{1}{2}(3\cos^2\theta_2 - 1)\cos\theta_1$
7	$-\frac{1}{2}(1+r_0)$	$P_b \alpha_A$	$\frac{1}{2}(3\cos^2\theta_2 - 1)\cos\theta\cos\theta_1$

distribution fit

to be measured simultaneously from angular distribution fit
$$\begin{array}{ll} \alpha_b &=& |a_+|^2 - |a_-|^2 + |b_+|^2 - |b_-|^2 \text{ is the asymmetry, predicted to be \sim-15% (†)} \\ r_0 &=& |a_+|^2 + |a_-|^2 \\ r_1 &=& |a_+|^2 - |a_-|^2 \end{array}$$

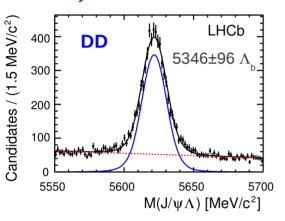
 P_{b} is the transverse polarization, predicted to be ~ 10-20% (*)

8/4/2013

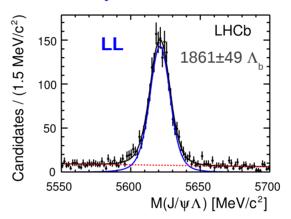
(*) Phys. Lett. B649 (2007) 152

(*) Phys. Lett. B614 (2005) 156

(†) Many predictions, see our paper


10

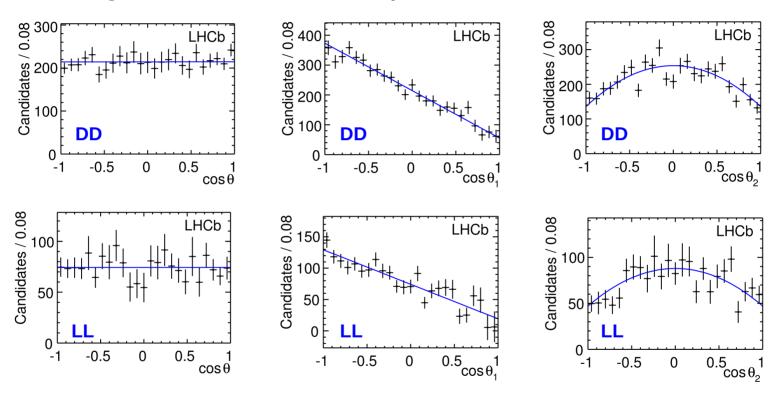
Λ_{b}^{0} → J/ψ Λ decay amplitudes and Λ_{b}^{0} polarization (III)


arXiv:1302.5578v1 [hep-ex]

Analysis based on 1 fb⁻¹ at √s=7 TeV

 Λ decays outside the VELO: **DD**

 Λ decays within the VELO: **LL**


• w_{mass} weights are obtained to subtract background in 3D $(\cos\theta, \cos\theta_1, \cos\theta_2)$

- $W_{acc} = 1/f_{acc}(\cos\theta, \cos\theta_1, \cos\theta_2)$ to correct for the acceptance
- $f_{acc}(\cos\theta, \cos\theta_1, \cos\theta_2)$ obtained from simulated events
- each event is weighted by $w_{\text{mass}} w_{\text{acc}}$ (event by event correction)

Λ^0_{b} \rightarrow J/ψ Λ decay amplitudes and Λ^0_{b} polarization (IV)

arXiv:1302.5578v1 [hep-ex]

Background subtracted and acceptance corrected data

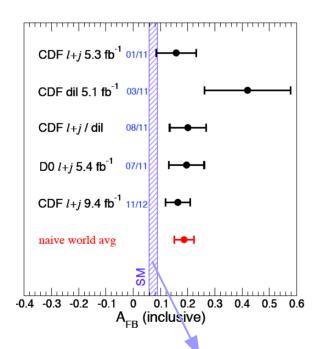
Fitting procedure checked with Monte Carlo simulation to understand its reliability

$\Lambda_b^0 \rightarrow J/\psi \Lambda$ decay amplitudes and Λ_b^0 polarization (V)

arXiv:1302.5578v1 [hep-ex]

Results (NEW! The first time at a hadron collider)

(value) (stat) (syst)	
$P_b = 0.05 \pm 0.07 \pm 0.02$	→ Cannot exclude T pol of 10%
$\alpha_b = -0.04 \pm 0.17 \pm 0.07$	Cannot exclude most
$r_0 = 0.57 \pm 0.02 \pm 0.01$	predictions ~ -15%
$r_1 = -0.59 \pm 0.10 \pm 0.05$	


• Systematic errors mostly due to the determination of the acceptance function from Monte Carlo: ~100% of $P_{\rm b}$ error and ~60% of $\alpha_{\rm b}$ error

Forward-central $b\bar{b}$ production asymmetry (I)

$t\bar{t}$ asymmetry at Tevatron: $p\bar{p}$ collisions allow to distinguish forward-backward

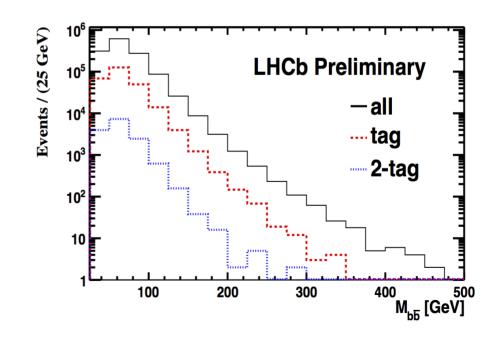
$$A_{FB}^{t\,\bar{t}} = \frac{N\left(\Delta\;y > 0\right) - N\left(\Delta\;y < 0\right)}{N\left(\Delta\;y > 0\right) + N\left(\Delta\;y < 0\right)} \qquad \Delta\;y = y_t - y_{\bar{t}} \qquad \text{How much the top quark prefers to be aligned with the initial quark}$$

$$\Delta y = y_t - y_{\bar{t}}$$

- LHC: initial directions of q and \bar{q} not known
- Forward-central asymmetry is a related observable
- Provides useful constraints to the models Kahawala, Krohn, Strassler arXiv:1108.3301

$$A_{FC}^{b\bar{b}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

$$\Delta y = |y_b| - |y_{\overline{b}}|$$

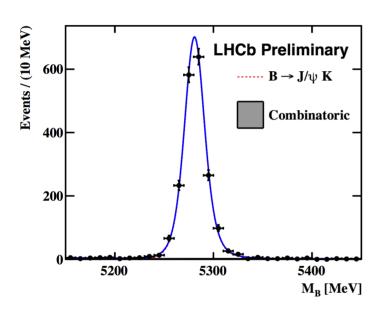

From interference between L0 and NLO $q\bar{q} \rightarrow t\bar{t}$

Forward-central $b\bar{b}$ production asymmetry (II)

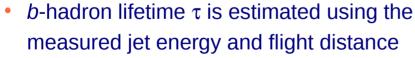
1 fb⁻¹, √s=7 TeV (2011)

LHCb-CONF-2013-001

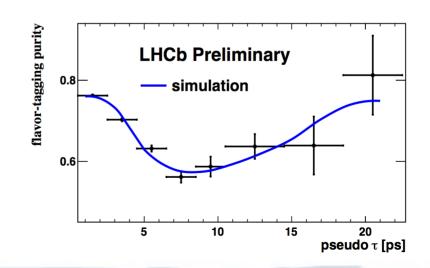
- **Selection**: 2 high p_T (>15 GeV) back-to-back ($\Delta \phi$ >2.5) *b*-tagged jets from the same PV (anti- k_{T} algorithm)
- **b-tagging**: only consider jets whose hardest displaced track is identified as a muon. Charge of the muon used to tag the jet as b or \overline{b} ($b \rightarrow \mu \nu X$)
- Jet Energy Correction
 - Out-of-acc. particles, detector response: 20-30 %
 - Missing v, track multiplicity 10-20 %
- Jet E resolution
 - $\sigma = 15-20 \%$



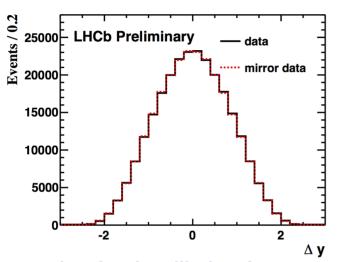
Forward-central $b\bar{b}$ production asymmetry (III)

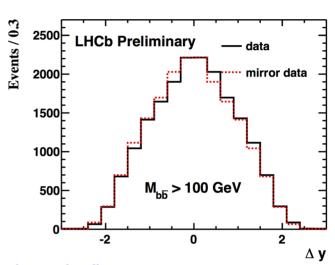

1 fb⁻¹, √s=7 TeV (2011)

LHCb-CONF-2013-001


• Flavour tagging purity: from MC → (73±2)%

- Validated using B⁺ → J/ψK⁺ and B⁺ → $\overline{D}^0\pi^+$: accompanying quark flavor is known (*b*)
 - Tagging purity (71.5±4)%
- Validated using doubly-tagged sample
 - opposite charged muons: right tag
 - same sign muons: wrong tag


- Overall tagging purity: (70.7 ± 0.4)%
- Excellent agreement with B+jet and prediction!



Forward-central $b\bar{b}$ production asymmetry (IV)

1 fb⁻¹, √s=7 TeV (2011)

LHCb-CONF-2013-001

• Correcting for the dilution factor 1-2 ω , where the mis-flavor tag rate ω = 0.293±0.004

$$A_{\rm FC}^{b\bar{b}} = (0.5 \pm 0.5 \text{ (stat)} \pm 0.5 \text{ (syst)})\%$$

 $A_{\rm FC}^{b\bar{b}}(M_{b\bar{b}} > 100 \text{ GeV}) = (4.3 \pm 1.7 \text{ (stat)} \pm 2.4 \text{ (syst)})\%$

- Systematics: mainly from the flavor tagging purity
- No significant asymmetry is observed: consistent with the SM expectations

Conclusions

- LHCb has collected lots of good quality data during 2010-2012:
 3 fb⁻¹
- Heavy flavour production:
 - many analyses already published and many other are going to be completed soon
 - In these slides we presented only the most recent results
 - LHCb is contributing to the understanding of some puzzles (NRQCD-CSM, Polarisation, asymmetries, ...)

Thank you!

