

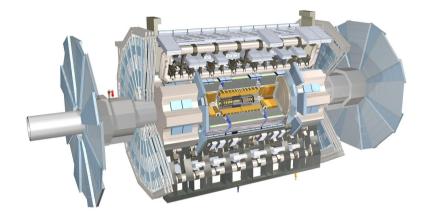
$B_d \rightarrow K^{*0} \mu \mu$ with ATLAS BEAUTY 2013

Anna Usanova

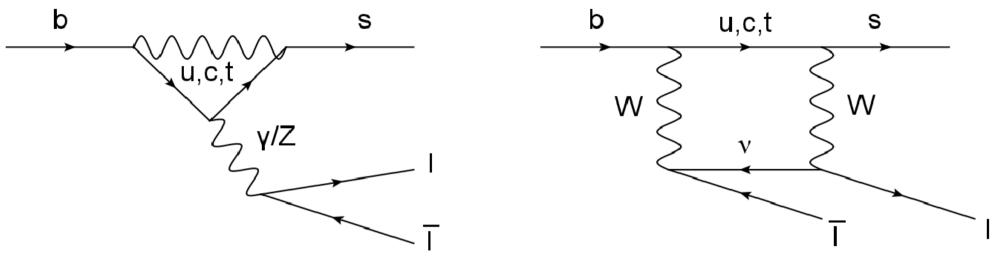
Innsbruck University Institute for Astro- and Particle Physics

For the ATLAS collaboration

ATLAS-CONF-2013-038 "Angular Analysis of $B_d \rightarrow K^{*0}\mu\mu$ with the ATLAS Experiment"


BEAUTY conference, 8th-12th April 2013, Bologna

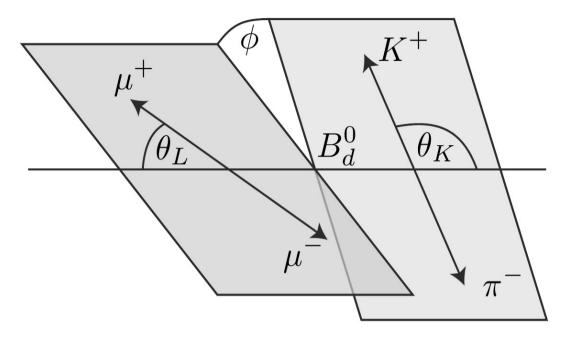
Outline


- Motivation
- Introduction
- Details of the analysis:
 - Data
 - Analysis strategy
 - Sources of systematic uncertainties
- Results, comparison
- Conclusions, outlook

Outline

- Motivation
- Introduction
- Details of the analysis:
 - Data
 - Analysis strategy
 - Sources of systematic uncertainties
- Results, comparison
- Conclusions, outlook

Motivation


• $B_d \to K^{*0}(\to K^+\pi^-)\mu^+\mu^-$ is one of the exclusive final states for $b \to sl^+l^-$

- Rare decay with a relatively small branching fraction $Br(B_d \rightarrow K^{*0}\mu^+\mu^-) = (1.06 \pm 0.1) \cdot 10^{-6} http://pdg.lbl.gov$
- Can occur only on the loop level, as SM has no FCNCs on the tree level
- The angular distributions in these decays as a function of dilepton mass squared q² = m²(l+l-) are sensitive to many possible scenarios of physics beyond the SM

C.Bobeth et al. "Angular analysis of $B \rightarrow V (\rightarrow P_1P_2) l^+l^$ decays" arXiv:1105.2659v1 Anna Usanova, $B \rightarrow K^* \mu \mu$ at ATLAS, BEAUTY 2013

4

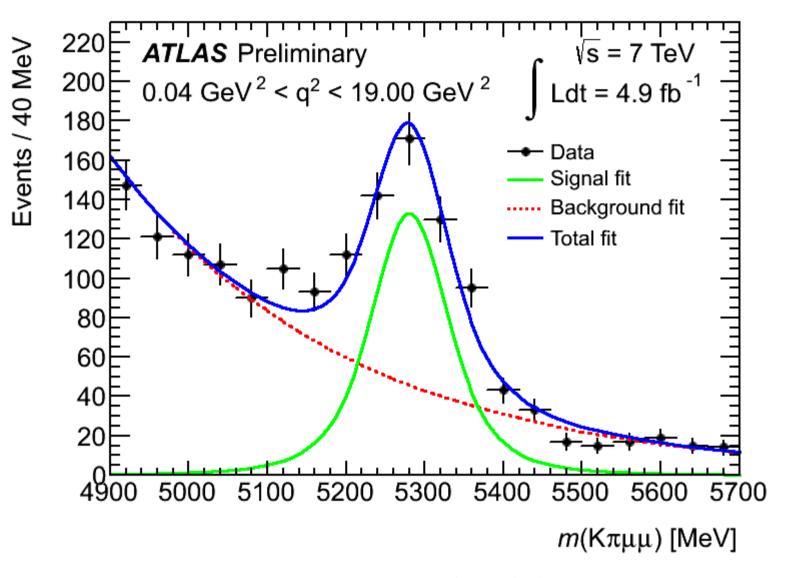
Introduction

4 kinematic variables: q^2 – invariant mass of the leptons angles ϕ , θ_k , θ_l

$$\begin{split} \mathbf{F}_{\mathrm{L}} &- \text{fraction of longitudinally polarized K}^{*} \\ \mathbf{A}_{\mathrm{FB}} &- \text{forward-backward asymmetry of muons} \\ \hline \frac{1}{\Gamma} \frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{L}} &= \frac{3}{4} (F_{\mathrm{L}}) q^{2} \left(1 - \cos^{2}\theta_{L}\right) \\ &+ \frac{3}{8} \left(1 - (F_{\mathrm{L}}) q^{2}\right) \left(1 + \cos^{2}\theta_{L}\right) + (A_{\mathrm{FB}}) (q^{2}) \cos\theta_{L} \\ \frac{1}{\Gamma} \frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{K}} &= \frac{3}{2} (F_{\mathrm{L}}) q^{2} \cos^{2}\theta_{K} + \frac{3}{4} \left(1 - (F_{\mathrm{L}}) q^{2}\right) \left(1 - \cos^{2}\theta_{K}\right) \\ &\text{Anna Usanova, B} \rightarrow \mathbf{K}^{*} \mu \mu \text{ at ATLAS, BEAUTY 2013} \end{split}$$

Data and MC used

- 4.9 fb⁻¹ collected with ATLAS in 2011 at \sqrt{s} = 7 TeV
 - Single- and dimuon triggers
- MC event samples (PythiaB) used for selection optimization:
 - $B_d \rightarrow K^{0*}\mu\mu$ (signal)
 - bb →μμX
 - $cc \rightarrow \mu\mu X$
 - Drell-Yan
 - $B_d \rightarrow J/\psi K^*$


Event selection

- Based on cuts
- Baseline:
 - $p_{T}(\mu) > 3.5 \text{ GeV}$
 - $|\eta| < 2.5$ for all tracks
 - $\chi^2/n.d.f(\mu\mu) < 10$
 - 846 < M(K^{*}) < 946 MeV
 - p_T (K) > 0.5 GeV
 - $p_{T}(\pi) > 0.5 \text{ GeV}$
- J/ψ , $\Psi'(2S)$ regions are excluded
- Selection (cut values are optimized):
 - $\tau/\Delta \tau (B_d) > 12.75$
 - $\cos(\theta) > 0.999$
 - $\chi^2/n.d.f.(B_d) < 2.0$
 - p_T (K^{*}) > 3 GeV

•
$$|(M (B^{\circ})_{rec} - M (B^{\circ})_{PDG})| - |(M (\mu\mu)_{rec} - M (J/\psi)_{PDG})| > 130 \text{ MeV}$$

 $\begin{array}{c} & \text{reconstructed} \\ B^0_d \text{ momentum} \\ \text{pointing angle } \Theta & \text{secondary vertex} \\ & (B^0_d \text{ decay}) \\ & \text{reconstructed} \\ B^0_d \text{ d.o.f} \\ \\ \text{primary vertex} \\ (\text{pp collision}) \end{array}$

Signal observation

In full range of dimuon mass, with J/ψ , $\Psi'(2S)$ regions excluded

q² bins

Data is separated into 9 regions of dimuon mass $[GeV^2]$ – binning identical to Belle

- $0.04 < q^2 < 2.00$ No angular analysis performed due to low number of events
- $2.00 < q^2 < 4.30$
- $4.30 < q^2 < 8.68$
- 8.68 < q² < 10.09 J/ψ
 </p>
- 10.09 < q² < 12.86
- $14.18 < q^2 < 16.00$
- $16.00 < q^2 < 19.00$
- $1.00 < q^2 < 6.00$

Fit strategy

• Extended unbinned maximum likelihood fit Mass term

$\mathcal{L} = \prod_{i=1}^{N} [N_{\text{sig}}^{fix} \cdot \mathcal{M}_{\text{sig}}(m_i, \delta_{m_i}) \cdot \mathcal{A}_{L,\text{sig}}(\cos \theta_{L,i}) \cdot \alpha_L(\cos \theta_{L,i}) \cdot \mathcal{A}_{K,\text{sig}}(\cos \theta_{K,i}) \cdot \alpha_K(\cos \theta_{K,i}) + N_{\text{bckg}}^{fix} \cdot \mathcal{M}_{\text{bckg}}(m_i) \cdot \mathcal{A}_{L,\text{bckg}}(\cos \theta_{L,i}) \cdot \mathcal{A}_{K,\text{bckg}}(\cos \theta_{K,i})]$

 Sequential fit approach: first mass distribution is fitted, then a multidimensional dataset is fitted with fixed parameters of the mass PDF

$$\mathcal{L} = \prod_{i=1}^{N} \left[N_{\text{sig}} \cdot \mathcal{M}_{\text{sig}}(m_i, \delta_{m_i}) + N_{\text{bckg}} \cdot \mathcal{M}_{\text{bckg}}(m_i) \right]$$

Performed individually in each q² bin

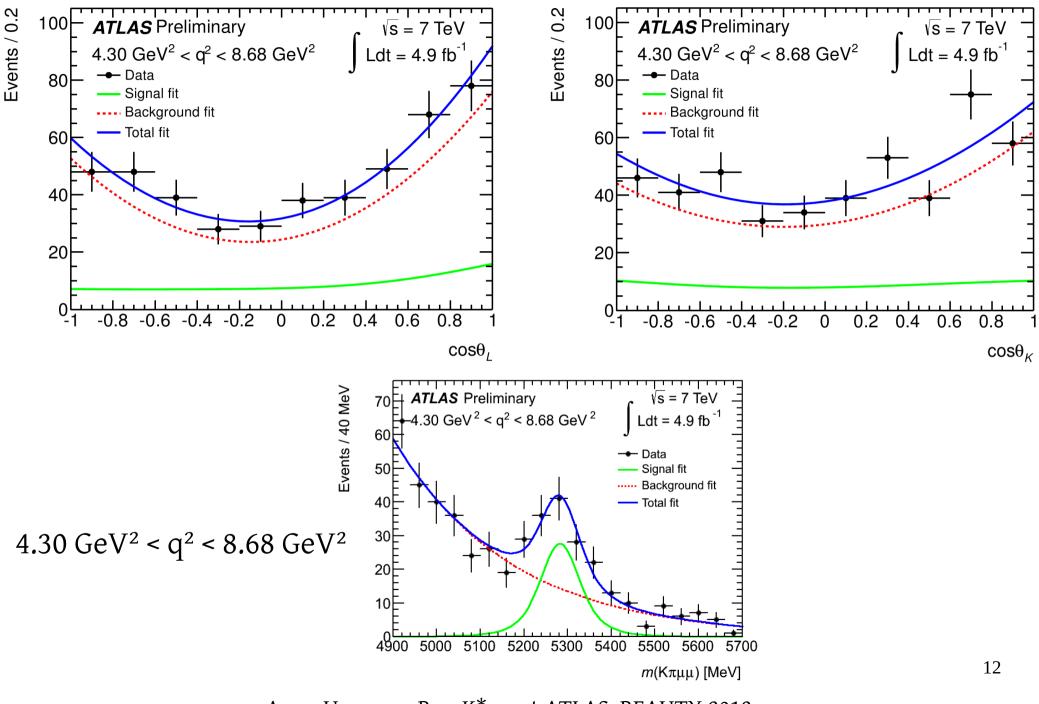
Acceptance functions, taking into account detector and cuts effects on angular shape. Polynomials obtained from fit to signal MC sample

 Mass distribution: signal → gaussian with per-event errors, background → exponential

$$\mathcal{M}_{\text{sig}}(m_i, \delta_{m_i}) = \frac{1}{\sqrt{2\pi} s_m \delta_{m_i}} \exp\left(\frac{-(m_i - m_{B_d^0})^2}{2(s_m \delta_{m_i})^2}\right) \qquad \qquad \mathcal{M}_{\text{bckg}}(m_i) = e^{-\lambda \cdot m_i}$$

Fit strategy

• Angular terms


- Signal

$$\mathcal{A}_{L,\text{sig}}(\cos \theta_{L,i}) = \left(\frac{3}{4}F_L\left(1 - (\cos \theta_{L,i})^2\right) + \frac{3}{8}\left(1 - F_L\right)\left(1 + (\cos \theta_{L,i})^2\right) + A_{FB}\cos \theta_{L,i}\right)$$

$$\mathcal{A}_{K,\text{sig}}(\cos \theta_{K,i}) = \frac{3}{2}F_L(\cos \theta_{K,i})^2 + \frac{3}{4}\left(1 - F_L\right)\left(1 - (\cos \theta_{K,i})^2\right)$$
- Background - 2nd order Chebyshev polynomials

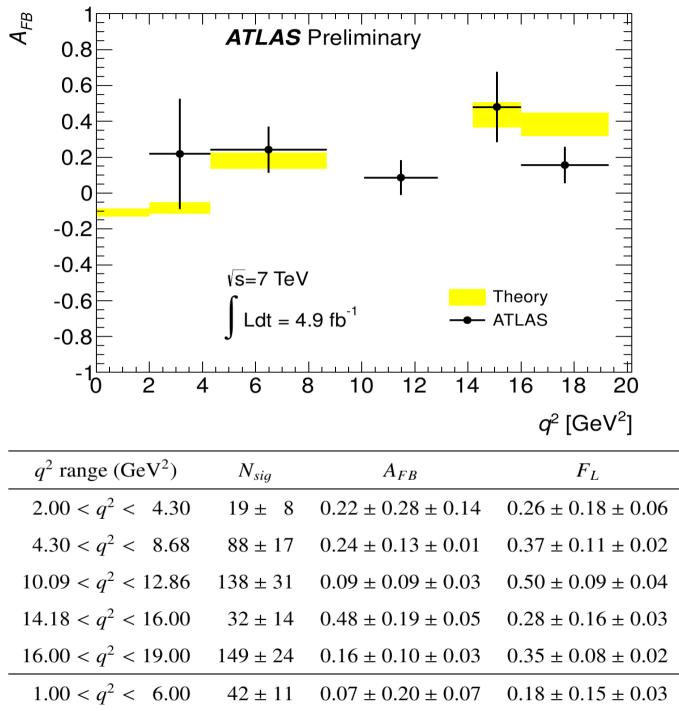
$$\mathcal{A}_{L,\text{bckg}}(\cos\theta_{L,i}) = 1 + p_1 \cos\theta_{L,i} + p_2 \left(2(\cos\theta_{L,i})^2 - 1\right)$$
$$\mathcal{A}_{K,\text{bckg}}(\cos\theta_{K,i}) = 1 + p_1 \cos\theta_{K,i} + p_2 \left(2(\cos\theta_{K,i})^2 - 1\right)$$

Example of the fit

Systematic uncertainties

- Mass fit region
- Angular background shape
- Contribution of $B^+ \rightarrow \mu^+\mu^-K^+$ events
- Acceptance effects
- Fit mode (sequential fit approach)
- Sources that were studied but found negligible:
 - S-wave contribution
 - $B_s \rightarrow \phi \mu^+ \mu^-$ contribution
 - Bias due to the fit model (linearity, 1D-2D)

Systematic uncertainties

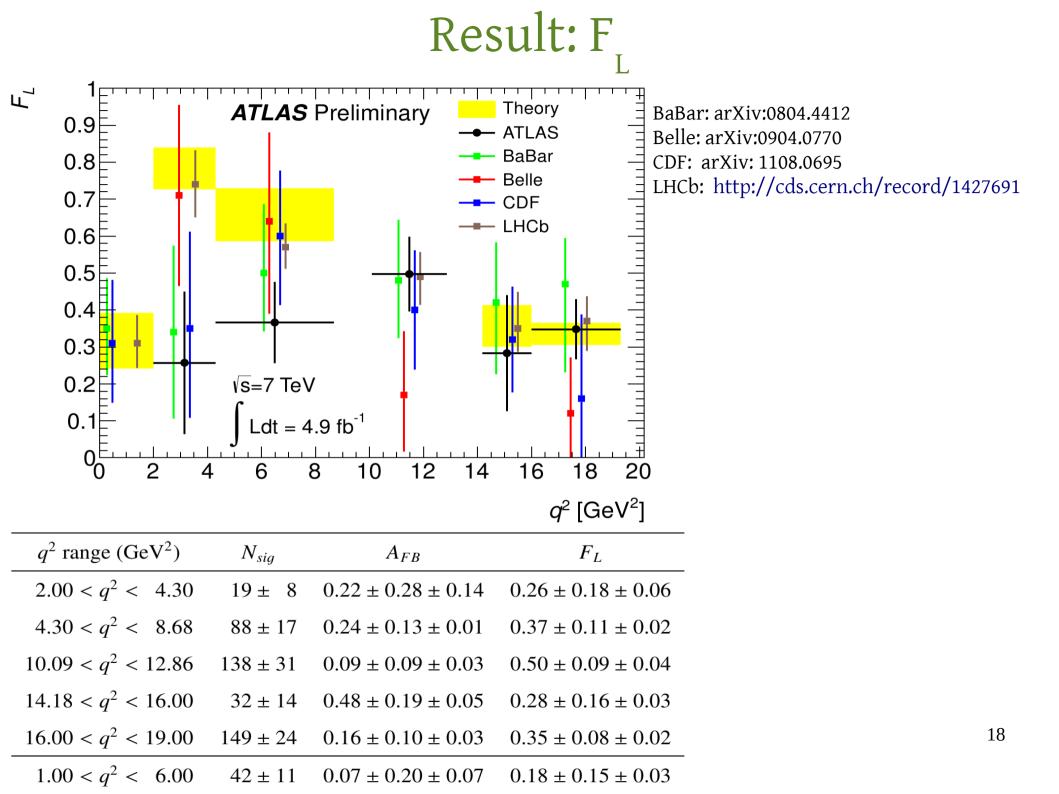

q^2 range (GeV ²)	fit region	ang. fit	$B^{\pm} ightarrow K^{\pm} \mu^{+} \mu^{-}$	acc. maps	fit	SUM
$2.00 < q^2 < 4.30$	0.02	0.01	0.08	0.01	0.10	0.136
$4.30 < q^2 < 8.68$	0.00	0.01	0.01	0.01		0.013
$10.09 < q^2 < 12.86$	0.03	0.01	0.02	0.00		0.031
$14.18 < q^2 < 16.00$	0.03	0.01	0.03	0.02		0.050
$16.00 < q^2 < 19.00$	0.02	0.01	0.02	0.01		0.026
$1.00 < q^2 < 6.00$	0.05	0.01	0.02	0.04		0.069
q^2 range (GeV ²)	fit region	ang. fit	$B^{\pm} \rightarrow K^{\pm} \mu^{+} \mu^{-}$	acc. maps	fit	SUM
q^2 range (GeV ²) 2.00 < q^2 < 4.30	fit region 0.01	ang. fit 0.01	$B^{\pm} \rightarrow K^{\pm} \mu^{+} \mu^{-}$ 0.02	acc. maps 0.01	fit 0.05	SUM 0.058
	C	C		-		
$2.00 < q^2 < 4.30$	0.01	0.01	0.02	0.01		0.058
$2.00 < q^2 < 4.30$ $4.30 < q^2 < 8.68$	0.01 0.01	0.01 0.01	0.02	0.01 0.02		0.058 0.021
$2.00 < q^2 < 4.30$ $4.30 < q^2 < 8.68$ $10.09 < q^2 < 12.86$	0.01 0.01 0.04	0.01 0.01 0.01	0.02 0.00 0.00	0.01 0.02 0.02		0.058 0.021 0.042

Anna Usanova, $B \rightarrow K^* \mu \mu$ at ATLAS, BEAUTY 2013

A_{FB}

 $\mathbf{F}_{\mathbf{L}}$

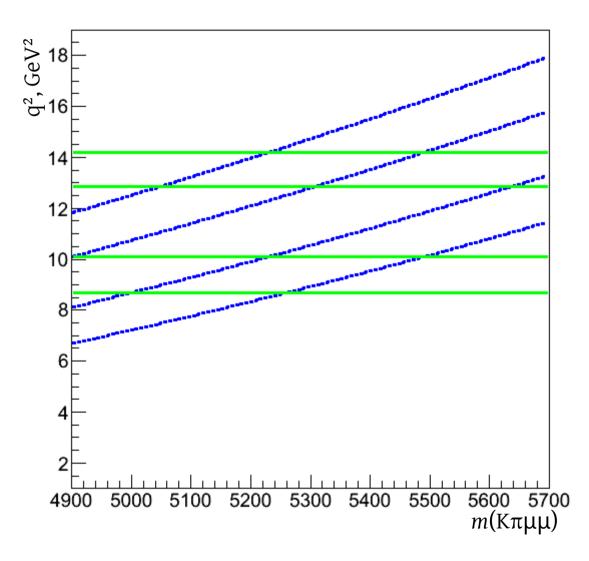
Result: A



Theory prediction: arXiv:1105.2659v1 Result: A_{FB}

	ATLAS P	Preliminary	BaE BaE
0.6			
0.4	t.	<u></u> ∦†,	
0.2	<mark>↓</mark>	∎ I¦# T	
o 🖡 🕴 📕			
-0.2	Ī		Theory
-0.4	·		ATLAS <u> </u>
-0.6	√s=7 TeV		Belle
-0.8	$\int Ldt = 4.9$		CDF =
$-1^{\boxed{1}}_{2}$	 6 8	10 12 14	16 18 20
о <u>с</u> .	0 0		
			<i>q</i> ² [GeV²]
q^2 range (GeV ²)	N_{sig}	A_{FB}	<i>q</i> ² [GeV ²]
$ q^2 \text{ range (GeV}^2) 2.00 < q^2 < 4.30 $	$\frac{N_{sig}}{19 \pm 8}$	A_{FB} 0.22 ± 0.28 ± 0.14	F_L
	U		F_L 0.26 ± 0.18 ± 0.06
$2.00 < q^2 < 4.30$	19 ± 8	$0.22 \pm 0.28 \pm 0.14$	F_L 0.26 ± 0.18 ± 0.06 0.37 ± 0.11 ± 0.02
$2.00 < q^2 < 4.30$ $4.30 < q^2 < 8.68$	19 ± 8 88 ± 17	$0.22 \pm 0.28 \pm 0.14$ $0.24 \pm 0.13 \pm 0.01$	F_L $0.26 \pm 0.18 \pm 0.06$ $0.37 \pm 0.11 \pm 0.02$ $0.50 \pm 0.09 \pm 0.04$
$2.00 < q^{2} < 4.30$ $4.30 < q^{2} < 8.68$ $10.09 < q^{2} < 12.86$	19 ± 8 88 ± 17 138 ± 31	$0.22 \pm 0.28 \pm 0.14$ $0.24 \pm 0.13 \pm 0.01$ $0.09 \pm 0.09 \pm 0.03$	F_L $0.26 \pm 0.18 \pm 0.06$ $0.37 \pm 0.11 \pm 0.02$ $0.50 \pm 0.09 \pm 0.04$ $0.28 \pm 0.16 \pm 0.03$

BaBar: arXiv:0804.4412 Belle: arXiv:0904.0770 CDF: arXiv: 1108.0695 LHCb: http://cds.cern.ch/record/1427691


Conclusions, outlook

- We performed an analysis of 2011 data to study the angular distribution of $B_d \rightarrow K^* \mu^+ \mu^-$ decay
- 466 signal events were observed, A_{FB} and F_{L} values measured
- We have looked at various sources of possible systematic uncertainties; statistical errors dominate
- Our result is consistent with the other experiments
- We are looking forward to the analysis of the data collected with ATLAS in 2012
- There is a lot of space for improvement

Backup slides

Fits in other q² bins

2D plot

Theoretical distributions

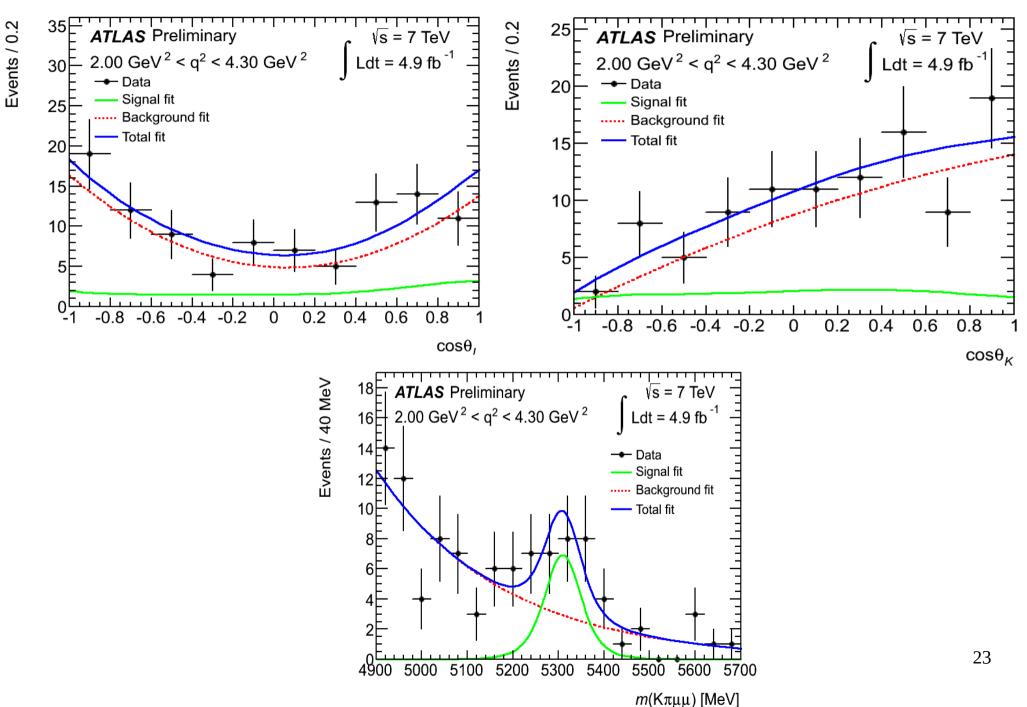
$$\frac{8\pi}{3} \frac{d^4\Gamma}{dq^2 d\cos\theta_\ell d\cos\theta_K d\phi} = (J_{1s} + J_{2s}\cos2\theta_\ell + J_{6s}\cos\theta_\ell)\sin^2\theta_K + (J_{1c} + J_{2c}\cos2\theta_\ell + J_{6c}\cos\theta_\ell)\cos^2\theta_K + (J_3\cos2\phi + J_9\sin2\phi)\sin^2\theta_K\sin^2\theta_\ell + (J_4\cos\phi + J_8\sin\phi)\sin2\theta_K\sin2\theta_\ell + (J_5\cos\phi + J_7\sin\phi)\sin2\theta_K\sin\theta_\ell$$

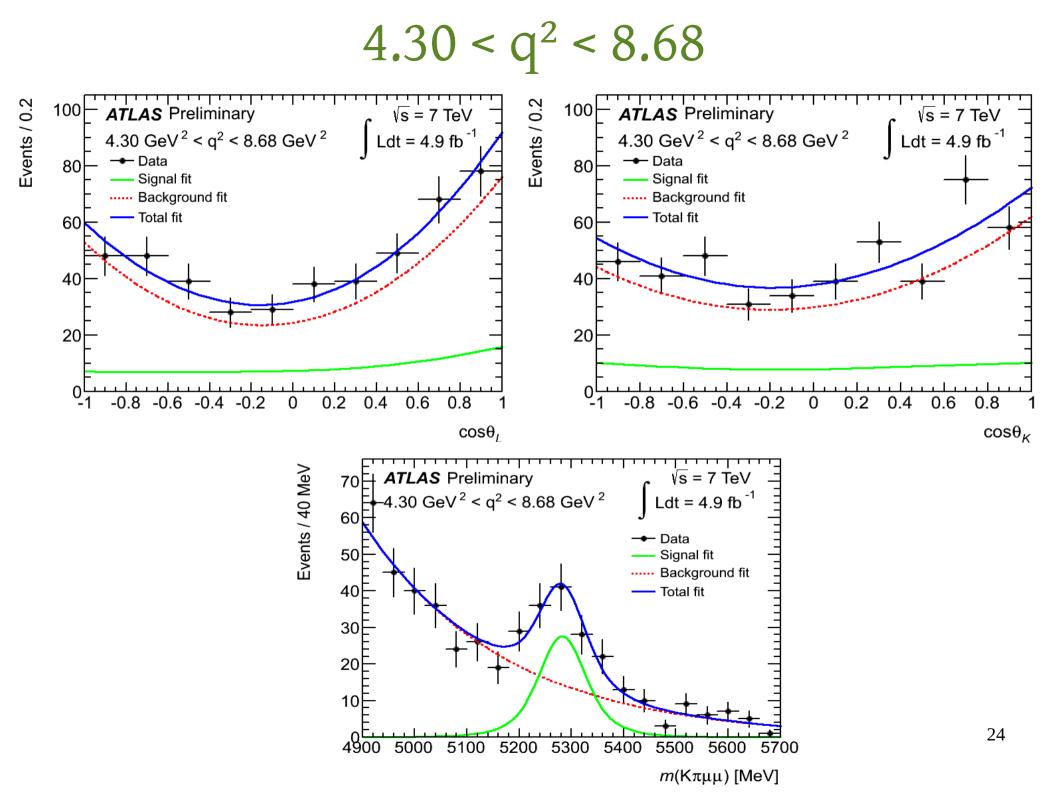
$$4m_{\mu}^{2} \leq q^{2} \leq (m_{B_{d}^{0}} - m_{K^{*0}})^{2}, \quad -1 \leq \cos \theta_{L} \leq 1,$$

$$-1 \leq \cos \theta_{K} \leq 1, \quad 0 \leq \phi \leq 2\pi$$

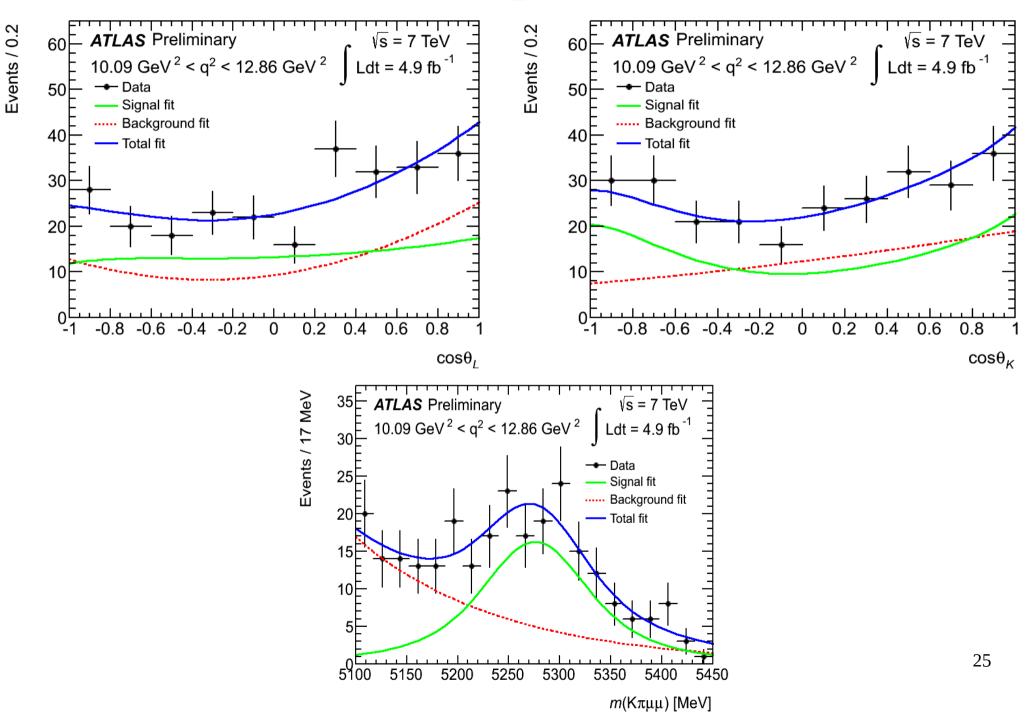
$$\frac{1}{\langle \Gamma \rangle} \frac{d^{2} \langle \Gamma \rangle}{d \cos \theta_{\ell} d \cos \theta_{K}} = \frac{9}{32} \left[2 \langle F_{L} \rangle \cos^{2} \theta_{K} + (1 - \langle F_{L} \rangle)(1 - \cos^{2} \theta_{K}) - 2 \langle F_{L} \rangle \cos^{2} \theta_{K}(2 \cos^{2} \theta_{\ell} - 1) + (1 - \langle F_{L} \rangle)(1 - \cos^{2} \theta_{K}) \cos^{2} \theta_{\ell} + \frac{8}{3} \langle A_{FB} \rangle \cos \theta_{\ell}(1 - \cos^{2} \theta_{K}) \right]$$

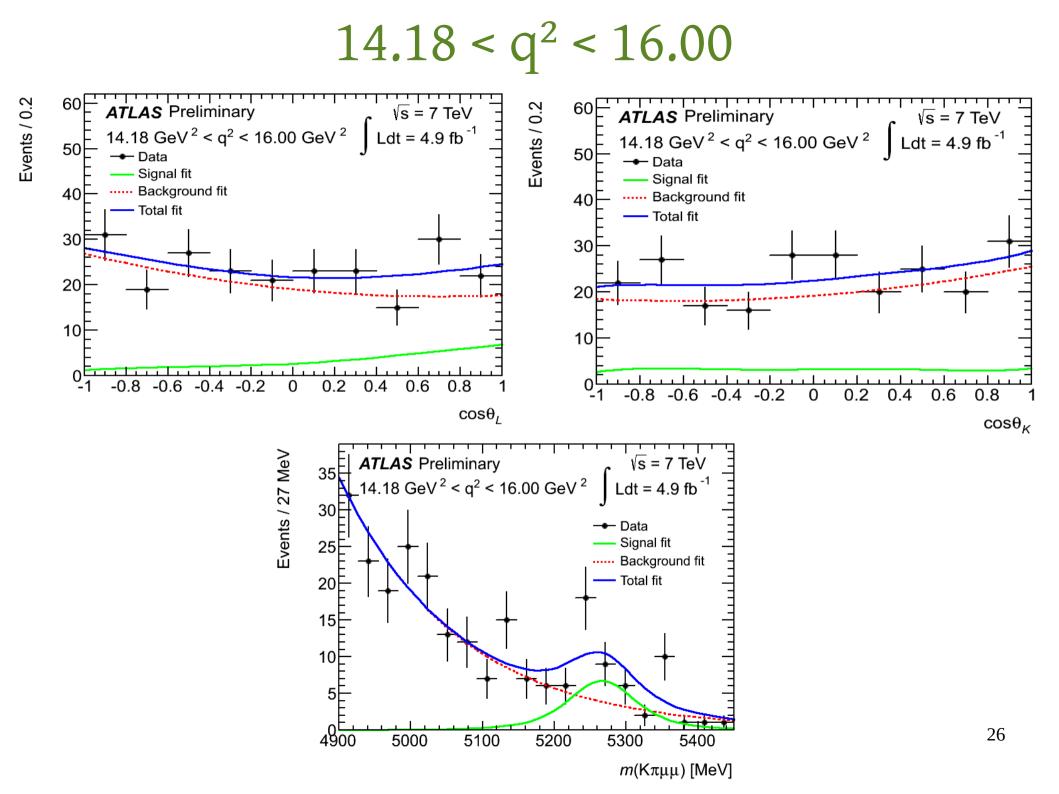
$$2D \rightarrow$$

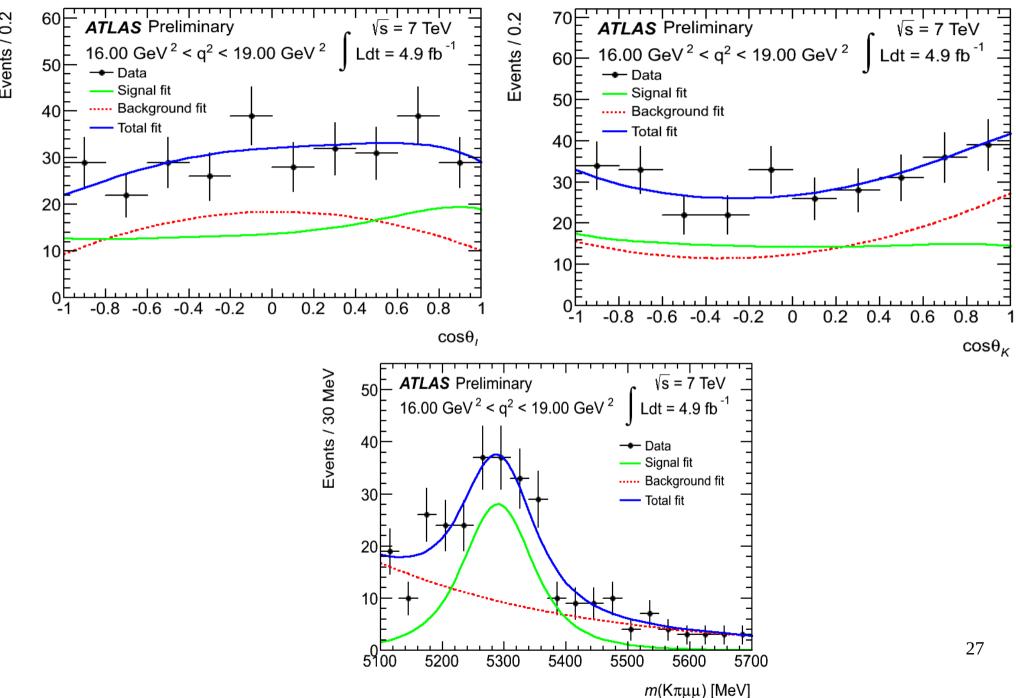

$$\frac{1}{\langle \Gamma \rangle} \frac{d \langle \Gamma \rangle}{d \cos \theta_{\ell}} = \frac{1}{\langle \Gamma \rangle} \int_{-1}^{1} d \cos \theta_{K} \frac{d^{2} \langle \Gamma \rangle}{d \cos \theta_{\ell} d \cos \theta_{K}} = \frac{9}{16} \left[\left(1 - \frac{1}{3} \langle F_{L} \rangle \right) + \left(\frac{1}{3} - \langle F_{L} \rangle \right) (2 \cos^{2} \theta_{\ell} - 1) + \frac{16}{9} \langle A_{FB} \rangle \cos \theta_{\ell} \right] \\= \frac{3}{4} \langle F_{L} \rangle (1 - \cos^{2} \theta_{\ell}) + \frac{3}{8} (1 - \langle F_{L} \rangle) (1 +) + \langle A_{FB} \rangle \cos \theta_{\ell}$$


$$\frac{1}{\langle \Gamma \rangle} \frac{d \langle \Gamma \rangle}{d \cos \theta_K} = \frac{1}{\langle \Gamma \rangle} \int_{-1}^{1} d \cos \theta_\ell \, \frac{d^2 \langle \Gamma \rangle}{d \cos \theta_\ell \, d \cos \theta_K} = \frac{3}{2} \langle F_L \rangle \cos^2 \theta_K + \frac{3}{4} \left(1 - \langle F_L \rangle \right) \left(1 - \cos^2 \theta_K \right)$$

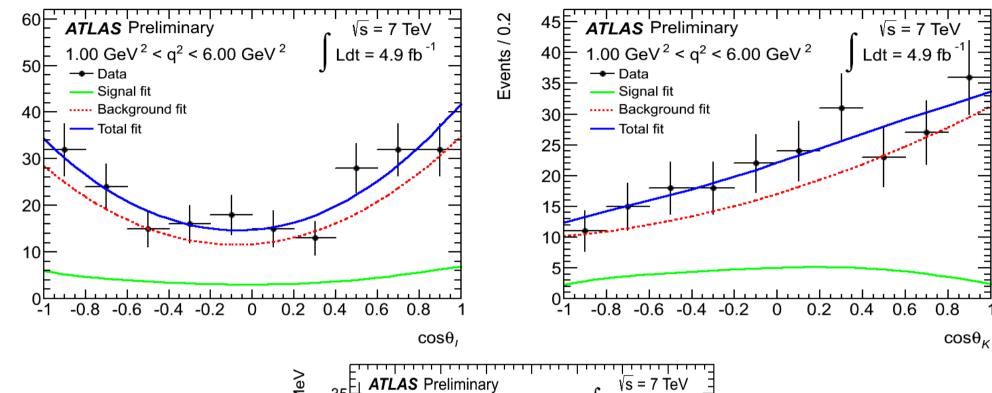
1D

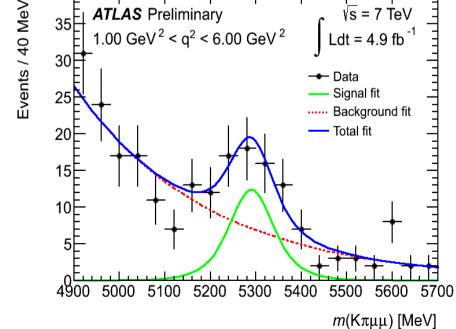

22





10.09 < q² < 12.86





Events / 0.2

