

Vertex and track reconstruction in ATLAS and CMS

Jiri Masik
University of Manchester
for the ATLAS and CMS collaborations

Beauty 2013 Bologna

Outline

- ATLAS and CMS
 - tracking detectors
 - track and vertex reconstruction
- Performance of vertexing
- The pile-up related effects
- Outlook to Run 2
- Summary

Track and Vertex reconstruction

- tracking and vertexing performance crucial for Bphysics
 - identification of the primary interaction
 - reconstruction of the decay
 - precise measurements of decay lengths/time
 - -fundamental for separation of signal and background
- high efficiency and high precision essential
 - vertex resolutions and resolutions of track parameters (impact parameters in particular)
- ATLAS and CMS have excellent tracker systems to explore heavy flavour physics

ATLAS Inner Detector

- pixel+ double sided silicon strip+ transition radiation tracker technologies
- in 2T solenoidal field
- $|\eta| < 2.5$

6.2m

	channels	dimensions	<hits on="" track=""></hits>
Pixel	80M	50μmx400μm	3
SCT	6.3M	~80µm	8
TRT	350k	straws R=2mm	~30

The University of Manchester

CMS tracker

- Pixel (100µm x 150µm) in
 - 3 barrel layers (R =4.4cm
 - 10.2cm)
 - 2 endcap disks
 - 66M channels
- Strip tracker (~100µm strip pitch)
 - 10 barrel layers(R=25.5cm-110cm)
 - 12 endcap disks, single sided and double sided layers
 - 10M channels
- |η|<2.5
- typically ~16 hits on track
- 3.8T solenoidal field
- with 200m² of sensitive area the largest silicon tracker

Track and Vertex Reconstruction

ATLAS tracking

- 3 space point seeds
- combinatorial Kalman filter adding hits
- resolution of ambiguities between track candidates
- track extension to TRT
- track fit
- pT>400MeV in the baseline inside-out reco
 - lower pT tracks can be reconstructed in second stage by repeating the seeding on unused hits
- also outside in with seeds from TRT and extending to silicon

iterative vertex finding

- vertex seeds from z-distributions of tracks along beamline
- $-\chi^2$ weight for each track @vtx
 - if weight $>7\sigma$ ->a new vtx seed
 - iterate until no new seeds

CMS

Tracking

- •similar principles as in ATLAS, the reconstruction makes use of the iterative track finding
- •7 passes of seeding+kalman filter
 - removal of used seeds/hits
 - •loosening the pT, d0 compatibility with beam line
- the seeds triplets or doublets with beam constraint
- Tracks from secondary vertices special seeding after first pass
- Vertexing
- clustering tracks with required criteria (impact param significance wrt beam line, number of hits, X²) along z
- adaptive vertex fit

Performance of the vertexing and of the tracking

Vertexing resolution/ATLAS

- Resolutions obtained from comparison of split vertices
 - tracks from a single vertex split into 2 sets and new vertices formed
 - resolutions derived from the difference of their position
- The resolutions are improving with the number of tracks at vertex
 - smallest resolutions ~20μm and 30μm for X and Z positions respectively
 - agreement between data and MC behaviour

Vertexing resolution/CMS

- Jet enriched and Minimum bias selections of events
- split vertex method for data-driven estimation of the resolution
- Minimum bias comparable with ATLAS plots
- equivalent values obtained with less populous vertices than in ATLAS, reached ~20µm in Z resolution

Track parameter resolutions

- resolution function of η (and increasing amount of traversed material), of pT
- p_T√sinθ from multiple scattering

Track parameter resolutions/II

- similar effects as on d₀
- · depends on momenta and multiple scattering
- resolution at η=0 worse due to minimal charge sharing
- smaller dimension of CMS pixels along z profitable

Secondary vertex reconstruction

- · iterative inclusive secondary vertex finder technique developed by CMS
 - enhances the capability to detect nearby B hadrons otherwise unresolvable by standard b-tagging method
 - Measurement of BBbar angular correlations based on secondary vertex reconstruction JHEP 03 (2011) 136

method

The University of Manchester

- primary vertex reconstructed from tracks compatible with beamline, sorted by Σp_T^2
- secondary vertices seeded from tracks with high impact param significance, clustering tracks by separation in distance in 3d, separation significance and angular separation
- vertex fit and subsequent merging of vertices if more than 70% shared tracks
- tracks reassigned to primary & secondary vertices based on significance of track to vertex distance

Pile-up

LHC excellent operation in Run1

- 50ns bunch spacing the level of pileup exceeds design values for the run 1
- further increase of luminosity after LS1
 - start up again in 50ns
- Challenging reconstruction in the presence of multiple interactions and higher detector occupancy

Z->µµ decay with pileup interactions (25 reconstructed vertices)

The effects of pile-up

- extensive studies of pile up effect on the reconstruction
- an increase of track fake rate
 - combinatorial background from the pileup
 - esp tracks with increased d₀
- track reconstruction cuts
 - Robust set developed for high pileup (7 vs 9 measurements on track, 0 missing in pixel)
 - decreases the rate of fake tracks wrt Default cuts
 - small effect on track efficiency
 - less redundancy wrt detector operation

The effects of pile-up/II

- Vertexing efficiency and fake rate also studied as a function of pile up
- fake tracks increase the chance to reconstruct a fake vertex (7% @ μ =40)
- Robust reconstruction effective also against fake vertices
- The decrease of vertex reconstruction efficiency with µ
 - vertex shadowing when a nearby interaction too close to be resolved and only one vertex gets reconstructed

More Pile-up Studies

- The University of Manchester
- performance of the reconstruction algorithms wrt pile-up studied also in the trigger of CMS
- number of reconstructed pixel vertices in HLT as a function of number of interactions in an event
 - Comparison of data from early 2012 and later runs with an increased pile-up
 - linearity preserved during 2012 data taking
- confirmed a robust performance of the reconstruction/trigger

Number of Pixel Vertices in High Level Trigger of CMS

MANCHESTER

Outlook to Run 2

N.B. More complete presentation of the detectors upgrade beyond the current long shutdown in

Ulrich Parzefall/ATLAS and CMS Upgrade Plans /on Friday

17

The University of Mancheste

IBL in ATLAS

- Insertable B-Layer
 - will be installed during the current long shutdown
- addition of the 4th Pixel layer @3.3cm between the current Pixel detector and a smaller beam-pipe
- improvement for tracking and vertexing
 - a smaller radius
 - a smaller z granularity to help against pile-up (50x250µm)
 - redundancy (detector problems, aging of the current innermost layer)

b tagging rejection factors as a function of pileup. Comparison of ATLAS and ATLAS +IBL and aging of the current innermost layer

b tagging based on

Impact parameter

The University of Manchestel

IBL in ATLAS/II

- improvement
 on impact
 parameters d₀
 and z₀
 - as a function of pT
 - the effect of a smaller z pitch
- improvement on vertex resolution in ttbar events
 - in transverse
 coord
 15µm→11µm, in
 z 34µm→24µm
 - the effect on x is smaller when BS constrained (9µm→8µm)

Summary

- very good understanding of performance of the detector and algorithms
 - well simulated by MC
- tracking and vertexing performance robust wrt increasing pileup
 - detectors and reconstruction algorithms maintain their performance
 - the effects of pile up carefully studied
- Run2 conditions even more challenging
 - increase of luminosity, initial LHC setup with 50ns bunch spacing
 - ATLAS first detector upgrades over LS1 beneficial for tracking performance and B-physics programme