Non-perturbative (Lattice) QCD in B Physics

Elvira Gámiz

14th International Conference on B-Physics at Hadron Machines

- Bologna (Italy) 8-12 April 2013 .

1. Introduction

\# Searching for New Physics via precise measurements/SM predictions of heavy flavor observables.
\# Constraining possible NP models.

1. Introduction

\# Searching for New Physics via precise measurements/SM predictions of heavy flavor observables.
\# Constraining possible NP models.

Laiho,Lunghi, Van de Water PRD81:034503 (2010)

Example: UT fits

Error bands are still dominated by theory errors, in particular due to hadronic matrix elements

1. Introduction

\# Searching for New Physics via precise measurements/SM predictions of heavy flavor observables.
\# Constraining possible NP models.

Laiho,Lunghi, Van de Water PRD81:034503 (2010)

Example: UT fits

Error bands are still dominated by theory errors, in particular due to hadronic matrix elements \rightarrow use lattice QCD

1. Introduction: Lattice QCD

Lattice QCD: Numerical evaluation of QCD path integral (rely only on first principles).

1. Introduction: Lattice QCD

Lattice QCD: Numerical evaluation of QCD path integral (rely only on first principles).

Goal: Precise calculations ($\leq 5 \%$ error)

* Control over systematic errors:
** Unquenched calculations: $N_{f}=2+1$ or $N_{f}=2+1+1$.
** Discretization: improved actions + simulations at several $a^{\prime} s \rightarrow$ continuum limit
** Chiral extrapolation: simulate at several m_{π} and extrapolate to $m_{\pi}^{\text {phys }}$ using ChPT.
** Renormalization: non-perturbative, perturbative.
** Tuning lattice scale and masses
** Finite volume, isospin effects, electromagnetic effects, ...

Systematically improvable

1. Introduction: Overview of simulations parameters

Several $N_{f}=2+1$ and even $N_{f}=2+1+1$, and physical quark masses.

First results with simulations with physical light
plot by C. Hoelbling, quark masses starting to appear.

1. Introduction: Heavy quarks on the lattice

\# Problem is discretization errors $\left(\simeq m_{Q} a,\left(m_{Q} a\right)^{2}, \cdots\right)$ if $m_{Q} a$ is large.

* Effective theories: Need to include multiple operators matched to full QCD B-physics $\sqrt{ }$
** HQET (static,...): sytematic expansion in $1 / m_{h}$.
** NRQCD: systematic (non-relativistic) expansion in $\left(v_{h} / c\right)$.
** Fermilab, RHQ, ...

1. Introduction: Heavy quarks on the lattice

\# Problem is discretization errors $\left(\simeq m_{Q} a,\left(m_{Q} a\right)^{2}, \cdots\right)$ if $m_{Q} a$ is large.

* Effective theories: Need to include multiple operators matched to full QCD B-physics $\sqrt{ }$
** HQET (static,...): sytematic expansion in $1 / m_{h}$.
** NRQCD: systematic (non-relativistic) expansion in $\left(v_{h} / c\right)$.
** Fermilab, RHQ, ...
* Relativistic (improved) formulations:
** Allow accurate results for charm (especially twisted mass, HISQ (Highly improved staggered quarks)).
** Advantages of having the same formulation for light and heavy: ratios light/heavy, PCAC for heavy-light, ... Also simpler tuning of masses.
** Also for bottom: Results for $m_{c} \cdots \leq m_{b}$ and extrapolation to m_{b} (twisted mass, HISQ).

2. Tuning the parameters: m_{b}
\# HPQCD $N_{f}=2+1$ NRQCD calculation (non-relativistic): 1302.3739

$$
\bar{m}_{b}^{\overline{M S}}\left(\bar{m}_{b}\right)=4.166(43) \mathrm{GeV}
$$

* Direct determination from binding energy of both Υ and B_{s} mesons.
* Accurate through $\mathcal{O}\left(\alpha_{s}^{2}\right)$ (heavy quark energy shift at two-loops).

Still higher order perturbation theory dominates the error.

2. Tuning the parameters: m_{b}

\# HPQCD $N_{f}=2+1$ NRQCD calculation (non-relativistic): 1302.3739

$$
\bar{m}_{b}^{\overline{M S}}\left(\bar{m}_{b}\right)=4.166(43) \mathrm{GeV}
$$

* Direct determination from binding energy of both Υ and B_{s} mesons.
* Accurate through $\mathcal{O}\left(\alpha_{s}^{2}\right)$ (heavy quark energy shift at two-loops).

Still higher order perturbation theory dominates the error.
\# HPQCD $N_{f}=2+1$ HISQ calculation (relativistic): 1004.4285

$$
\bar{m}_{b}^{\overline{M S}}\left(\bar{m}_{b}\right)=4.164(23) \mathrm{GeV}
$$

* η_{b} current-current correlators + high-order $\left(\alpha_{s}^{3}\right)$ continuum QCD perturbation theory:
* Simulate at $m_{H}<m_{b}$ and extrapolate to physical m_{b}
* Experimental input: $M_{\eta_{b}}$ used to tune the lattice b - quark mass.
* Eliminates renormalization and effective theory errors.

2. Tuning the parameters: m_{b}

plot from A.J. Lee et al, arXiv:1302.3739

3. B and B_{s} meson decay constants

\# Needed for processes potentially sensitive to NP: $B_{(s)} \rightarrow \mu^{+} \mu^{-}$.
\# Check agreement theory-experiment $\operatorname{Br}\left(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)$.
\# UT inputs.

3. B and B_{s} meson decay constants

\# Needed for processes potentially sensitive to NP: $B_{(s)} \rightarrow \mu^{+} \mu^{-}$.
\# Check agreement theory-experiment $\operatorname{Br}\left(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)$.
\# UT inputs.
Decay constants come from simple matrix elements

$$
\langle 0| A_{0}\left|B_{q}\right\rangle=M_{B_{q}} f_{B_{q}} \rightarrow \text { precise calculations on the lattice }
$$

3. B and B_{s} meson decay constants

\# HPQCD relativistic, PRD 85 (2012) 031503: $N_{f}=2+1$ with four a 's.

* Using relativistic description (HISQ) for b reduce the error to 2%.
** No effective theory errors, no renormalization.
* Cross-checks: $m_{b}^{\overline{M S}}, m_{B_{s}}-m_{\eta_{b}} / 2, f_{K}, f_{\pi}$.
* First empirical evidence for $1 / \sqrt{m_{B_{s}}}$ depende predicted by HQET.

$$
f_{B_{s}}=224(4) \mathrm{MeV}
$$

3. B and B_{s} meson decay constants

\# First calculation with physical light quark masses: HPQCD, 1302.2644

* $N_{f}=2+1+1$ MILC configurations. Three a 's.
* NRQCD description of b quarks.
* New estimate of matching errors: fit α_{s}^{2} terms instead of power counting.

3. B and B_{s} meson decay constants

3. B and B_{s} meson decay constants

(for exp. see Horii's talk)

Averages from 1302.2644

$$
\begin{gathered}
f_{B}=(185 \pm 3) M e V \\
f_{B_{s}}=(225 \pm 3) \mathrm{MeV} \\
f_{B_{s}} / f_{B}=1.218(8)
\end{gathered}
$$

3. B and B_{s} meson decay constants

(for exp. see Horiil's talk)

Averages from 1302.2644

$$
\begin{gathered}
f_{B}=(185 \pm 3) M e V \\
f_{B_{s}}=(225 \pm 3) \mathrm{MeV} \\
f_{B_{s}} / f_{B}=1.218(8)
\end{gathered}
$$

Using f_{B} above: $\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}\right|^{2}=6.05(20) 1302.2644$
Belle, 1208.4678: $\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{e x c .}\right|^{2}=6.9 \pm 3.1$

$$
\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{i n c .}\right|^{2}=3.9 \pm 1.7
$$

Averages in, 1201.2401: $\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{\text {exc. }}\right|^{2}=16.1 \pm 4.2$

$$
B r\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{i n c \cdot}\right|^{2}=9.2 \pm 2.3
$$

3. B and B_{s} meson decay constants

(for exp. see Horii's talk)

Averages from 1302.2644

$$
\begin{gathered}
f_{B}=(185 \pm 3) M e V \\
f_{B_{s}}=(225 \pm 3) M e V \\
f_{B_{s}} / f_{B}=1.218(8)
\end{gathered}
$$

Using f_{B} above: $\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}\right|^{2}=6.05(20) 1302.2644$
Belle, 1208.4678: $\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{\text {exc. }}\right|^{2}=6.9 \pm 3.1$

$$
\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{i n c .}\right|^{2}=3.9 \pm 1.7
$$

Averages in, 1201.2401: $\operatorname{Br}\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{e x c .}\right|^{2}=16.1 \pm 4.2$

$$
B r\left(B^{+} \rightarrow \tau \nu\right) /\left|V_{u b}^{i n c} \cdot\right|^{2}=9.2 \pm 2.3
$$

\# In progress: FNAL/MILC, ALPHA, ETMC, RBC/UKQCD

4. Semileptonic decays

4.1. $B \rightarrow \pi l \nu$: Exclusive determination of $\left|V_{u b}\right|$

See Giulia Ricciardi's Talk

* No new calculations since 2009.

Combined fit of lattice data
FNAL/MILC, 0811.3604
and experimental data
HFAG 2012, from BaBar and Belle data
from different q^{2} regions using z-expansion.

$$
\left|V_{u b}^{e x c .}\right|=(3.23 \pm 0.30) \times 10^{-3}
$$

4.1. $B \rightarrow \pi l \nu$: Exclusive determination of $\left|V_{u b}\right|$

See Giulia Ricciardi’s Talk

* No new calculations since 2009.

Combined fit of lattice data
FNAL/MILC, 0811.3604
and experimental data
HFAG 2012, from BaBar and Belle data

from different q^{2} regions using z-expansion.

$$
\left|V_{u b}^{e x c .}\right|=(3.23 \pm 0.30) \times 10^{-3}
$$

\# In progress: Important improv. on existing $N_{f}=2+1$ calculations

* FNAL/MilC Many more data, smaller lattice spacings, improvements on parametrization of shape ...
* HPQCD: several improvements in statistical errors (more data, smearing, random wall sources), better scale determination, z-expansion...
\# In progress: RBC/UKQCD $\left(N_{f}=2+1\right), \operatorname{ALPHA}\left(N_{f}=2\right)$

4.2. $B_{s} \rightarrow K l \nu:$ Exclusive determination of $\left|V_{u b}\right|$

$$
\text { Alternative to } B \rightarrow \pi l \nu \text { to extract }\left|V_{u b}\right|
$$

* Experiment: Expect to be measured by LHCb and Belle II
* On the lattice: Corresponding form factors can be calculated with smaller errors (spectator quark is heavier (strange)

4.2. $B_{s} \rightarrow K l \nu:$ Exclusive determination of $\left|V_{u b}\right|$

$$
\text { Alternative to } B \rightarrow \pi l \nu \text { to extract }\left|V_{u b}\right|
$$

* Experiment: Expect to be measured by LHCb and Belle II
* On the lattice: Corresponding form factors can be calculated with smaller errors (spectator quark is heavier (strange)
\# HPQCD $\left(N_{f}=2+1\right.$ calculation with NRQCD b-quarks)

4.2. $B_{s} \rightarrow K l \nu:$ Exclusive determination of $\left|V_{u b}\right|$

\# HPQCD $\left(N_{f}=2+1\right.$ calculation with NRQCD b-quarks)

* Also build ratio of form factors for $B_{s} \rightarrow K l \nu$ and $B_{s} \rightarrow \eta_{s} l \nu$ (many systematic cancel partially or totally).
+ relativistic (HISQ) calculation of $B_{s} \rightarrow \eta_{s} l \nu$
\rightarrow precise determination of $B_{s} \rightarrow K l \nu$ form factors.

4.2. $B_{s} \rightarrow K l \nu:$ Exclusive determination of $\left|V_{u b}\right|$

\# HPQCD $\left(N_{f}=2+1\right.$ calculation with NRQCD b-quarks)

Preliminary

$B_{s} \rightarrow K l \nu$

Preliminary

$B_{s} \rightarrow \eta_{s} l \nu$

* Also build ratio of form factors for $B_{s} \rightarrow K l \nu$ and $B_{s} \rightarrow \eta_{s} l \nu$ (many systematic cancel partially or totally).
+ relativistic (HISQ) calculation of $B_{s} \rightarrow \eta_{s} l \nu$
\rightarrow precise determination of $B_{s} \rightarrow K l \nu$ form factors.
\# fnal/milc also work in progress to get $B_{s} \rightarrow K l \nu$ form factors.
4.3. B rare decays: $B \rightarrow K l^{+} l^{-}$
\# Preliminary results from Cambridge group, 1101.2726, FNAL/MILC, 1211.1390 and HPQCD, Bouchard Lattice12
* All calculations on Milc $N_{f}=2+1$ configurations. Different light quark actions (Asqtad, HISQ) and heavy quark actions (Fermilab, NRQCD).
* Need three form factors (vector, scalar, tensor).
4.3. B rare decays: $B \rightarrow K l^{+} l^{-}$
\# Preliminary results from Cambridge group, 1101.2726, FNAL/MILC, 1211.1390 and HPQCD, Bouchard Lattice12
* All calculations on MilC $N_{f}=2+1$ configurations. Different light quark actions (Asqtad, HISQ) and heavy quark actions (Fermilab, NRQCD).
* Need three form factors (vector, scalar, tensor).

* FNAL/MILC shape from z-expansion (data at $q^{2} \geq 15 \mathrm{GeV}^{2}$) and systematic errors included. Four lattice spacings.
4.3. B rare decays: $B \rightarrow K l^{+} l^{-}$
\# HPQCD shape from z-expansion (data at $q^{2} \geq 17 \mathrm{GeV}^{2}$) and systematic errors included. Two lattice spacings, NRQCD.

* All systematic errors included except for matching (dominant one)
\# Experimental results so far consistent with SM predictions.

4.4. B rare decays: $B \rightarrow K^{*} l^{+} l^{-}$

\# Coming soon: Update from Cambridge group for $B \rightarrow K\left(K^{*}\right) l \nu$.

* Need seven form factors.
* Simulate at q^{2} away from charmonium resonances.

Preliminary: $B \rightarrow K^{*} l l$ form factors vs $q^{2} / q_{\max }^{2} \mathrm{M}$. Wingate Lattice2012

4.5. Exclusive determination of $\left|V_{c b}\right|$

See Giulia Ricciardi's Talk

Some preliminary results:

4.5. Exclusive determination of $\left|V_{c b}\right|$

See Giulia Ricciardi’s Talk

Some preliminary results:

\# Extraction from $B \rightarrow D l \nu$: need non-zero recoil to match $B \rightarrow D^{*} l \nu$ precision.
Preliminary FNAL/MILC $N_{f}=2+1,1211.2247$ four lattice spacings

Form factors parametrized by the z-expansion

$$
\left(\text { with } \omega=v_{B} \cdot v_{D}\right)
$$

Boxed region: smallest combined errors.
\rightarrow will allow complementary extraction of $\left|V_{c b}\right|$.

4.6. $B \rightarrow D \tau \nu$ and NP hints?

\# BaBar recently measured the ratio of branching fractions

$$
R(D)=\frac{\mathcal{B} r(B \rightarrow D \tau \nu)}{\mathcal{B} r(B \rightarrow D l \nu)}=0.440(72), \quad R\left(D^{*}\right)=0.332 \pm 0.030
$$

Using form factors in Kamenik, Mescia, 0802.3790 (quenched Iattice)
$\rightarrow(3.4) \sigma$ exclusion of SM PRL109 (2012)101802
(2σ exclusion with only $R(D)$)

4.6. $B \rightarrow D \tau \nu$ and NP hints?

\# BaBar recently measured the ratio of branching fractions
$R(D)=\frac{\mathcal{B} r(B \rightarrow D \tau \nu)}{\mathcal{B} r(B \rightarrow D l \nu)}=0.440(72), \quad R\left(D^{*}\right)=0.332 \pm 0.030$
Using form factors in Kamenik, Mescia, 0802.3790 (quenched lattice)
$\rightarrow(3.4) \sigma$ exclusion of SM PRL109 (2012)101802
(2σ exclusion with only $R(D)$)
$\# N_{f}=2+1$ form factor calculation by FNAL/MILC, PRL109 (2012)071802

$$
R(D)=0.316(12)(7) \rightarrow 1.7 \sigma \text { from experiment }
$$

Becirevic, Kosnik, Tayduganov, 1206.4977: $R(D)=0.31(2)$

* In progress: Analysis in the complete $N_{f}=2+1$ fnal/milc data set \rightarrow important reduction of errors in $R(D)$
* Another target: unquenched lattice calculation of $R\left(D^{*}\right)$

5. Neutral B-meson mixing

\# Hints of NP in neutral B-meson mixing: UTfit 1010.5089, CKMfitter 1203.0238, like-sign dimuon charge asymmetry $1106.6308+$ UT tensions ...

Not confirmed by recent analyses $\left(B_{s}\right)$ Lenz et al, 1203.0238, talk by Silvestrini
or by recent LHCb measurements. See talk by Vesterinen
Still room for important effects in B mixing. Lenz et al, 1203.0238

5. Neutral B-meson mixing

\# Hints of NP in neutral B-meson mixing: UTfit 1010.5089, CKMfitter 1203.0238, like-sign dimuon charge asymmetry 1106.6308 + UT tensions ...

Not confirmed by recent analyses $\left(B_{s}\right)$ Lenz et al, 1203.0238, talk by Silvestrini
or by recent LHCb measurements. See talk by Vesterinen
Still room for important effects in B mixing. Lenz et al, 1203.0238 \# Effective Hamiltonian describing neutral B-meson mixing.

$$
\begin{gathered}
\mathcal{H}_{e f f}^{\Delta B=2}=\sum_{i=1}^{5} C_{i} Q_{i}+\sum_{i=1}^{3} \widetilde{C}_{i} \widetilde{Q}_{i} \quad \text { with } \\
Q_{1}^{q}=\left(\bar{b}^{\alpha} \gamma_{\mu} L q^{\alpha}\right)\left(\bar{b}^{\beta} \gamma^{\mu} L q^{\beta}\right) \quad \text { SM } \\
Q_{2}^{q}=\left(\bar{b}^{\alpha} L q^{\alpha}\right)\left(\bar{b}^{\beta} L q^{\beta}\right) \quad Q_{3}^{q}=\left(\bar{b}^{\alpha} L q^{\beta}\right)\left(\bar{b}^{\beta} L q^{\alpha}\right) \\
Q_{4}^{q}=\left(\bar{b}^{\alpha} L q^{\alpha}\right)\left(\bar{b}^{\beta} R q^{\beta}\right) \quad Q_{5}^{q}=\left(\bar{b}^{\alpha} L q^{\beta}\right)\left(\bar{b}^{\beta} R q^{\alpha}\right) \\
\tilde{Q}_{1,2,3}=Q_{1,2,3} \text { with the replacement } L(R) \rightarrow R(L)
\end{gathered}
$$

5.1 Neutral B-meson mixing: SM

\# In the Standard Model the mass differences $\Delta M_{s(d)}$ depend on a single matrix element.

$$
\left.\Delta M_{q}\right|_{S M}=\frac{G_{F}^{2} M_{W}^{2}}{6 \pi^{2}}\left|V_{t q}^{*} V_{t b}\right|^{2} \eta_{2}^{B} S_{0}\left(x_{t}\right) M_{B_{s}} f_{B_{q}}^{2} \hat{B}_{B_{q}}
$$

** Non-perturbative input $\frac{8}{3} f_{B_{q}}^{2} B_{B_{q}}(\mu) M_{B_{q}}^{2}=\left\langle\bar{B}_{q}^{0}\right| O_{1}^{q}\left|B_{q}^{0}\right\rangle(\mu)$

5.1 Neutral B-meson mixing: SM

\# In the Standard Model the mass differences $\Delta M_{s(d)}$ depend on a single matrix element.

$$
\left.\Delta M_{q}\right|_{S M}=\frac{G_{F}^{2} M_{W}^{2}}{6 \pi^{2}}\left|V_{t q}^{*} V_{t b}\right|^{2} \eta_{2}^{B} S_{0}\left(x_{t}\right) M_{B_{s}} f_{B_{q}}^{2} \hat{B}_{B_{q}}
$$

** Non-perturbative input $\frac{8}{3} f_{B_{q}}^{2} B_{B_{q}}(\mu) M_{B_{q}}^{2}=\left\langle\bar{B}_{q}^{0}\right| O_{1}^{q}\left|B_{q}^{0}\right\rangle(\mu)$

* On the same MILC $N_{f}=2+1$ configurations but different description of b.

$f_{B_{d}}{\sqrt{\hat{B}_{B_{d}}}}^{\text {LLV }}=227(19) \mathrm{MeV}$

5.1 Neutral B-meson mixing: SM

\# In the Standard Model the mass differences $\Delta M_{s(d)}$ depend on a single matrix element.

$$
\left.\Delta M_{q}\right|_{S M}=\frac{G_{F}^{2} M_{W}^{2}}{6 \pi^{2}}\left|V_{t q}^{*} V_{t b}\right|^{2} \eta_{2}^{B} S_{0}\left(x_{t}\right) M_{B_{s}} f_{B_{q}}^{2} \hat{B}_{B_{q}}
$$

** Non-perturbative input $\frac{8}{3} f_{B_{q}}^{2} B_{B_{q}}(\mu) M_{B_{q}}^{2}=\left\langle\overline{B_{q}^{0}}\right| O_{1}^{q}\left|B_{q}^{0}\right\rangle(\mu)$

* On the same MILC $N_{f}=2+1$ configurations but different description of b.

$$
f_{B_{s}}{\sqrt{\hat{B}_{B_{s}}}}^{\mathrm{LLV}}=279(15) \mathrm{MeV}
$$

$$
\Delta M_{s}^{S M}=(19.6 \pm 2.1) p s^{-1} \text { Lenz, Nierste }+ \text { above average }
$$

$$
\Delta M_{s}^{S M}=(16.9 \pm 1.2) p s^{-1} \text { Lenz, Nierste }+ \text { aver. } f_{B_{s}}+B_{B_{s}} \text { next slide }
$$

$$
\Delta M_{s}^{\text {exp }}=(17.768 \pm 0.023 \pm 0.006) p s^{-1} \mathrm{LHCb} \text { Moriond } 2013 \text { preliminary }
$$

5.1 Neutral B-meson mixing: SM

Results for $\xi=\frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}} \propto \sqrt{\frac{\Delta M_{B_{s}}}{\Delta M_{B_{d}}}}$

$$
\xi^{\mathrm{N}_{\mathrm{f}}=2+1}=1.251 \pm 0.032
$$

5.1 Neutral B-meson mixing: SM

Results for $\xi=\frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}} \propto \sqrt{\frac{\Delta M_{B_{s}}}{\Delta M_{B_{d}}}}$

$$
\xi^{\mathrm{N}_{\mathrm{f}}=2+1}=1.251 \pm 0.032
$$

Bag parameters

* HPQCD, 0902.1815: $B_{B_{s}}^{\overline{M S}}\left(m_{b}\right)=0.86(4)$
* FNAL/MILC, 1205.7013:

$$
\begin{aligned}
B_{B_{d}}^{\overline{M S}}\left(m_{b}\right)= & 0.82(7) \\
& B_{B_{s}} / B_{B_{d}}=1.05(7) \\
& B_{B_{s}} / B_{B_{d}}=1.06(11)
\end{aligned}
$$

5.1 Neutral B-meson mixing: SM

Results for $\xi=\frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}} \propto \sqrt{\frac{\Delta M_{B_{s}}}{\Delta M_{B_{d}}}}$

$$
\xi^{\mathrm{N}_{\mathrm{f}}=2+1}=1.251 \pm 0.032
$$

Bag parameters

* HPQCD, 0902.1815: $B_{B_{s}}^{\overline{M S}}\left(m_{b}\right)=0.86(4)$
* FNAL/MILC, 1205.7013:

$$
\begin{aligned}
\overline{B_{B_{d}}^{\overline{M S}}\left(m_{b}\right)=} & 0.82(7) \\
& B_{B_{s}} / B_{B_{d}}=1.05(7) \\
& B_{B_{s}} / B_{B_{d}}=1.06(11)
\end{aligned}
$$

* Bag parameters: ETMC, Lattice $2012 N_{f}=2$ Preliminary

$$
B_{B_{s}}^{\overline{M S}}\left(m_{b}\right)=0.90(5) \quad B_{B_{d}}^{\overline{M S}}\left(m_{b}\right)=0.87(5) \quad \frac{B_{B_{s}}}{B_{B_{d}}}=1.03(2)
$$

In progress: ETMC, $N_{f}=2+1+1$ calculation

5.2 Neutral B-meson mixing: BSM

\# SM predictions + BSM contributions $=$ experiment
\rightarrow constraints on BSM building Dobrescu and Krnjaic, 1104.2893; Altmannshofer and Carena, 1110.0843; Buras and Girrbach, 1201.1302 ..

* Need matrix elements of all the operators in $\mathcal{H}_{e f f}^{\Delta B=2}$

5.2 Neutral B-meson mixing: BSM

\# SM predictions + BSM contributions $=$ experiment
\rightarrow constraints on BSM building Dobrescu and Krnjaic, 1104.2893; Altmannshofer and Carena, 1110.0843; Buras and Girrbach, 1201.1302 ..

* Need matrix elements of all the operators in $\mathcal{H}_{\text {eff }}^{\Delta B=2}$

B_{d}^{0}				B_{s}^{0}	
$\left[\mathrm{GeV}^{2}\right]$	BBGLN	BJU	BBGLN	BJU	

$\Delta \Gamma_{S}^{S M}=(0.075 \pm 0.020) \mathrm{ps}^{-1}$ Nierste, CKM2012 using preliminary results above

$$
\Delta \Gamma_{s}^{e x p}=(0.106 \pm 0.011 \pm 0.007) p s^{-1} \mathrm{LHCb}, \text { Moriond } 2013
$$

6. Rare decays $\mathcal{B} r\left(B_{s(d)} \rightarrow \mu^{+} \mu^{-}\right)$

See talks by Altmannshofer, Girrbach, and Knegjens

\# Bag parameters describing B-meson mixing in the SM can be used for theoretical prediction of $\mathcal{B} r\left(B \rightarrow \mu^{+} \mu^{-}\right) \quad$ Buras, hep-ph/0303060

$$
\frac{\mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)}{\Delta M_{q}}=\tau\left(B_{q}\right) 6 \pi \frac{\eta_{Y}}{\eta_{B}}\left(\frac{\alpha}{4 \pi M_{W} \sin ^{2} \theta_{W}}\right)^{2} m_{\mu}^{2} \frac{Y^{2}\left(x_{t}\right)}{S\left(x_{t}\right)} \frac{1}{\hat{B}_{q}}
$$

* Need to include the effects of a non-vanishing $\Delta \Gamma_{s}$ to compare with experiment K. de Bruyn et al., 1204.1737

$$
\mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)_{S M} \rightarrow \mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)_{y_{s}} \equiv \mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)_{S M} \times \frac{1}{1-y_{s}}
$$

with $y_{s} \equiv \Delta \Gamma_{s} /\left(2 \Gamma_{s}\right)$.

6. Rare decays $\mathcal{B} r\left(B_{s(d)} \rightarrow \mu^{+} \mu^{-}\right)$

See talks by Altmannshofer, Girrbach, and Knegjens

\# Bag parameters describing B-meson mixing in the SM can be used for theoretical prediction of $\mathcal{B r}\left(B \rightarrow \mu^{+} \mu^{-}\right) \quad$ Buras, hep-ph/0303060

$$
\frac{\mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)}{\Delta M_{q}}=\tau\left(B_{q}\right) 6 \pi \frac{\eta_{Y}}{\eta_{B}}\left(\frac{\alpha}{4 \pi M_{W} \sin ^{2} \theta_{W}}\right)^{2} m_{\mu}^{2} \frac{Y^{2}\left(x_{t}\right)}{S\left(x_{t}\right)} \frac{1}{\hat{B}_{q}}
$$

* Need to include the effects of a non-vanishing $\Delta \Gamma_{s}$ to compare with experiment K. de Bruyn et al., 1204.1737
$\mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)_{S M} \rightarrow \mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)_{y_{s}} \equiv \mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)_{S M} \times \frac{1}{1-y_{s}}$ with $y_{s} \equiv \Delta \Gamma_{s} /\left(2 \Gamma_{s}\right)$.
$*$ Using $\hat{B}_{B_{s}}=1.33(6), \hat{B}_{B_{d}}=1.26(11) \mathrm{HPQCD}, 0902.1815, y_{s}=0.087 \pm 0.014$
LHCb, 1212.4140

$$
\begin{aligned}
& \mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{y_{s}}=(3.71 \pm 0.17) \times 10^{-9} \quad \text { Buras et al. } 1303.3820 \\
& \mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=(1.03 \pm 0.09) \times 10^{-10}
\end{aligned}
$$

Error dominated by uncertainty in the bag parameter Buras et al. 1303.3820

6. Rare decays $\mathcal{B} r\left(B_{s(d)} \rightarrow \mu^{+} \mu^{-}\right)$

\# Indirect determination

$$
\begin{gathered}
\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{y_{s}}=(3.71 \pm 0.17) \times 10^{-9} \quad \text { Buras et al. } 1303.3820 \\
\mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=(1.03 \pm 0.09) \times 10^{-10} \quad \text { Buras et al. } 1208.0934
\end{gathered}
$$

\# Improved $f_{B_{s, d}}^{\text {lattice }}$ makes direct theoretical calculation competitive
Buras and Girrbach,1204.5064

* Using the lattice averages giving in 1302.2644: $f_{B}=(185 \pm 3) \mathrm{MeV}$ and $f_{B_{s}}=(225 \pm 3) M e V$.

$$
\begin{gathered}
\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{y_{s}}=(3.56 \pm 0.18) \times 10^{-9} \quad \text { Buras et al. } 1303.3820 \\
\text { Dominant errors: }\left|V_{t b}^{*} V_{t s}\right| 4 \%, f_{B_{s}} 2.7 \%
\end{gathered}
$$

$$
\mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=\left(1.01 \pm 0.05 \pm 0.03_{f_{B_{d}}}\right) \times 10^{-10}
$$

6. Rare decays $\mathcal{B} r\left(B_{s(d)} \rightarrow \mu^{+} \mu^{-}\right)$

\# Indirect determination

$$
\begin{array}{cc}
\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{y_{s}}=(3.71 \pm 0.17) \times 10^{-9} & \text { Buras et al. } 1303.3820 \\
\mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=(1.03 \pm 0.09) \times 10^{-10} & \text { Buras et al. } 1208.0934
\end{array}
$$

\# Improved $f_{B_{s, d}}^{l a t t i c e}$ makes direct theoretical calculation competitive

Buras and Girrbach,1204.5064

* Using the lattice averages giving in 1302.2644: $f_{B}=(185 \pm 3) \mathrm{MeV}$ and $f_{B_{s}}=(225 \pm 3) M e V$.

$$
\begin{gathered}
\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{y_{s}}=(3.56 \pm 0.18) \times 10^{-9} \quad \text { Buras et al. } 1303.3820 \\
\text { Dominant errors: }\left|V_{t b}^{*} V_{t s}\right| 4 \%, f_{B_{s}} 2.7 \%
\end{gathered}
$$

$$
\mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=\left(1.01 \pm 0.05 \pm 0.03_{f_{B_{d}}}\right) \times 10^{-10}
$$

\# Most stringent experimental bounds LHCb Moriond 2013:

$$
\begin{gathered}
\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.2_{-1.2-0.3}^{+1.4+0.5}\right) \times 10^{-9} \\
\mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)<9.4 \times 10^{-10} \text { at } 95 \% \mathrm{CL}
\end{gathered}
$$

7. Conclusions and outlook

\# Smallest errors achieved on the lattice for many quantities: decay constants, $\left|V_{u b, c b}\right|$ from exclusive decays, neutral meson mixing parameters...
\# Progress using relativistic description of b-quarks
\rightarrow important reduction of error.
\# First results with all quark masses physical and $N_{f}=2+1+1$.

7. Conclusions and outlook

\# Smallest errors achieved on the lattice for many quantities: decay constants, $\left|V_{u b, c b}\right|$ from exclusive decays, neutral meson mixing parameters...
\# Progress using relativistic description of b-quarks \rightarrow important reduction of error.
\# First results with all quark masses physical and $N_{f}=2+1+1$.
\# Expected in the next year:

* New calculations of $f_{B_{d, s}}$: FNAL/MILC, ETMC ($N_{f}=2$).
* First unquenched calculations of complete set of bag parameters describing B mixing in the SM and beyond
** Expect important reduction of errors in SM bag parameters
* Update on exclusive $\left|V_{u b}\right|$ determination from $B \rightarrow \pi l \nu$ (several groups) and exclusive $\left|V_{c b}\right|$ determination from $B \rightarrow D\left(D^{*}\right) l \nu$
* Exclusive $\left|V_{u b}\right|$ determination from $B_{s} \rightarrow K l \nu$ (several groups)
* First unquenched calculation of $B \rightarrow K l^{+} l^{-}$(several groups)
\times

