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Color fluctuations in hadron–hadron collisions are responsible for the presence of inelastic diffraction
and lead to distinctive differences between the Gribov picture of high energy scattering and the low
energy Glauber picture. We find that color fluctuations give a larger contribution to the fluctuations of
the number of wounded nucleons than the fluctuations of the number of nucleons at a given impact
parameter. The two contributions for the impact parameter averaged fluctuations are comparable. As a
result, standard procedures for selecting peripheral (central) collisions lead to selection of configurations
in the projectile which interact with smaller (larger) than average strength. We suggest that studies of
p A collisions with a hard trigger may allow to observe effects of color fluctuations.

 2013 Elsevier B.V. All rights reserved.

1. Introduction

Currently most of the experimental studies as well as modeling
of the nucleus–nucleus (proton–nucleus) collisions involve using
the Glauber model. Namely, the number of involved nucleons is
calculated probabilistically assuming that each Nucleon–Nucleon
(NN) inelastic collision is determined by the value of σ NN

in at the
collision energy.

However, the dominance of large longitudinal distances in high
energy scattering [1] changes qualitatively the pattern of multi-
ple interactions. Indeed, in the Glauber approximation high energy
interactions of the projectile with a target occur via consecutive
rescatterings of the projectile off the constituents of the target. The
projectile during the interactions is on mass shell — one takes the
residues in the propagators of the projectile. This approximation
contradicts the QCD based space–time evolution of high energy
processes dominated by particles production. The projectile inter-
acts with the target in frozen configurations since the life time
of the configurations becomes much larger than the size of the
target. Hence there is no time for a frozen configuration in the pro-
jectile to combine back into the projectile during the time of the
order RT , the radius of the target. As a result the amplitudes de-
scribed by Glauber model diagrams die out at large energies ∝ 1/s
(a formal proof which is based on the analytic properties of the
Feynman diagrams was given in [2,3]).

In the Glauber model the number of interacting nucleons is cal-
culated probabilistically assuming that the probability of individual
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NN inelastic collisions is determined by the value of σ NN
in at the

collision energy. Fluctuations of the number of wounded nucleons
at a given impact parameter are generated solely by fluctuations
of the positions of nucleons in the nucleus and (in some models)
due to peripheral collisions of nucleons, where the interaction is
gray and hence the chance to interact differs from one or zero.
Hard collisions are treated as binary collisions, which is equiva-
lent to taking the diagonal generalized parton densities of nuclei,
f A(x, Q 2,b), proportional to the impact factor T (b):

F A
(
x, Q 2,b

)
= f N

(
x, Q 2)T (b), (1)

where T (b) is normalized as
∫

db T (b) = A. A nuclear shadowing
correction is introduced for x 6 0.01.

The high energy theory of soft interactions with nuclei was de-
veloped by Gribov [4] who expressed the shadowing contribution
to the cross section of hadron–nucleus (h A) interactions through
the contribution of non-planar diagrams. The Gribov–Glauber the-
ory, in difference from the low energy Glauber theory, requires
taking into account that a particular quark–gluon configuration of
the projectile is frozen during the collision and that it may inter-
act with different strength as compared to the average strength.
This leads to fluctuations of the number of collisions which are
significantly larger than in the Glauber model. The fluctuations of
the strength of the interaction are related to the ratio of inelas-
tic and elastic diffraction in NN scattering at t = 0. Relevance of
fluctuations of the strength was first pointed out in [5,6] but these
effects were never analyzed in detail before.

Another effect contributing to fluctuations of observables in h A
collisions is fluctuations of the gluon density which can originate
both from the fluctuations of the nucleon configurations and from

0370-2693/$ – see front matter  2013 Elsevier B.V. All rights reserved.
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A number of important high energy QCD phenomena (not all) in the hadron - nucleon/nucleus 
scattering can be illustrated using example of propagation of ultra relativistic positronium through 
media. One can trigger on small size configuration is fast positronium by looking at e-e+ pairs which 
passed through a media.
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Can we instead trigger on larger than average size configuration  in positronium?514 FRANKFURT, MILLER & STRIKMAN

positronium bz

52

Figure 2 Production of two II 3airs. Two different target atoms, represented by the
upper and lower horizontal lines, are involved.

characteristics of QCD. Thus, the essentials of charge transparency,
charge filtering, and charge opacity should find their analogues in QCD
as color-coherent phenomena. However, because QCD is a non-Abe-
lian theory with the properties of asymptotic freedom and presumed
infrared slavery, the analogy between charge screening and color
screening is not complete. Indeed, because of the nontrivial interplay
of perturbative and nonperturbative effects as well as the high-quality
experimental techniques required, understanding color-coherent phe-
nomena has taken more than 20 years.

3.1 Coherence Length in QCD
As discussed in the introduction, the coherence length is large at high
energies. This influences hadronic and lepton interactions with nuclei.
The presence of a length at which coherent effects o~cur invalidates a
number of methods and ideas that are often considered cornerstones
of high-energy physics. For example:

1. Although it is quite popular to assume that fast projectiles interact
consecutively with particles at the same impact parameter when
making calculations for heavy-ion cascade processes, a fast projec-
tile actually interacts simultaneously with all target nucleons within
a distance Ic.

2. The eikonal models currently used to describe many high-energy
processes in particle and nuclear physics assume that the intermedi-
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d2

d2Consider production of one (two) lepton pairs with 
small momenta in the center of mass: <d2> for these 
events is larger than in  2

pos

(d) =

Z
 2

pos

(r)dz

⌦
d22ll̄

↵
>

⌦
d2ll̄

↵
>

⌦
d2
↵

Effects: Positive correlation between production one and two pairs

Large b select smaller than average transverse and longitudinal momenta in 
positronium - longitudinal momenta of electrons in the positronium 
fragmentation are softer - looks as energy loss - but actually post-selection.



From QED to QCD - similarities and differences

Can a meson/baryon build of light quarks collapse to a small volume?

Would  such configuration  interact weakly with the nuclear medium?

How often fluctuations to  large hadron configurations (LHC) occur? 

Key difference with QED - fast energy dependence of the strength of  interaction 

yes - governed by pQCD
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p ppp

A A AA

A A A A

p p p p

+

+

Glauber model 
in rescattering proton in 
intermediate state - zero at 
high energy 
- AFS cancelation - no time 
for a proton to come 
together between nucleons

High energies = 
Gribov -Glauber 

X

p

X= set of intermediate 
states the same as in pN 
diffraction

�2 /
Z

dtF 2
A(t)

d�(p+ p ! p+X(p+ inel diff))

dt

4

Glauber model 
in rescattering proton in intermediate state - zero at 
high energy  - cancelation of planar diagrams 
(Mandelstam & Gribov)- no time for a proton to 
come together between nucleons. Violates energy 
conservation for cut through two exchanges

High energies =  Gribov -Glauber 

X= set of intermediate states the 
same as in pN diffraction

Deviations from Glauber for σin(pA) are small for Einc ~ 10 GeV as inelastic diffraction is still small. They 
stay small for heavy nuclei for all energies. But for pD at ISR at large t effect is large ~40%. An effective way 
to implement Gribov-Glauber picture of high energy pA interactions is the concept of color fluctuations

�2 /
Z

dtF 2
A(t)

d�(p+ p ! p+X(p+ inel diff))

dt

High energy space-time picture of soft  pA  - Gribov - Glauber 
fundamentally different from low  energy Glauber picture



Are there global fluctuations of the strength of interaction of a fast nucleon, for example due to 
fluctuations of the size /orientation. Extreme case - color transparency. 

Due to a slow space-time evolution of the fast nucleon wave function one can treat the 
interaction as a superposition of interaction of configurations of different strength - Pomeranchuk 
& Feinberg, Good and Walker, Pumplin  &Miettinen.  In QCD this is reasonable for total cross 
sections and for diffraction at  very small t.

N = 3q + 3qg + 3q+ π + ...

● ●
● vs

●
● ●

rtr rtr

pN

6

Color fluctuations in the nucleon wave function & 3-dimensional mapping of the nucleon

proton= quark + diquark



|h� = a1 |1� + a2 |2� absorber with 
same absorption 
for “1” and “2”

|final� = �(a1 |1� + a2 |2�) = � |h�

only elastic scattering

|h� = a1 |1� + a2 |2�
absorber with 

different  absorption 
for “1” and “2” elastic scattering 

+inelastic diffraction

h h

h h+h’

|final� = �1a1 |1�+ �2a2 |2�)
= c1 |h�+ c2 |h0�

If there were no fluctuations of strength - there will be
 no inelastic diffraction at t=0:
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Convenient quantity - P(σ)  -probability that nucleon interacts with cross section σ.   

dσ(pp!X+p)
dt

dσ(pp!p+p)
dt

|t = 0
=

�
(� � �tot)2P (�)d�

�2
tot

⇥ ⇥� variance
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∫P(σ)d σ= 1, ∫ σ P(σ)d σ=σtot, 

Pumplin  &Miettinen

∫ (σ - σtot)3 P(σ)d σ= 0, Baym et al from pD diffraction

P (�)|�!0 / �nq�2
Baym et al 1993

ωσ(RHIC)=0.25 ωσ(LHC)=0.20  - more data are coming from LHC

A very rough model illustrating scale of the effect
P (�) =

1

2
�(� � �

tot

(1�
p
!
�

)) +
1

2
�(� � �

tot

(1 +
p
!
�

))

for RHIC ωσ=0.25,   σ1=0.5σtot ; σ2=1.5σtot for LHC ωσ=0.2,   σ1=60mb ; σ2=140mb 
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Fig. 3: (a) Graphical representation of the cross section distributions in diffraction at the Tevatron and LHC energy.

The area of the inner and outer disk at given energy is proportional to , i.e., the average area repre-

sents the average cross section tot, the difference (ring) the range of the fluctuations . (b) The

–dependence of the total cross section tot (left –axis) and the dispersion (right –axis), as predicted by a

Regge–based parametrization of tot [10] and a parametrization of the inelastic diffractive cross section inel ,

measured up to the Tevatron energy [9]. The weak energy dependence of the width of the ring in figure (a) reflects the

slow variation of the diffractive cross section with energy.

order–of–magnitude of the effect, as well as its energy dependence. Our basic assumption is that

the strength of interaction in a given configuration is proportional to the transverse area occupied

by color charges. To implement this idea, we start from the cross section distribution at

fixed–target energies ( GeV ), which can be related to the fluctuations of the size of

the basic “valence quark” configuration in the proton wave function and is known well from the

available data [7]. We then assume that

(a) The parton density is correlated with the parameter characterizing the size of the inter-

acting configuration. One simple scenario is to assume that the parton density changes

with the size of the configuration only through its dependence on the normalization scale,

config . This is analogous to the model of the EMC effect of Ref. [11], and

leads to a simple scaling relation for the –dependent gluon density,

(6)

where GeV . In Higgs boson production one expects GeV , and

(LHC) (Tevatron) with GeV. An alternative scenario

— the constituent quark picture — will be discussed below.

(b) The size distribution in soft high–energy interactions is correlated with the parameter

characterizing the valence quark configuration. As a minimal model we assume that soft

interactions in a configuration with given is described by a profile function of the form
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Both small and large configurations grow a 
periphery - still there is a correlation between σ 
and parton distributions -smaller σ,  harder quark 
distribution ( will discuss implications for pA later)

LHC data
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suggest

~ 0.2

RHIC
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sponds to ((o- - (~r)) 3 ~- 0, as would occur for a distribution nearly
symmetric: of approximately (~r) (88).

For small values of o-, further information can be obtained from QCD,
which implies (19)

P(o’) - "Nq-2 4.4

for ~r << ((r), where Nq is the number of valence quarks. Thus, 
nucleon distribution Pu((r) is --O" for small (~, while for the pion P~(o-)
is approxiimately constant. The results of reconstructing PN(o-) and
P~(o’) from the first few moments of P(o-) and from Equation 4.4 
shown in ].~igure 6. They indicate a broad distribution for proton projec-
tiles and an even broader one for pion projectiles. One expects even
further broadening for K-meson projectiles.

4.3 Sm’all-Sized Configurations in Pions
One can test this approach by using QCD to compute P,(~r = 0) 
high energies. Indeed, the physics at small (r is dominated by small

0.030 I I I I

--.pOCDrongefor P~ (0)

0.025 ~ ~7~~)

v._. o.ozo
d~

~ (or)0.015 -
/~.~-

/- \\O.OIO

0.C~3~

o zo 40 60 ~o too
o" (mb)

Figure 6 C, ross-section probability for pions P~(cr) and nucleons P~v(~) as extracted
from experimental data. P,,(cr = 0) is compared with the perturbative QCD prediction.
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p
s = 30GeV

PN(σ) extracted from pp,pd 
diffraction  Baym et al 93. 
Pπ(σ) is also shown

10

Extrapolation of Guzey  & MS to 
higher energy using diffractive data
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Coherent Nuclear Diffraction
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I0

5

ioo

solid -. ~ff total

(o)

P

~ A (n,rrp)

(b)
i I I l I I I i

50 I00

Figure 7 O’diff(A ) for pion and proton beams. The pionic data are from Ref. 92, and the
nucleon data are from Ref. 91. The spread in the calculations results from the use of
different p(~r) with the same dispersion of cross section, ~o. The A dependence is more
rapid than A u3, confirming the presence of cross-section fluctuations near the average.
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rapid than A u3, confirming the presence of cross-section fluctuations near the average.
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FIG. 2: The proton-Lead total, elastic and diffractive dissociation cross sections as functions of
√

s. The solid curves correspond to Glauber formalism with cross section fluctuations; the dashed

curves neglect the cross section fluctuations.

sections. The effect is largest in the
√

s = 100 − 200 GeV region. This can be explained

by the increasing role of nuclear shadowing: an increase of ωσ leads to an increase of the

inelastic shadowing correction, which decreases the total cross section.

An examination of Fig. 2 shows that, for
√

s > 546 GeV, the total cross section behaves

12

Color fluctuations/inelastic shadowing 

σtot(pPb)

σel(pPb)
σdiff(pA→XA)Guzey & MS

true for hard diffraction as well (Guzey, MS)

E.M. interaction dominates by far in diffraction above RHIC energies⇒

⇒
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FIG. 4: The electromagnetic contribution evaluated using Eq. (27) (dashed curves) and coherent

diffractive dissociation cross sections (solid curves) as functions of
√

s for Pb and Ca.

of Donnachie and Landshoff [15],

σγ p
tot(s) = 0.0677 s0.0808 + 0.129 s−0.4525 , (29)

where s = 2 ω mp + m2
p.

The resulting electromagnetic contributions to the coherent diffractive cross section are

presented in Fig. 4 by dashed curves. They should be compared to the coherent diffractive

dissociation cross sections presented by the solid curves. The comparison shows that the

electromagnetic contribution completely dominates coherent p A diffraction on Pb-208 at

all considered energies. For the lighter nucleus of Ca-40, the role of the electromagnetic

contribution becomes progressively important with an increasing energy: while σpCa
e.m. is about

25% of σpCa
DD at the RHIC energy (

√
s = 200 GeV), σpCa

e.m. is three times larger than σpCa
DD in

the LHC kinematics (
√

s = 9000 GeV).

VI. CONCLUSIONS AND DISCUSSION

We calculated the total, elastic and diffractive dissociation proton-nucleus cross sections

at high energies using the Glauber-Gribov formalism and taking into account inelastic in-

16

For RHIC for A=200 comparable contributions, for A=40,  e.m.  
contribution is a small correction.  A unique opportunity for RHIC. 
Use ZDC to suppress break up? 



Convenient picture of diffraction  -

Good - Walker  scattering eigen state formalism �n |ni = T |ni

Can use P(σ)  to model Gribov- Glauber dynamics of inelastic pA interactions. -         
-probability that nucleon interacts with cross section, Baym et al 91-93 

Potential problem for Gribov- Glauber approximation: 
average impact factor <b> at LHC ~ 1.3 fm  ⇒ 

                 2<b>  > rNN ~ 1.7 fm ⇒ 

projectile proton can hit two nucleons at the same time.

13

leads to the picture of hA interactions similar to Gribov - Glauber  
B. Z. Kopeliovich and L. I. Lapidus, 1978



Large fluctuations in the number of wounded nucleons at fixed impact parameter 

Simple illustration - two component model ≣ quasieikonal approximation:

RHIC �1 = 25mb, �2 = 75mb
number of wounded nucleons 
at small b differs by a factor 

of 3 !!!

LHC �1 = 60mb, �2 = 140mb

color fluctuations lead to addition dispersion as  compared to the  geometrical model

Δω= ωσ    in pA Δω=2  ωσ    in AA

Scattering at b=4.6 fm with probability ~ 1/2 generates the same 
multiplicity as collision at b=0. Smearing of the centrality

14



Numerical calculations (Alvioli and MS) - event generator using our sets of nucleon 
configurations in nuclei  with short-range correlations (small effect) and finite radius of 
NN interaction.

For NN scattering Pinel(ρ)= 1 - |1- Γ(ρ)|2 

We also took σ/B= const for fluctuations (corresponding to  σel/σtot=const) 

model and the Monte Carlo calculations which take into account finite radius of the NN

interaction neglected in the optic model.

IV. EFFECTS OF FLUCTUATIONS IN THE MONTE CARLO MODEL

An additional source of event-by-event fluctuations of the number of wounded nucleons

comes from the fluctuations in the number of nucleons at a given impact parameter. These

fluctuations are present already on the level of the Glauber model [8]. These fluctuations

decrease with increase of σtot(NN) due to an increase of the overall number of interacting

nucleons, N , at a given impact parameter. In the case when no fluctuations of σ are present,

we have:

〈N(σinel)〉 = 〈N〉
σinel

〈σinel〉
. (14)

In this case we can write
〈

N(σinel)
2
〉

= 〈N〉2 (1 + ωρ) , (15)

where ωρ is the quantity calculated for dispersion in the case of no color fluctuations. The

dependence of ωρ on σinel(NN) is presented in Fig. 1 for b = 0 and b = 4. In the calculation

we use the event generator [8]. The event generator includes short-range correlations between

nucleons, however this effect leads to a very small correction for the discussed quantity.

When both fluctuations are included average N does not change. Hence the dispersion

of the distribution over N including both effects can be calculated as follows:

〈

N2
〉

=
∫

dσinelP (σinel) 〈N〉2
(

σinel

〈σinel〉

)2

(1 + ωρ) . (16)

Now we can calculate the total dispersion. The first term in (1 + ωρ) gives simply ωσ. The

second term takes into account the dependence of ωρ on σinel:

ωtot = ωσ +
∫

dσinelP (σinel)

(

σinel

〈σinel〉

)2

ωρ . (17)

As a result the overall dispersion is somewhat smaller that ωσ+ωρ(σtot) since the the integral

in the second term is dominated by σ > σtot. In order to perform numerical analysis we

follow [10], and take the probability distribution for σtot as [16]:

Ph(σtot) = r
σtot

σtot + σ0
exp{−

σtot/σ0 − 1

Ω2
} , (18)

7
with parameters fixed to satisfy sum rules
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correlations in the optical limit Glauber-Gribov formalism can be found in Refs. [6–8] and

will not be discussed here. Eq. (7) can be rewritten as a sum of positive cross sections [9]

as follows:

σhAin =
A
∑

n=1

σn, σn =
A!

(A− n)!n!

∫

dbxn(1− x)A−n (8)

where σn denotes the cross section of the physical process in which n nucleons have been

involved in inelastic interactions with the projectile. Then the average number of interactions

〈N〉 may be expressed as

〈N〉 =
A
∑

n=1

nσn

/ A
∑

n=1

σn =
σhNin
σhAin

∫

d2b
A
∑

n=1

A!

(A− n)!(n− 1)!
xn(1− x)A−n

=
σhNin
σhAin

∫

d2b AT (b) =
AσhNin
σhAin

, (9)

which coincides with the naive estimate of shadowing as being equal to the number of

nucleons shadowed in average collision. .

We can include color fluctuations by allowing the cross section σin to be distributed

according to P (σin):

σhAin =
∫

dσinPN(σin)
∫

db
[

1− (1− x)A
]

(10)

and

σn =
∫

dσinPN (σin)
A!

(A− n)!n!

∫

dbxn(1− x)A−n . (11)

The probability of collisions with exactly k inelastic interactions in both Glauber model and

the color fluctuation approximation are simply Pk = σk/σhA
in .

Using the equations above we can for example calculate average number of the collisions

which is given by the same equation as for the Glauber model (Eq. (9)), leading to a very

small (few %) change of average N since the inelastic corrections to σhA
in are small. At the

same time we can calculate the variance of the distribution over the number of collisions.

We observe that Eq. (11) leads to

〈N(N − 1)〉 = A(A− 1)
〈

σ2
in

〉

∫

dbT 2(b). (12)

and hence the variance is equal to

ωN ≡
〈N2〉
〈N〉2

− 1 =
A(A− 1) 〈σ2

in〉
〈N〉2

∫

dbT 2(b) +
1

〈N〉
− 1. (13)

5

Small effect for <N>  
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 Large color fluctuation effect for 
dispersion even though in dispersion one 
integrates over impact parameters. Effect 
is much larger for fixed b - see below
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We can include color fluctuations by allowing the inelastic cross
section σin to be distributed according to a proper distribution,
P H (σin):

σ h A
in =

∫
dσin P H (σin)

∫
db

(
1 −

[
1 − x(b)

]A)
, (9)

where now x(b) = σinT (b)/A, and

σN =
∫

dσin P H (σin)
A!

(A − N)!N!

∫
db x(b)N[

1 − x(b)
]A−N

. (10)

The probability of collisions with exactly N inelastic interactions
in both Glauber model and the color fluctuation approximation is
simply RN = σN/σ h A

in .
Using the equations above we can for example calculate the

average number of collisions which is given by the same equa-
tion as for the Glauber model (Eq. (8)), leading to a very small
(a few %) change of average N , as shown in Table 1, since the
inelastic corrections to σ h A

in are small for a realistic P H (σin); see
Ref. [13] and references therein. The physical reason why the cor-
rections are small is that, in a broad range of b, the interaction
is close to the black limit for all essential values of σin , so only a
small range of (large) b contributes to inelastic shadowing correc-
tions. At the same time the color fluctuation effect is large for the
variance of the distribution over the number of collisions. Eq. (10)
leads to

〈
N(N − 1)

〉
= A(A − 1)

〈σ 2
in〉

σ h A
in

∫
db T 2(b), (11)

and hence the variance is equal to

ωN ≡ 〈N2〉
〈N〉2 − 1 = A(A − 1)

〈N〉2

〈σ 2
in〉

σ h A
in

∫
db T 2(b) + 1

〈N〉 − 1. (12)

One can see from Eq. (12) that the variance receives contribu-
tions both from the fluctuations of the impact parameter and
from the fluctuations of σin . Using Eqs. (8), (11) we obtain for
the variance in Eq. (12) the value of about 0.46 (RHIC) and 0.51
(LHC). Numerical values of the different terms in Eq. (12) are:
1.26+0.20−1 = 0.46 (RHIC) and 1.38+0.13−1 = 0.51 (LHC). The
account of the color fluctuations practically does not change 〈N〉.
It mainly changes the nominator of the first term by the factor
1 + ωσ .1 Though this change is rather small, the strong cancel-
lation between the first and the third terms of Eq. (12) strongly
enhances the effect of color fluctuations.

A more realistic treatment of the color fluctuations taking into
account the profile function of the NN interactions and small ef-
fect of short-range correlations is possible in the MC model de-
scribed in the next section. First, one calculates the probability
P N(b) shown in Fig. 1 of having exactly N inelastic interactions
at a given impact parameter b. Next one can calculate the quan-
tity in Eq. (12) by integrating P N (b) over the impact parameter:
P N = 2π

∫
b db P N (b). The results are given in Table 1.

A comparison of some of the predictions of the optical approx-
imation of the Glauber model and the MC calculations, which take
into account finite radius of the NN interaction neglected in the
optical model, will be given below.

4. Monte Carlo algorithm for modeling effects of fluctuations

We have seen from the analysis of the optical model that fluc-
tuations in the number of wounded nucleons originate both from

1 We assume here that fluctuations for the inelastic and total cross sections are
similar, cf. discussion before Eq. (17).

Table 1
The fluctuations, as defined in Eq. (12), calculated both within the MC approach
and optical model. We used no color fluctuation (Glauber), color fluctuations im-
plemented with the two states model described in the text (GG2) and with the
full color fluctuation model (GG Ph(σtot)) described by the distribution Ph(σtot) of
Eq. (16).

Energy/model Monte Carlo Optical model

〈N〉 〈N2〉 ωN 〈N〉 〈N2〉 ωN

RHIC, Glauber 4.6 31.6 0.51 5.0 35.9 0.46
RHIC, GG2 4.7 38.9 0.74 5.1 45.3 0.71
RHIC, GG Ph(σtot) 4.8 39.2 0.72 5.2 45.6 0.70

LHC, Glauber 6.7 72.4 0.59 7.6 88.0 0.51
LHC, GG2 6.8 84.2 0.80 7.8 106.2 0.75
LHC, GG Ph(σtot) 6.8 82.1 0.77 7.8 106.4 0.74

color fluctuations and from fluctuations of the number of nucleons
along the path of the projectile.

The event-by-event fluctuations of the number of wounded nu-
cleons due to the fluctuations in the number of nucleons at a given
impact parameter are present already on the level of the Glauber
model [14]. In the case when no fluctuations of σ are present,
〈N(σ hN

in )〉 is given by Eq. (8). In this case we can write

〈
N

(
σ hN

in

)2〉 = 〈N〉2(1 + ωρ
(
σ hN

in

))
, (13)

where ωρ(σ hN
in ) is the dispersion in the case of no color fluctu-

ations. We found that ωρ(σ hN
in ) drops as a function of σ hN

in , as a
consequence of the increasing number of nucleons in the interac-
tion volume. In the calculations we use the event generator [14].
This event generator includes short-range correlations between nu-
cleons, however this effect leads to a very small correction for the
discussed quantity. The code also includes a realistic dependence
of the probability of the NN interaction on the relative impact pa-
rameter of the projectile b, and the target nucleon b j : b − b j . The
probability of the interaction is expressed through the impact fac-
tor of the NN elastic amplitude

Γ (b − b j) = σ hN
tot

4π B
e−(b−b j)

2/2B (14)

as follows:

P (b,b j) = 1 −
[
1 − Γ (b − b j)

]2
. (15)

Here we used the exponential fit to the elastic cross section
dσ /dt ∝ exp(Bt).

In order to perform numerical analyses we follow [16], and take
the probability distribution for σtot as follows:

Ph(σtot) = ρ
σtot

σtot + σ0
exp

{
− (σtot/σ0 − 1)2

Ω2

}
, (16)

where ρ is a normalization constant and we have σ0 = 72.5 mb
and Ω = 1.01 at LHC energies, while σ0 = 32.6 mb and Ω = 1.49
at RHIC energies. One can verify that the distribution of Eq. (16)
satisfies the sum rules (3), (4), with our values σ hN

tot = σ NN
tot =

51.95 mb for RHIC and σ hN
tot = σ NN

tot = 94.8 mb for LHC energies.
When converting from the distribution over σtot , Ph(σtot), to

the distribution over σin , P H (σin), we used the geometric scaling
observation that the t-slope of the elastic scattering is proportional
to σtot . So the ratio σin/σtot = λ weakly depends on the projectile
and energy. Hence we take λ = const, so that we simply have to
use a Jacobian 1/λ, with

P H (σin) = Ph(σtot)/λ, σin = λσtot. (17)

Indeed in this case
∫

dσin P H (σin) = 1 holds as well. This corre-
sponds to B(σtot) = B(σ hN

tot )σtot/σ hN
tot .



The probability PN (b) of having 
N inelastically interacting 
(wounded) nucleons in a pA 
collision, vs. impact parameter b, 
when using simple Glauber (red 
curves) and a distribution P (σ) 
(green curves); We show the 
probabilities PN (b) for N=1 (top 
row) for both energies and the 
curves for N corresponding to ⟨N⟩ 
and ⟨N⟩±0.5⟨N⟩ (remaining 
panels); ⟨N⟩ is 5 and 7 for RHIC 
and LHC energies, respectively
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Fig. 1. The probability P N (b) of having N inelastically interacting (wounded) nucleons in a p A collision, vs. impact parameter b, when using simple Glauber (red curves),
a two states model (black curves) and a distribution Ph(σtot) (blue curves); cf. Eq. (16). The P N (b)’s are obtained by extension of the MC code of Ref. [14] to include color
fluctuations. Top row shows P N=1(b); the remaining panels correspond to N = 〈N〉 and N = 〈N〉 ± 0.5〈N〉. 〈N〉 is taken as 5 and 7 for RHIC and LHC energies, respectively
(cf. Table 1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

In our numerical studies we used the fluctuation distribution
given by Eq. (16), σ NN

tot given above and B = 14 GeV−2 (RHIC), B =
19.38 GeV−2 (LHC). This parametrization satisfies the s-channel
unitarity condition Γ (b) 6 1. In our model this condition holds
automatically also for the elastic “color-fluctuation”-nucleon ampli-
tude. Our algorithm is a natural extension of that of [14] — where
distribution over N was calculated in the Glauber model neglecting
effects of color fluctuations.

Since the contributions of states with different σ do not inter-
fere, the probability P N (b) to have exactly N inelastic interactions
at given b is2

P N(b) =
∫

dσtot Ph(σtot)P N(b;σtot), (18)

2 In this treatment we neglect small contributions of incoherent diffractive pro-
cesses p A → X A# , which mostly contribute to P1(b).

where P N (b;σtot) is calculated using the procedure of Ref. [14]
for fixed σ hN

tot in the Glauber model. Including color fluctuations
results in a substantially broader distribution over b of the proba-
bility P N (b) of having exactly N interactions for a given impact pa-
rameter N , as shown in Fig. 1. The two component model gives the
distributions pretty close to the distributions including full fluctu-
ations. P N (b) are obviously normalized so that

∑
N

∫
db P N (b) =

σ h A
in . The calculations of Table 1 have been performed integrat-

ing the quantities of Fig. 1 over the impact parameter: P N =∫
db P N (b); 〈N〉 = ∑

N N P N/
∑

N P N ; 〈N2〉 = ∑
N N2 P N/

∑
N P N .

Another quantity which characterizes the effects of spatial and
color fluctuations is dispersion of the number of interactions at a
given impact parameter, b. To illustrate the expected pattern let us
first consider the case of small b and large A, when the probability
of having at least one inelastic interaction is 1. In this case 〈N〉 =
T (b)σin , hence the dispersion of the distribution over N including
both effects can be calculated as follows:



Fluctuations give dominant contribution to fluctuations of N for fixed b
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Fig. 2. Effect on fluctuations of the dispersion, Eq. (21), when using a distribution of σtot with two values of the cross section with equal probability and with Ph(σtot) given
by Eq.(16), for realistic parameters corresponding to RHIC (left) and LHC (right) energies.

Fig. 3. Effect of the event-by-event fluctuating values of σtot , for RHIC (left panel) and LHC energies (right panel) on the number of wounded nucleons, calculated as
F N =

∫
db P N (b)/σ h A

in . Red curves show the results obtained with the usual Glauber calculation with fixed cross section, black curves correspond to calculations with the two
component model and blue curves correspond to calculations with fluctuating cross section with Ph(σtot) distribution. The insets show the same quantities in logarithmic
scale. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

〈
N2〉 =

∫
dσin P H (σin)〈N〉2

(
σin

〈σin〉

)2(
1 + ωρ(σin)

)
. (19)

Now we can calculate the total dispersion. The first term in
(1 + ωρ) simply gives ωσ . The second term takes into account the
dependence of ωρ on the fluctuating σin:

ωtot = ωσ +
∫

dσin P H (σin)

(
σin

〈σin〉

)2

ωρ(σin). (20)

Since the integral in the second term is dominated by σin > σ hN
in ,

for which ωρ is smaller than in correspondence of the average
value of σin , σ hN

in , Eq. (20) leads to a dispersion somewhat smaller
that ωσ + ωρ(σ hN

in ). This is consistent with the pattern we find in
the numerical calculation presented in Fig. 2 for

D(b) = 〈N2〉b − 〈N〉2
b

〈N〉2
b

, (21)

〈N〉b = ∑
N N P N (b)/

∑
N P N (b) and 〈N2〉b = ∑

N N2 P N (b)/∑
N P N (b). One can see that for RHIC and LHC energies the domi-

nant effect comes from color fluctuations. Moreover, the two states
approximation gives the result which is very close to the calcula-
tion with full Ph(σtot), so the two states model can be used to
simplify modeling of color fluctuation effects.

The large variance of the distribution leads to a much wider
distribution over N than in the Glauber model, as shown in Fig. 3.
The figure shows the quantities F N =

∫
db P N (b)/σ h A

in ; the same
quantities are plotted in logarithmic scale in the insets, and one
can see that the color fluctuations produce a much stronger large
N tail. Among other things, this implies that selection of events
which in the Glauber model correspond to very central impact pa-
rameters actually gets a significant contribution from pretty large

impact parameters — for example, in the two component model
discussed above the collisions at impact parameter b satisfying the
condition T (b)/T (0) = 1/(1+√

ω ) with a probability of 1/2 gener-
ates the same number of wounded nucleons as average number of
wounded nucleons at b = 0. For ω = 0.25 we have 1/(1 + √

ω ) =
0.67 and this corresponds to b % 4.58 fm.

An important implication of the broad distributions over N
which is mostly due to fluctuations of the strength of the inter-
action is that selection of large N also selects configurations in the
projectile nucleon with cross section larger than average. To illus-
trate this trend within our MC, let us consider the average σtot for
events with a given number N of wounded nucleons. Denoting the
probability to have exactly N wounded nucleons P N =

∫
db P N(b)

and using Eq. (18), we can write

〈σtot〉N

σ hN
tot

= 1

σ hN
tot

∫
dσtot db σtot Ph(σtot)P N(b;σtot)∫

dσtot db Ph(σtot)P N (b;σtot)
. (22)

The results of the calculation are presented in Fig. 4. One can
see that selecting N & 〈N〉 leads to a significant enhancement of
the contribution of configurations which have interaction strength
larger than average. For small N average 〈σtot〉N is below σ hN

tot ,
but the effect is relatively small especially for N = 1 where very
peripheral collisions contribute which are not sensitive to the fluc-
tuations. A natural source of large σ ’s are configurations of larger
than average transverse size. One can expect that the gluon field is
enhanced in these configurations while the distribution in x — the
light-cone fraction carried by partons of the projectile — is softer
for large x leading to a correlation between the distribution over
N and distribution over x of a hard collision.

Matching the number of wounded nucleons to the physical ob-
servables is certainly a challenging problem in view of fluctuations

 0
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Fig. 2. Effect on fluctuations of the dispersion, Eq. (21), when using a distribution of σtot with two values of the cross section with equal probability and with Ph(σtot) given
by Eq.(16), for realistic parameters corresponding to RHIC (left) and LHC (right) energies.

Fig. 3. Effect of the event-by-event fluctuating values of σtot , for RHIC (left panel) and LHC energies (right panel) on the number of wounded nucleons, calculated as
F N =

∫
db P N (b)/σ h A

in . Red curves show the results obtained with the usual Glauber calculation with fixed cross section, black curves correspond to calculations with the two
component model and blue curves correspond to calculations with fluctuating cross section with Ph(σtot) distribution. The insets show the same quantities in logarithmic
scale. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

〈
N2〉 =

∫
dσin P H (σin)〈N〉2

(
σin

〈σin〉

)2(
1 + ωρ(σin)

)
. (19)

Now we can calculate the total dispersion. The first term in
(1 + ωρ) simply gives ωσ . The second term takes into account the
dependence of ωρ on the fluctuating σin:

ωtot = ωσ +
∫

dσin P H (σin)

(
σin

〈σin〉

)2

ωρ(σin). (20)

Since the integral in the second term is dominated by σin > σ hN
in ,

for which ωρ is smaller than in correspondence of the average
value of σin , σ hN

in , Eq. (20) leads to a dispersion somewhat smaller
that ωσ + ωρ(σ hN

in ). This is consistent with the pattern we find in
the numerical calculation presented in Fig. 2 for

D(b) = 〈N2〉b − 〈N〉2
b

〈N〉2
b

, (21)

〈N〉b = ∑
N N P N (b)/

∑
N P N (b) and 〈N2〉b = ∑

N N2 P N (b)/∑
N P N (b). One can see that for RHIC and LHC energies the domi-

nant effect comes from color fluctuations. Moreover, the two states
approximation gives the result which is very close to the calcula-
tion with full Ph(σtot), so the two states model can be used to
simplify modeling of color fluctuation effects.

The large variance of the distribution leads to a much wider
distribution over N than in the Glauber model, as shown in Fig. 3.
The figure shows the quantities F N =

∫
db P N (b)/σ h A

in ; the same
quantities are plotted in logarithmic scale in the insets, and one
can see that the color fluctuations produce a much stronger large
N tail. Among other things, this implies that selection of events
which in the Glauber model correspond to very central impact pa-
rameters actually gets a significant contribution from pretty large

impact parameters — for example, in the two component model
discussed above the collisions at impact parameter b satisfying the
condition T (b)/T (0) = 1/(1+√

ω ) with a probability of 1/2 gener-
ates the same number of wounded nucleons as average number of
wounded nucleons at b = 0. For ω = 0.25 we have 1/(1 + √

ω ) =
0.67 and this corresponds to b % 4.58 fm.

An important implication of the broad distributions over N
which is mostly due to fluctuations of the strength of the inter-
action is that selection of large N also selects configurations in the
projectile nucleon with cross section larger than average. To illus-
trate this trend within our MC, let us consider the average σtot for
events with a given number N of wounded nucleons. Denoting the
probability to have exactly N wounded nucleons P N =

∫
db P N(b)

and using Eq. (18), we can write

〈σtot〉N

σ hN
tot

= 1

σ hN
tot

∫
dσtot db σtot Ph(σtot)P N(b;σtot)∫

dσtot db Ph(σtot)P N (b;σtot)
. (22)

The results of the calculation are presented in Fig. 4. One can
see that selecting N & 〈N〉 leads to a significant enhancement of
the contribution of configurations which have interaction strength
larger than average. For small N average 〈σtot〉N is below σ hN

tot ,
but the effect is relatively small especially for N = 1 where very
peripheral collisions contribute which are not sensitive to the fluc-
tuations. A natural source of large σ ’s are configurations of larger
than average transverse size. One can expect that the gluon field is
enhanced in these configurations while the distribution in x — the
light-cone fraction carried by partons of the projectile — is softer
for large x leading to a correlation between the distribution over
N and distribution over x of a hard collision.

Matching the number of wounded nucleons to the physical ob-
servables is certainly a challenging problem in view of fluctuations

Effect of the event-by-event fluctuating values of σtot, for RHIC and 
LHC energies on the number of wounded nucleons,

A factor of ~10 enhancement  for N~ 4 <N> 



Effect of fluctuations on the event-by-event fluctuating values of cross section. Small number 
of wounded nucleons, M,  selects  σ’s smaller than average - large M  --- - σ > σtot

Reminder: RHIC studied d-Au - smaller effect of  fluctuations for hard trigger.
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Fig. 4. Effect of fluctuations on the event-by-event fluctuating values of σtot , for RHIC and LHC energies.

Fig. 5. Fraction of inelastic cross section plotted as a distribution over impact parameter as defined in Eq. (23). Horizontal lines at 0.2, 0.4 and 0.6 correspond to the
experimental definition of 20%, 40% and 60% centrality, respectively.

of the impact parameter in the collisions. A model independent
treatment of this problem would require a study of p A collisions
for different nuclei. Still the central multiplicity appears to be a
good observable even in the presence of the color fluctuations. In-
deed in the soft interaction dynamics the hadron multiplicity for
central rapidities, yc.m. ∼ 0, does not depend on σ hN

tot , as it is de-
termined by the density of partons in a single Pomeron ladder.
Hence the hadron multiplicity for yc.m. ∼ 0 should be about the
same for different fluctuations. Also the first studies of the p A
collisions at the LHC indicate that to a good approximation the
hadron multiplicity for pt > 1 GeV is proportional to the number
of wounded nucleons calculated in the Glauber model [17]. Hence
we expect that selecting events with the yc.m. ∼ 0 hadron mul-
tiplicities: M/〈M〉 > 2.5 should select configurations in the pro-
jectile significantly larger than average ones (cf. Fig. 4 right) with
significantly different parton distributions.

Correspondingly, a trigger for configurations of smaller than av-
erage size would lead to a more narrow distribution in N . One
such possibility is to select as a trigger a hard process in which
a parton of the proton with xp > 0.6 is involved. One may ex-
pect that in this case one selects quark–gluon configurations with-
out qq̄ pairs and significantly screened gluon field, leading to σin
significantly smaller than average and hence a strong suppres-
sion of large N tail [18]. Such measurements appear to be feasi-
ble using the data collected in the 2013 p A run at the LHC in
which a significant number of events with large xp should have
been collected. Since this kinematics (for the current LHC detec-
tors) corresponds to very large pT ’s of the jets, one expects that
for the inclusive cross section impulse approximation would work
very well. Hence it would be possible to avoid issues of the fi-
nal/initial state interactions and nuclear shadowing in interpreting
these data.

A convenient quantity to study these effects experimentally
would be a measurement of the distribution over xp for different

classes of hard collisions at fixed xA normalized to the distribu-
tion in the inclusive p A scattering. A large effect is expected for
the central collisions where the hard cross section should be sup-
pressed for large xp > 0.2–0.3 and enhanced for x 6 0.05.

Note that such a measurement among other things would allow
to test in an unambiguous way the explanation of the EMC effect
at large x as due to the dominance of the smaller than average
size configurations in nucleon at x > 0.6; for a recent review see
Ref. [19].

We also investigated the impact of fluctuations of the definition
of centrality classes. We followed the experimental definition, in
which the centrality is proportional to the fraction of total inelastic
cross section provided by a given type of events. We can extract
from the MC results of Fig. 1 the probability Q N of having at least
N inelastic interactions, irrespective of the impact parameter b (cf.
Eq. (7)):

Q N =
∑A

M=N

∫
db P M(b)

∑A
M=1

∫
db P M(b)

, (23)

in such a way that Q N=1 = 1 by definition. This allows to es-
timate the fraction of σ h A

in arising from a given interval in the
number of wounded nucleons. Then, one can choose a central-
ity class and select the interval in number of wounded nucleons
which contributes to that class. In Fig. 5, we have chosen the
classes of the 20% most central events by requiring it to provide
20% of the total inelastic cross section and, similarly, we have sin-
gled out the 20%–40% and 40%–60% centrality classes, and the
40% most peripheral events as the last class. We use the num-
ber of the wounded nucleons corresponding to (closer to) these
cuts as limits in N entering in Eq. (24), for the calculation of the
curves in Fig. 6. In Fig. 6 we show, for the selected classes, the
distribution of events as a function of impact parameter by plot-
ting

h�
tot

i
�hN

tot

⇠ 2 for N/<N> =4



Different σ’s  --- different size, different shape, different parton densities

would lead to ridges
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Conditional pdfs



Use the hard trigger to determine xp and low pt hadrons  
to measure overall strength of interaction σeff  of 
configuration in the proton with given xp   FS83

LHC - jets with large pt - -- practically no nuclear shadowing effects

Expectation: Larger the size, more gluon radiation, softer the x distribution

G(x, Q2 |⇥) = G(x, �Q2)
�(Q2) � (⇥/⇥⇥⇤)�s(Q2

0)/�s(Q2) whereQ2
0 � 1 GeV2

Illustration

gives a reasonable magnitude of fluctuations of the gluon density

would result in different parton distribution in nucleons measured with different 
number of  wounded nucleons, with no change in the inclusive case
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x
0.1

Rg(x)

1



Alternative strategy  - use a hard trigger which selects rare configurations in 
nucleon which are small size or large size (large number of wounded nucleons?)

The presence of a quark with large  x>0.6 requires three quarks to exchange 
rather large momenta, one may expect that these configurations have a smaller 
transverse size (+ few gluons & sea quarks at low Q scale) and hence interact 
with the target with a smaller effective cross section: σeff.

23

Selection of such x seems feasible at LHC but a challenge at RHIC.

Note:  if x>0.6 configurations do have a size smaller than average, it would 
explain the EMC effect (FS83)



Conclusions
Color fluctuations in hadrons are well established both in hard 
and soft phenomena

A promissing strategy to observe effects of color fluctuations would 
be to use  a large xp trigger 

Gribov-Glauber picture of hadron - nucleus scattering can be 
implemented for diffractive and inelastic processes using the 
color fluctuation formalism

Color fluctuations lead to nontrivial correlations of hard and soft 
components of pA interaction.
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(d�el/dt)t=0 ⇥
�⇤

n|an|2G(x, Q2|n)
⇥2 � ⇤G⌅2,

(d�di�/dt)t=0 ⇥
⇤

n|an|2
�
G(x, Q2|n)

⇥2 � ⇤G2⌅.

�inel = �di� � �el

⇥g ⇥ ⇤G2⌅ � ⇤G⌅2

⇤G⌅2 =
d���+p�V M+X

dt

⇥
d���+p�V M+p

dt

����
t=0

.

Making use of the completeness of partonic states, we find that the elastic(X = p)
 and total diffractive (X arbitrary) cross sections are proportional to

Hence cross section of inelastic diffraction is 

⇒
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Strength of the gluon field should depend on the size of the quark configurations - for small configurations the 
field is strongly screened - gluon density much smaller than average.

Consider ��L + p� V + X for Q2 > few GeV2

 Expand initial proton state in a set of partonic states characterized by the number of partons 
and their transverse positions, summarily labeled as  |n〉

|p� =
�

n

an|n�

Each configuration n has a definite gluon density G(x, Q2| n) given by the expectation value of 
the twist--2 gluon operator in the state |n〉

G(x, Q2) =
�

n|an|2G(x, Q2|n) � ⇥G⇤

In this limit the QCD factorization theorem (BFGMS03, CFS07) for these processes is applicable 

Do we know anything about such fluctuations? Yes - MS + LF + C.Weiss,
 D.Treliani PRL 08
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2

soft di⇥ractive processes. We introduce the concept of
a configuration–dependent parton density and follow its
implications for various types of high–energy scattering
experiments with hard processes. Our investigation pro-
ceeds in three stages. First, we relate the fluctuations
of the gluon density to the ratio of inelastic to elastic
hard di⇥raction in ep scattering (HERA, future EIC) in
a model–independent fashion. Second, we use a simple
model of color fluctuations in the nucleon to illustrate
and quantify our results. Third, we discuss the implica-
tions of color fluctuations for pp/p̄p collisions with multi-
ple hard processes (Tevatron CDF), and for rapidity gap
survival in double–gap exclusive di⇥ractive pp scattering
(RHIC, Tevatron, LHC). A more detailed account of our
studies will be given elsewhere [? ].

Consider di⇥ractive production of vector mesons in ep
scattering at Q2 >⇤ few GeV2, �⇥L + p ⌅ V + X, where
the proton may remain intact or dissociate into a set of
hadronic states X. The proton state can be expanded
in a set of partonic states characterized by the number
of partons and their transverse positions, summarily la-
beled as |n⌥: |p⌥ =

⇧
n an|n⌥. Each configuration n has a

definite gluon density G(x,Q2|n), given by the expecta-
tion value of the twist–2 gluon operator in the state |n⌥,
and the overall gluon density in the proton is

G(x,Q2) =
⇧

n|an|2G(x,Q2|n) ⇥ ⌃G⌥. (2)

Because the partonic states appear “frozen” on the typi-
cal timescale of the hard scattering process, one can use
QCD factorization to calculate the amplitude for the vec-
tor meson production process configuration by configu-
ration. The latter is (up to small calculable corrections)
proportional to the gluon density in that configuration
[? ]. An essential point is now that in the leading–twist
approximation the hard scattering process attaches to a
single parton, and, moreover, does not transfer momen-
tum to that parton. It thus does not change the partonic
state |n⌥. Making use of the completeness of partonic
states, we find that the elastic (X = p) and total di⇥rac-
tive (X arbitrary) cross sections are proportional to

(d⇧el/dt)t=0 ⇧
�⇧

n|an|2G(x,Q2|n)
⇥2 ⇥ ⌃G⌥2, (3)

(d⇧di�/dt)t=0 ⇧
⇧

n|an|2
�
G(x,Q2|n)

⇥2 ⇥ ⌃G2⌥. (4)

For the cross section of di⇥ractive dissociation ⇧inel =
⇧di� � ⇧el we thus obtain

⌃g ⇥ ⌃G2⌥ � ⌃G⌥2

⌃G⌥2 =
d⇧inel

dt

⌅
d⇧el

dt

⇤⇤⇤⇤
t=0

. (5)

This model–independent relation allows one to infer the
fluctuations of the gluon density from the observable ra-
tio of inelastic and elastic di⇥ractive vector meson pro-
duction. It can be easily generalized to a large variety of
hard processes such as �⇥L + T ⌅ 2⌅ (two jets) + T , or �
production in ultraperipheral pp collisions at LHC [? ].
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FIG. 1: The dispersion of fluctuations of the gluon density, �g,
as a function of x for several values of Q2, as obtained from
the scaling model, Eqs. (??)–(??), and a phenomenological
parametrization of the gluon density.

Generally, relative fluctuations of the density decrease
if the number of constituents of a system increases. Thus,
we expect ⌃g to decrease slowly with increasing Q2 for
fixed x, and with decreasing x for fixed Q2. For the same
reason we expect ⌃g to be suppressed in scattering from
nuclear targets. Present experimental data on the cross
section ratio of Eq. (??) are very limited; they are consis-
tent with a weak dependence on Q2 (the e⇥ective scale in
vector meson production at HERA is Q2

e� ⇤ 2� 4GeV2)
and the vector meson mass, and indicate a value of ⌃g of
the same magnitude as ⌃⇥ at comparable energies.

More quantitative studies of gluon fluctuations are pos-
sible within a dynamical model of nucleon structure.
Modeling the configuration dependence of parton den-
sities is a complex task, requiring detailed knowledge of
the nucleon’s partonic wave function. To study the pos-
sible magnitude of fluctuation e⇥ects and their x– and
Q2–dependence, we propose here a simple model based
on two assumptions: (a) The hadronic cross section of a
configuration moderate energies (

 
s ⇤ 20 GeV) is pro-

portional to the transverse area occupied by the color
charges in that configuration, ⇧ ⇧ R2

config; (b) the par-
ton density changes with the size of the configuration
only through its dependence on the normalization scale,
µ2 ⇧ R�2

config ⇧ ⇧. The latter is similar to the “nucleon
swelling” model of the EMC e⇥ect [? ] and implies a
simple scaling relation for the ⇧–dependent gluon den-
sity:

g(x,Q2 |⇧) = g(x, ⇤Q2), (6)

⇤(Q2) ⇥ (⇧/⌃⇧⌥)�s(Q2
0)/�s(Q2) , (7)

where Q2
0 ⇤ 1 GeV2. Assumption (b) then allows us to

The dispersion of fluctuations of the gluon 
density, ωg, as a function of x for several 
values of Q2, as obtained from the scaling 
model

Simple “scaling model”     based on two assumptions

● At moderate energies √s = 20 GeV  the hadronic cross section of a configuration is proportional to the transverse 
area occupied by the color charges in that configuration,

� � R2
config

● the normalization scale of the parton density changes proportionally to the size of the configuration

µ2 � R�2
config � ⇥�1

(in the spirit of Close et al 83 - EMC effect model)

G(x, Q2 |⇥) = G(x, �Q2) �(Q2) � (⇥/⇥⇥⇤)�s(Q2
0)/�s(Q2)

whereQ2
0 � 1 GeV2

the model designed for small x < 0.01. There maybe other   effects 

which could contribute to ωg for large x

Warning: 

At the same time decrease of ωg with Q2 at x=const - generic effect

Gluon fluctuations have to be explored both theoretically and experimentally (ultraperipheral collisions 
at LHC)  including implications for LHC final states 29



Enhancement due to fluctuations is expressed through fluctuations of GPDs 
(more complicated because of the shape fluctuations)

Rfl=
gN (x1, Q2|�)g1N (x2, Q2|�)
gN (x1, Q2)g1N (x2, Q2)

�S⇥
S

R=R0Rfl

S- transverse area of overlap.

Large fluctuations of S if nucleon (hard partons in the 
nucleon) form  a pancake or a cucumber 

Measurement of R as a function Nch for different x’s of colliding partons and observing R 
exceeding ~4 for large Nch would be unambiguous evidence for gluon fluctuations

Large Rfl may explain the large rate of dijets in the HM data

b=0

diquark model: rstring /rtN ~ 1/2 ÷1/3  →
 <S>/Shead-on ~  4 ÷ 9
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