ALICE results on ultraperipheral Pb+Pb and p+Pb collisions

Jaroslav Adam On behalf of the ALICE Collaboration

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

May 2013

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Workshop on proton-nucleus collisions at the LHC, Trento, Italy

High energy photonuclear reactions

Physics measurements

- Parton distribution at low Bjorken-x
- Photonuclear cross section σ^γ_X(k) of vector meson production depends on gluon distribution

Ultra-peripheral collision (UPC)

- Experimental opportunity to create high energy photonuclear reaction
- Impact parameter b larger than sum of nuclear radii
- Hadronic interactions suppressed, but strong electromagnetic field
- Field consists of virtual photon flux, dN/dk
- Photoproduction cross section $\sigma_X = \int dk (dN/dk) \sigma_X^{\gamma}(k)$

Collision systems

- Pb+Pb: γPb reactions, source and target nuclei
- p+Pb: γp reactions, Pb most likely the photon source

A B A A B A

Photoproduction processes

γPb reactions

- Coherent vector meson production
 - Photon couples coherently to almost all nucleons
 - hlow < $hlow_T$ > \sim 1/ R_{Pb} \sim 60 MeV/c
 - No neutron emission in ~80% cases
- Incoherent vector meson production
 - Photon couples to a single nucleon
 - $\, <
 ho_T > \sim 1/R_
 ho \sim 500 \, {
 m MeV/c}$
 - Target nucleus normally breaks up

γp reactions

- Elastic photoproduction
 - Proton does not break
- Dissociative photoproduction
 - Excited proton after photoproduction reaction

Lepton pair production (Pb + Pb or p + Pb)

- $\gamma\gamma \rightarrow \mu^+\mu^-$ or ${\it e^+e^-}$
- In case of γp, proton may dissociate

 J/ψ photoproduction in γp

H1: A. Aktas et al. Eur.Phys. J.C46:585-603,2006

Current results on elastic J/ψ production cross section measurements*

HERA* ep, LHCb** pp and fixed target experiments results on $\gamma p \rightarrow J/\psi$ production cross section

^{*} http://arxiv.org/abs/1304.5162

^{**} J. Phys. G 40 (2013) 045001

The ALICE experiment (A Large Ion Collider Experiment)

Solenoid magnet, 30000 A, 0.5 T

- Central barrel detectors, |η| < 0.9</p>
- Muon spectrometer -4.0 < η < -2.5
- Forward triggering detectors

See backup for detailed description

Exclusive dileptons trigger strategy

Forward rapidity

- Both tracks in muon arm
- Dimuon unlike-sign, $p_T > 0.5 \text{ GeV/c}$
- At least one cell fired in VZERO on muon arm side ($-3.7 < \eta < -1.7$)
- Empty VZERO on the opposite side (2.8 $< \eta < 5.1$)

Central rapidity

- Both tracks in central detectors
- 2 ≤ TOF hits ≤ 6
 - + back-to-back topology
- $\bullet \ \geq 2 \text{ hits in SPD}$
- Empty VZERO (both sides)

Exclusive dileptons offline event selection

Exclusivity selection

- UPC trigger
- VZERO fired cells energy deposition in muon arm side, opposite side empty
- Low signal in ZDC to reduce contribution from hadronic interactions
- Central barrel activity checked according the presence of SPD tracklets
- Just two tracks in an otherwise empty detector

Tracks quality requirements

- Radial position at the end of absorber and p_T dependent DCA cut for muon tracks
- ITS hits, TPC clusters and TOF information for central tracks
- Pseudorapidity inside the nominal acceptance

Dimuon selection

- *p_T* limits: separation of the coherent and incoherent samples
- Rapidity interval according acceptance of the detectors

A (10) A (10)

Pb+Pb analysis

Coherent J/ ψ photoproduction in Pb+Pb $\sqrt{s_{NN}}$ = 2.76 TeV in forward rapidity*

- Both tracks in muon spectrometer
- Only $\mu^+\mu^-$

Invariant mass distribution

- Dimuons with $p_T < 0.3 \text{ GeV/c}$
- Exponential function and Crystal Ball fit
- Exponential slope parameter compatible with mc expectation for $\gamma\gamma \rightarrow \mu^+\mu^-$

Contributions to $\rho_{\mathcal{T}}$ spectrum

- Coherent and incoherent J/ψ
- J/ψ from ψ' decays

•
$$\gamma\gamma \rightarrow \mu^+\mu^-$$

Number of candidates

 $\begin{array}{l} N^{coh}_{J/\psi} = \frac{N_{yield}}{1+f_1+f_D} \\ (f_l \mbox{ and } f_D: \mbox{ incoherent and feed-down fractions}) \\ N^{coh}_{J/\psi} = 78 \pm 10(\mbox{ stat})^{+7}_{-11}(\mbox{ syst}) \end{array}$

^{*} Phys. Lett. B 718 (2013) 1273 - 1283

 J/ψ photoproduction in Pb+Pb $\sqrt{s_{NN}}$ = 2.76 TeV in central rapidity

- Both tracks in central detectors
- Allows $\mu^+\mu^-$ and e^+e^-

dE/dx selection in TPC $Pb+Pb \rightarrow Pb+Pb+J/\psi \sqrt{s_{NN}} = 2.76 \text{ TeV}$

< □ > < □ > < □ > < □ > < □ >

Coherent e^+e^- (left) and $\mu^+\mu^-$ (right) invariant mass

100

Coherent J/ψ results in Pb+Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}^*$

Forward and central cross section

- Large nuclear suppression in Pb at small *x*
- Best agreement with nuclear gluon shadowing predicted by AB-EPS09

- AB: Adeluyi, Bertulani, PRC85 (2012) 044904 LO pQCD scaled by an effective constant to correct for missing contributions. MSTW assumes no nuclear effects, the other incorporate nuclear effects according different effects
- CSS: Cisek, Szczurek, Schäfer, PRC86 (2012) 014905

Color dipole model based on unintegrated gluon distribution of the proton

- **STARLIGHT:** Klein, Nystrand, PRC60 (1999) 01493 GVDM coupled to a Glauber approach and using Hera data to fix the γp cross section
- GM: Goncalves, Machado, PRC84 (2011) 011902 Color dipole model, where the dipole nucleon cross section is from the IIM saturation model
- RSZ: Rebyakova, Strikman, Zhalov, PLB 710 (2012) 252

Based on LO pQCD amplitude for two gluon exchange where the gluon density incorporates shadowing computed in leading twist approximation

^{*} arXiv:1305.1467 [nucl-ex]

$\gamma\gamma ightarrow e^+e^-$ in Pb+Pb

Alice measurement

- |η| < 0.9
- Measurement precision improved

Inv. mass interval $2.2 < M_{inv} < 2.6 \text{ GeV/c}^2$

- ALICE preliminary $\sigma_{\gamma\gamma} = 154 \pm 11(\text{stat})^{+16.6}_{-10.8}(\text{sys}) \ \mu\text{b}$
- STARLIGHT prediction $\sigma_{\gamma\gamma} = 128 \ \mu b$

Inv. mass interval $3.7 < M_{inv} < 10.0 \text{ GeV/c}^2$

• ALICE preliminary $\sigma_{\gamma\gamma} = 91 \pm 10(\text{stat})^{+10.9}_{-8.0}(\text{sys}) \ \mu\text{b}$

< □ > < @

→ ∃ →

• STARLIGHT prediction $\sigma_{\gamma\gamma} = 77 \ \mu b$

p+Pb result and outlook

Exclusive dilepton with ALICE in p+Pb

Basic experimental signature: two tracks in an otherwise empty detector Forward rapidity -4.0 < y < -2.5, $\mu^+\mu^-$ Mid-rapidity $|\eta| < 0.9$, $\mu^+\mu^-$, e^+e^-

Semi-forward -2.5 < y < -1.3, $\mu^+\mu^-$

Accessible kinematics regions in p+Pb

- Mid-rapidity: 100 < W_{γp} < 250 GeV
- p+Pb forward: 21 < $W_{\gamma p}$ < 45 GeV
- p+Pb semi-forward: $45 < W_{\gamma p} < 82 \text{ GeV}$
- Pb+p forward: $550 < W_{\gamma p} < 1160 \text{ GeV}$
- Pb+p semi-forward: $300 < W_{\gamma p} < 550 \text{ GeV}$

Accessible kinematics regions in p+Pb

γp CM energies

- Mid-rapidity: $100 < W_{\gamma p} < 250 \text{ GeV}$
- p+Pb forward: 21 $< W_{\gamma p} <$ 45 GeV
- p+Pb semi-forward: $45 < W_{\gamma p} < 82 \text{ GeV}$
- Pb+p forward: 550 < W_{γp} < 1160 GeV
- Pb+p semi-forward: $300 < W_{\gamma p} < 550 \text{ GeV}$

Image: Image:

LHeC prediction for elastic J/ψ photoproduction*

* arxiv:1211.4831

pQCD model for elastic J/ψ photoproduction prediction*

- Martin, Nockles, Ryskin, Teubner (MNRT)*
- pQCD, Ryskin Formula (LO), NLO contributions

 $\gamma + p \rightarrow J/\Psi + p$

* Phys. Lett. B 662 (2008) 252 Jaroslav Adam (ALICE experiment)

18 / 25

Collected data sample in p+Pb

- LHC 2013 p+Pb run in January and February
- √s = 5.02 TeV
- Special trigger classes for forward, semi-forward and central UPC events
- Beam directions: p+Pb: p \rightarrow muon arm side, Pb+p: Pb \rightarrow muon arm side
- J/ψ detection efficiency similar to Pb+Pb

Signal extraction for forward J/ψ in p+Pb

Similar signals also in semi-forward and central rapidity

May 2013 20 / 25

< □ > < □ > < □ > < □ > < □ >

Conclusions

Pb+Pb photoproduction results

- First LHC measurement on exclusive J/ψ photoproduction in Pb+Pb collisions at $\sqrt{s_{NN}} =$ 2.76 TeV by ALICE experiment*
- Preliminary results on mid-rapidity J/ψ photoproduction and $\gamma\gamma
 ightarrow e^+e^-$ measurement
- Models including nuclear gluon shadowing consistent with the EPS09 parametrisation are favoured

p+Pb photoproduction analysis

Analyses ongoing - stay tuned

< ロト < 同ト < ヨト < ヨト

^{*} Phys. Lett. B 718 (2013) 1273 - 1283

Backup

Alice muon spectrometer

- Coverage $-4.0 < \eta < -2.5$
- Absorber for muon filtering, 10 interaction length thick
- Dipole magnet, integrated field 3 Tm
- 5 tracking stations, each composed of two multi-wire proportional chambers (MWPC)
- Trigger system
 - Four planes of resistive plate chambers (RPC)
 - Selection with p_T > given programmable threshold
- Tracking resolution 100μm

• • • • • • • • • • • • •

Alice central barrel detectors, $|\eta| < 0.9$

Inner Tracking System (ITS)

- 6 layers of silicon pixel, drift and strip detectors
- Inner pixel $|\eta| < 1.5$

Time Projection Chamber (TPC)

Gaseous tracking detector

Time of Flight (TOF)

• MRPC strips, surrounds the TPC

ALICE TPC

Alice forward detectors

- VZERO scintillator detectors VZERO-A and VZERO-C at 2.8 $<\eta<$ 5.1 and $-3.7<\eta<-1.7,$ triggering and event selection
- Zero Degree Calorimeters (ZDC), 116 m on both sides of interaction point, very forward neutrons

