Results from the LHC TOTEM Experiment

Máté Csanád, Eötvös University Budapest

pA 2013, Trento

May 8, 2013

Table of Contents

Introduction, TOTEM physics

2 TOTEM setup

3 TOTEM results

4 Summary

The TOTEM Collaboration

- TOTal cross-section, Elastic scattering and diffraction dissociation Measurement
- One of the small LHC experiments
- However, it has the largest longitudinal span
- Shares Interaction Point with CMS
- Rather small group: 59 participants from 9 institutions
- Czech Rep., Estonia, Finland, Hungary, Italy, USA + CERN

TOTEM goals

- Measure $\frac{d\sigma_{el}}{dt}$ in a broad t range
 - Strong constraint on models
 - t
 ightarrow 0 needed for $\sigma_{
 m tot}$ (optical theorem, see later)
 - Measure extremely small t events!

• High precision $\sigma_{\rm tot}$ measurement, independent principles

- Detect elastic and inelastic events
- Events with almost zero momentum transfer
- Three independent principles
- High precision result on the "size" of a high energy proton
- Measure luminosity as well (LHC: $\mathcal{L} = f \cdot n \cdot \frac{N^2}{A}$)
- Diffractive processes, small x physics
 - Proton structure functions interesting for small x
 - Interaction with a very small momentum fraction parton
 - Dissociated parts of proton barely deflected
 - Measure single diffraction, double diffraction cross-sections

Event classification

- Distinguish elastic, single & double diffractive events, etc.
- Detectors in well-placed pseudorapidity ranges:

• Event topologies with different detector signatures

How to measure cross-sections?

• Measure elastic and inelastic multiplicities (extrapolation):

$$N_{\rm el}, N_{\rm inel}, \left. \frac{dN_{\rm el}}{dt} \right|_{t=1}$$

• Differential cross-section from multiplicity & (integrated) luminosity:

$$\mathcal{L}\sigma = N$$
 and $\mathcal{L}rac{d\sigma}{dt} = rac{dN}{dt}$

• Cross-section is connected to f(t) scattering amplitude as

$$\frac{d\sigma_{\mathsf{el}}}{dt} = \frac{1}{t}|f(t)|^2$$

• The optical theorem says:

$$\sigma_{\rm tot}^2 = \frac{16\pi^2(\hbar c)^2}{t} \, ({\rm Im} f(0))^2$$

- This connects σ_{tot} and $\frac{d\sigma_{el}}{dt}\Big|_{t=0}$
- Total cross-section measurable!

Table of Contents

- 1 Introduction, TOTEM physics
- 2 TOTEM setup
 - 3 TOTEM results
- 4 Summary

TOTEM setup

- Common interaction point with CMS, IP5
- Symmetric setup: same detectors on both sides
- T1 and T2 tracking detectors, integrated in CMS forward part
- $\bullet\,$ "Roman Pot" (RP) stations ± 147 m and ± 220 m from IP5
- Longitudinal acceptance: $\Theta \approx$ few μ rad scattering angle
- Pseudorapidity ($\eta = \ln \tan(\Theta/2)$): $|\eta|$ up to 12-13
- Full 2π acceptance ϕ azimuth angle
- Momentum transfer squared: $10^{-4} \, {
 m GeV^2} < |t| < 10 \, {
 m GeV^2}$

TOTEM setup

TOTEM and CMS

Tracking telescopes

- T1: 3.1 $<|\eta|$ < 4.7, T2: 5.3 $<|\eta|$ < 6.5 (both sides of IP)
- T1: 5 uniform distance hexagonal "Cathode Strip Chambers" (CSC)
- T2: 10 circular "Gas Electron Multipliers" (GEM)

Roman Pot detectors

- Very small distance to the beam, in secondary vacuum
- 4 stations (at 147 and 220 meters, both sides), each has 2 units
- 3 pots per unit, one horizontal & two vertical (24 in total)
- 10 planes per pot, 512 "edgeless" Si strips in one plane
- Resolution: 16 μ m, scattering angle: 5 μ rad, alignment: 10 μ m
- Beam Position Monitor included

Planes in a Pot

TOTEM optics

- TOTEM records events with t
 ightarrow 0, i.e. small angle, close to beam
- Understanding of LHC optics is crucial!

- Measured quantities (at RP) ⇔ originals at IP: transport matrix
- Effective length L(s), magnification $\nu(s)$, determined by $\beta(s)$
- Beta function around the IP: $\beta(s) = \beta^* + s^2/\beta^*$
- Beam size at IP $\propto \sqrt{eta^*}$
- Beam divergence at IP $\propto 1/\sqrt{eta^*}$
- Large β^* : poor focus, strong convergence
- Standard β^* : 3.5 m, TOTEM optics: 90 m, special 1000 m as well

Table of Contents

Introduction, TOTEM physics

DITEM setup

OTEM results

- Elastic cross-section
- Inelastic cross-section
- Total cross-section
- Diffraction
- p-Pb

Differential elastic scattering results at 7 TeV

- Three measurements in three *t*-ranges $\beta^* = 3.5$ m and 90 m
- Small |t|: exponential, $\frac{d\sigma_{el}}{dt} = \frac{d\sigma_{el}}{dt}\Big|_{t=0} e^{-B|t|}$
- Diffractive minimum, power law tail
- Via integration: $\sigma_{\rm el} = (24.8 \pm 0.2_{\rm stat} \pm 1.2_{\rm syst})$ mb

pA 2013. Trento

Differential elastic scattering results

Slope in different *t*-ranges: 0.36 < |t| < 0.47 GeV²: B = (23.6 ± 0.5_{stat} ± 0.4_{syst}) GeV⁻² 0.02 < |t| < 0.33 GeV²: B = (20.1 ± 0.2_{stat} ± 0.3_{syst}) GeV⁻² 0.005 < |t| < 0.2 GeV²: B = (19.89 ± 0.03_{stat} ± 0.3_{syst}) GeV⁻²
Diffractive minimum: |t| = (0.53 ± 0.01_{stat} ± 0.01_{syst}) GeV²
|t| > 1.5 GeV²: power law, exponent -7.8 ± 0.3_{stat} ± 0.1_{syst}
Strong constraint on models (to say the least):

$d\sigma_{ m el}/dt$ at $eta^*=$ 1000 m

- Dedicated $\beta^* = 1000$ m run, measurement down to $|t| = 6 \cdot 10^{-4} \text{ GeV}^2$
- Sensitive to models describing Coulomb/nuclear interference
- Improvement on the total cross-section

Inelastic cross-section measurement

• Triggering with T2 gives luminosity dependent cross-section

 $\sigma_{\mathsf{inel},\mathsf{T2}} = (69.7\pm0.1_{\mathsf{stat}}\pm0.7_{\mathsf{syst}}\pm2.8_{\mathsf{lumi}})\,\mathsf{mb}$

• Cross-section for events with at least one stable particle with $|\eta| < 6.5$:

$$\sigma_{\mathsf{inel},|\eta|<6.5} = (70.5\pm0.1_{\mathsf{stat}}\pm0.8_{\mathsf{syst}}\pm2.8_{\mathsf{lumi}})\,\mathsf{mb}$$

 $\sigma_{\text{inel}} = (73.7 \pm 0.1_{\text{stat}} \pm 1.7_{\text{syst}} \pm 2.9_{\text{lumi}}) \,\text{mb}$

• Correction for events with particles only at $|\eta| > 6.5$ (QGSJET-II)

• Low mass diffraction contribution under control: 2.62 ± 2.17 mb • Ref: EPL **101** (2013) 21003

Total cross-section: independent measurement principles

- "Elastic only" method (optical theorem) (EPL 96,21002 & 101,21002): $\sigma_{
 m tot}^2 = rac{16\pi(\hbar c)^2}{1+
 ho^2} \left. rac{d\sigma_{
 m el}}{dt}
 ight|_{-\infty}$
 - $\rho = \text{Re}f(0)/\text{Im}f(0)$, COMPETE: $\rho = 0.14^{+0.01}_{-0.08}$, small effect
 - No assumption on low mass diffraction!
- Luminosity independent method (EPL 101,21004):

$$\sigma_{
m tot} = rac{16\pi(\hbar c)^2}{1+
ho^2} \cdot rac{dN_{
m el}/dt|_{t=0}}{N_{
m el}+N_{
m inel}}$$

• ρ independent method (EPL 101,21003 & 101,21004):

$$\sigma_{\rm tot} = \sigma_{\rm el} + \sigma_{\rm inel}$$

- Total inelastic rate: obtained via T2 triggering
- Corrections based on T1 tracks and minimal use of MCs.
- Absolute calibration of CMS \mathcal{L} , and ρ measurable!
- ρ & \mathcal{L} -independent quantitiy: e.g. $\sigma_{\rm el}/\sigma_{\rm tot}$
- Set upper limit on low mass diffraction

Comparison of different methods

Luminosity independent method: Europhys. Lett. 101, 21004 (2013)

Máté Csanád, Eötvös University Budapest

pA 2013, Trento

Results at 8 TeV

Source: CERN-PH-EP-2012-354 (Phys. Rev. Lett. accepted)

Máté Csanád, Eötvös University Budapest

pA 2013, Trento

Quantitative σ_{tot} results

Measurement	$\sigma_{\rm el}~[{\rm mb}]$	$\sigma_{\rm inel}~[{\rm mb}]$	$\sigma_{\rm tot} \; [{\rm mb}]$
Elastic only, 7 TeV EPL 96 ,21002	24.8±1.2	73.5±1.6	98.3±2.8
Elastic only, 7 TeV EPL 101 ,21002	25.4±1.1	73.2±1.3	98.6±2.2
ρ-indep., 7 TeV EPL 101 ,21003	25.4±1.1	73.7±3.4	99.1±4.3
Lumiindep., 7 TeV EPL 101 ,21004	25.1±1.1	72.9±1.5	98.0±2.5
Lumiindep., 8 TeV CERN-PH-EP-2012-354	27.4±1.2	74.7±1.7	101.7±2.9

- Good agreement at 7 TeV
- $\rho^2 = 0.009 \pm 0.056$, i.e. $|\rho| = 0.145 \pm 0.091$ (uniform distr.)
- Low mass diffraction: 2.62 ± 2.17 mb
- Uncertainty dominated by luminosity (model uncertainty: 1%)

Soft diffraction results

Soft single diffraction: rapidity gap determines diffractive mass

- Event classification based on tracks in T2, T1 and proton in RP
- M_X classes from 3.4 GeV to above 1.1 TeV (proton + both T2 arms)
- Preliminary cross-section results for various M_{\star} intervals: 3.4-7 GeV: 1.8 mb, 7-350 GeV: 3.3 mb, 350-1100 GeV: 1.4 mb
- Soft double diffraction: particle in both T2 arms, no T1 tracks
 - $0 \times T1 + 2 \times T2$ topology
 - Range is $4.7 < \eta_{min} < 6.5$, i.e. 3.4 < M < 8 GeV
 - Single diffractive background: $0 \times T1 + 1 \times T2$ data with proton in RP
 - Non-diffractive background: MC prediction based on $2 \times T1 + 2 \times T2$ data
 - Preliminary cross-sections for $4.7 < \eta_{min} < 6.5$: $120\pm25 \ \mu b$

Diffraction

Pseudorapidity distribution results

- Based on T2 trigger, at least one ch. particle with $p_t > 40 \text{ MeV}/c$
- More than 99% of non-diffractive processes
- Diffractive as well, if $M_{\rm diff} > 3.4 \ {\rm GeV}/c^2$
- No MC generator describe the data fully within given uncertainty
- Gap to LHCb \Rightarrow T1 analysis, displaced vtx (500k events @ 11m) Regular vertex: $5.3 < |\eta| < 6.4$

Pseudorapidity distribution with CMS at 8 TeV

CMS & TOTEM: common T2 trigger, same data sample!

- Non-single diffractive & single diffractive enhanced analysis ongoing
- Trigger: one or both T2 hemispheres on

p-Pb

p-Pb data taking, analyses

- Taken data together with CMS, trigger exchange and event sync, 150 Hz
- Approx. 100 TOTEM physics runs, only vertical RP, only on the p side
 - p-Pb, RPs (13 σ , i.e. $|t| > 4.5 \text{ GeV}^2$) + T2 + CMS: 60 M events
 - p-Pb, T2 + CMS: 70 M events
 - Pb-p, RPs (13σ) + T2 + CMS: 85 M events
 - Pb-p, RPs (4.5 σ , i.e. $|t| > 0.5 \text{ GeV}^2$) + T2 + CMS: 2.50 M events with (quasi-)ealastic events, but signature only in one arm
- Analyses: diffraction, $dN/d\eta$, correlations
- A further project: measure elastic differential cross-sections
 - Problem: ion stays in beam, only proton deflected
 - Only one side can be used, elastic tagging difficult
 - Inelastic veto possible with forward telescopes
 - Quasi-elastic veto via forward neutral particles
 - Status: several physics runs reconstructed, analysis on the way

Table of Contents

- Introduction, TOTEM physics
- 2 TOTEM setup
- 3 TOTEM results
- 4 Summary

Summary, outlook

- TOTEM measures forward protons with extreme precision
- Works with regular and dedicated LHC optics
- Published: σ , $d\sigma/dt$, pseudorapidity distr.
- $\sigma_{\rm tot,el,inel}$ via 3 independent principles
- $\beta^* = 1000$ m, |t| > 0.0006 GeV² preliminary
- Results on 7 & 8 TeV
- Preliminary soft diffractive results
- Common diffractive analyses with CMS
- p+A: common TOTEM & CMS data taking, analysis started
- Long Shutdown 1: upgrade of the experiment

Thank you for your attention

First measurement of the total proton-proton cross-section at the LHC energy of $\sqrt{s} = 7$ TeV The TOTEM Collaboration 2011 EPL 96 21002

Energy dependence of total cross sections

- Total cross sections rise, impossible with normal Regge trajectories
- Solution: the "Pomeron trajectory", lpha(0)=1.08 and $lpha'=0.25~{
 m GeV^{-2}}$
- What is the Pomeron?
- Even p+p scattering σ_{total} is not fully explained!

Differential elastic scattering

- Many different models for $d\sigma_{
 m el}/dt$
- Different number and location of diffractive minima
- Small t: exponential, slope (B(t)) very different

Small x physics

- Understanding the proton structure: high energy e + p collisions
- Small E: nucleon resonances; large E: "deeply inelastic scattering"

- SLAC, 60's: dimensionless x scaling variable
- Bjorken, 1969: "parton model", $p_{parton} = x \cdot p_{proton}!$
- x > 0.1: parton=valence-quark, Bjorken-scaling explainable
- Small x: sea-quarks and gluons appear, scaling violations, "small x physics"

Pictures of the detectors

Máté Csanád, Eötvös University Budapest

pA 2013, Trento

"Edgeless" technology

- Get as close to the beam as possible, 1 mm
- Planar Si detectors: generally 0.5-1 mm dead region
- Goal: reduce it to 50 μm
- Properties of cut edge undetermined: independence possible?
- So-called "Current Terminating Structure" (\neq voltage termination)

Máté Csanád, Eötvös University Budapest

Hits at different β^* settings

- Beta function around the IP: $\beta(s) = \beta^* + s^2/\beta^*$
- Beam size at IP $\propto \sqrt{eta^*}$
- Beam divergence at IP $\propto 1/\sqrt{eta^*}$
- Large β^* : poor focus, strong convergence
- Beam distance in beam size (σ) units

TOTEM acceptance

• With CMS: largest acceptance experiment

• RP acceptance depends on optics

• Effective length L(s), magnification $\nu(s)$, determined by $\beta(s)$

$$\begin{pmatrix} x \\ \Theta_x \\ y \\ \Theta_y \\ \Delta p/p \end{pmatrix} = \begin{pmatrix} \nu_x & L_x & 0 & 0 & D_x \\ \nu'_x & L'_x & 0 & 0 & D'_x \\ 0 & 0 & \nu_y & L_y & 0 \\ 0 & 0 & \nu'_y & L'_y & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^* \\ \Theta_x^* \\ y^* \\ \Theta_y^* \\ \Delta p/p \end{pmatrix}$$

Inelastic cross-section measurement

- Based on event numbers and luminosity, $\sigma = \frac{1}{C}N$
- Inelastic events: diffractive excitation of the proton

- Rapidity-range fixes minimal diffractive mass
- ALICE $M_{
 m diff} \ge 7$ GeV, CMS $M_{
 m diff} \ge 26$ GeV, $M_{
 m diff} \ge 16$ GeV
- TOTEM telescopes: M_{diff} ≥ 3.4 GeV

Inelastic results

- T2 trigger, from "all" inelastic events
- Ref.: Europhys. Lett. 101, 21003 (2013)
- Corrections:
 - T2 trigger efficiency (2.6%)
 - Beam-gas collisions (0.6%)
 - Time-overlapping events (1.5%)
 - Reconstruction efficiency (1.0%)
 - Events only in T1 (1.6%)
 - Low diffractive mass events (4.6%)
- Model-independent result:

 $(73.74 \pm 0.09_{stat} \pm 1.74_{N} \pm 2.95_{lumi} \pm) \text{ mb (total 3.43 mb)}$

- $\bullet\,$ Maximal high rapidity contribution: 2.62 \pm 2.17 mb
- Based on total & elastic:

 $(73.15 \pm 0.77_t \pm 0.29_{\sf norm} \pm 0.96_{\sf lumi} \pm 0.10_{
ho})$ mb (total 1.26 mb)

Coulomb-nuclear interference

Máté Csanád, Eötvös University Budapest

pA 2013, Trento

Pseudorapidity distribution results

- Event selection: at least one charged particle with $p_t > 40 \text{ MeV}/c$
- More than 99% of non-diffractive processes
- Diffractive as well, if $M_{\rm diff} > 3.4~{\rm GeV}/c^2$

• $dN_{ch}/d\eta$ decreases with $|\eta|$: $|\eta| = 5.375$: $3.84 \pm 0.01_{stat} \pm 0.37_{syst}$ $|\eta| = 6.375$: $2.38 \pm 0.01_{stat} \pm 0.21_{syst}$

- Ref.: Europhys. Lett. 98, 31002 (2012)
- Gap to LHCb \Rightarrow ongoing T1 analysis,
- Runs with displaced vertex (500k events @ 11m)

