Centrality and p_t dependence of J/ψ suppression in pA from induced gluon radiation

François Arleo¹, <u>Rodion Kolevatov²</u>, Stephane Peigné², Maryam Rustamova²

¹LAPTh Annecy & LLR Palaiseau

²SUBATECH, Nantes

Workshop on *pA* collisions at the LHC 6-10 May 2013, Trento, Italy

 J/ψ suppression data in p A collisions E-loss parametrization of J/ψ suppression

Outline

Motivations

- J/ψ suppression data in p A collisions
- Energy loss parametrization of suppression data
- Revisiting energy loss
 - New scaling properties from medium-induced coherent radiation
- Phenomenology
 - Model for J/ψ and Υ suppression in p A collisions
 - Comparison with data and LHC predictions

References

- F. Arleo, S. Peigné, PRL 109 (2012) 122301 [1204.4609] & JHEP 1303 (2013) 122 [1212.0434]
- F. Arleo, RK, S. Peigné, M. Rustamova, arXiv:1304.0901

Motivations Scaling properties of parton energy loss Phenomenology

J/ψ suppression in p A collisions at forward rapidities

- J/ψ suppression due to dissociation in QGP suggested as a probe of temperature in AA [Matsui, Satz '86]
- A strong suppression is seen already in pA at large x_F at various \sqrt{s}

J/ψ suppression in p A collisions

Many mechanisms suggested as a source of the suppression...

- Nuclear absorption
 - requires unrealistically large cross section
- nPDF effects and saturation
 - constrained by Drell-Yan
- Intrinsic charm
 - assuming a large amount of charm in the proton
- Parton energy loss
 - $\bullet\,$ requires $\Delta E\propto E,$ ruled out for incoherent IS and FS radiation

... their relative importance is still debated

J/ψ suppression in p A collisions

Many mechanisms suggested as a source of the suppression...

- Nuclear absorption
 - requires unrealistically large cross section
- nPDF effects and saturation
 - constrained by Drell-Yan
- Intrinsic charm
 - assuming a large amount of charm in the proton
- Parton energy loss
 - $\bullet\,$ requires $\Delta E\propto E,$ ruled out for incoherent IS and FS radiation

... their relative importance is still debated

This talk: the J/ψ suppression from *coherent* parton energy loss

 J/ψ suppression data in p A collisions E-loss parametrization of J/ψ suppression

Gavin-Milana model

Simple model assuming (mean) energy loss via the induced initial and final state radiation

 $\Delta E \propto E \ L \ M^{-2}$

allows for description of both Drell-Yan and J/ψ suppression at high x_F [Gavin Milana 1992]

 J/ψ suppression data in p A collisions E-loss parametrization of J/ψ suppression

Gavin-Milana model

Simple model assuming (mean) energy loss via the induced initial and final state radiation

$\Delta E \propto E \ L \ M^{-2}$

allows for description of both Drell-Yan and J/ψ suppression at high x_F [Gavin Milana 1992]

Caveats

- Based on ad hoc assumption $\Delta E \propto E$ for the scaling properties of IS and FS induced radiation
- Failure to describe Υ suppression
- $\Delta E \propto E$ claimed to be incorrect in the high energy limit due to uncertainty principle

◆□ > ◆□ > ◆豆 > ◆豆 >

э

A bound on energy loss

Purely initial/final state induced radiation comes from short formation times while large formation times cancel out [Brodsky Hoyer 93]

$$t_f \sim rac{\omega}{k_\perp^2} \lesssim L \quad \Rightarrow \quad \Delta E \sim \omega \lesssim k_\perp^2 \ L \sim \hat{q} \ L^2$$

- Bound independent of the parton energy
- Energy loss cannot be arbitrarily large in a finite medium
- Gavin-Milana model is apparently ruled out

A bound on energy loss

Purely initial/final state induced radiation comes from short formation times while large formation times cancel out [Brodsky Hoyer 93]

$$t_f \sim rac{\omega}{k_\perp^2} \lesssim L \quad \Rightarrow \quad \Delta E \sim \omega \lesssim k_\perp^2 \ L \sim \hat{q} \ L^2$$

- Bound independent of the parton energy
- Energy loss cannot be arbitrarily large in a finite medium
- Gavin-Milana model is apparently ruled out

The bound applies to:

- Hadron production in nuclear DIS and Drell-Yan in p A collisions
- Jets and hadrons produced in hadronic collisions at large angle

イロト イポト イヨト イヨト

A bound on energy loss

Purely initial/final state induced radiation comes from short formation times while large formation times cancel out [Brodsky Hoyer 93]

$$t_f \sim rac{\omega}{k_\perp^2} \lesssim L \quad \Rightarrow \quad \Delta E \sim \omega \lesssim k_\perp^2 \ L \sim \hat{q} \ L^2$$

- Bound independent of the parton energy
- Energy loss cannot be arbitrarily large in a finite medium
- Gavin–Milana model is apparently ruled out

However

 In certain situations induced radiation has different scaling properties [Arleo Peigné Sami 10]

イロト イポト イヨト イヨト

Energy loss from initial and final state radiation Coherent radiation with large formation times

Revisiting energy loss scaling properties

Induced gluon radiation dominated by large formation times

$$\max(L, t_{hard}) \ll t_{f} \sim \frac{\omega}{k_{\perp}^{2}} \ll t_{octet} \sim \frac{E}{M} \tau_{\psi} \sim \frac{E}{Mk_{\perp}} \Rightarrow \Delta E \propto \frac{\sqrt{\hat{q}L}}{M} E$$

- Requires small angle scattering of energetic color charge in the medium rest frame
- Comes from interference between gluon emissions in the initial and final state

Energy loss from initial and final state radiation Coherent radiation with large formation times

Revisiting energy loss scaling properties

Induced gluon radiation dominated by large formation times

$$\max(L, t_{hard}) \ll t_{f} \sim \frac{\omega}{k_{\perp}^{2}} \ll t_{octet} \sim \frac{E}{M} \tau_{\psi} \sim \frac{E}{Mk_{\perp}} \Rightarrow \Delta E \propto \frac{\sqrt{\hat{q}L}}{M} E$$

Applies to:

- Production of light and open heavy-flavour hadrons at forward rapidities in the medium rest frame (nuclear matter or QGP)
- Production of heavy-quarkonium if color neutralisation occurs on long time-scales $t_{\rm octet} \gg t_{\rm hard}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Energy loss from initial and final state radiation Coherent radiation with large formation times

Medium-induced gluon spectrum

Gluon spectrum $dI/d\omega \sim$ Bethe-Heitler spectrum of massive (color) charge

$$\omega \frac{dI}{d\omega}\Big|_{\text{ind}} = \frac{N_c \alpha_s}{\pi} \left\{ \ln \left(1 + \frac{E^2 \Delta q_{\perp}^2}{\omega^2 M_{\perp}^2} \right) - \ln \left(1 + \frac{E^2 \Lambda_{\text{QCD}}^2}{\omega^2 M_{\perp}^2} \right) \right\}$$
$$\Delta E = \int d\omega \, \omega \, \frac{dI}{d\omega}\Big|_{\text{ind}} = N_c \alpha_s \frac{\sqrt{\Delta q_{\perp}^2} - \Lambda_{\text{QCD}}}{M_{\perp}} E$$

- $\Delta E \propto E$ neither initial nor final state effect nor 'parton' energy loss: arises from coherent radiation
- Physical origin: broad t_f interval : L, $t_{hard} \ll t_f \ll t_{octet}$ for medium-induced radiation

• □ ▶ • • □ ▶ • • □ ▶ • •

Model for J/ψ suppression Comparison to data and predictions

Model for heavy-quarkonium suppression

Arleo Peigné 1212.0434

$$\frac{1}{A}\frac{d\sigma_{\mathrm{pA}}^{\psi}}{dE}\left(E,\sqrt{s}\right) = \int_{0}^{\varepsilon_{\mathrm{max}}} d\varepsilon \,\mathcal{P}(\varepsilon, E|\Delta q_{\perp}^{2}) \,\frac{d\sigma_{\mathrm{pp}}^{\psi}}{dE}\left(E+\varepsilon,\sqrt{s}\right)$$

• pp cross section fitted from experimental data

$$E \frac{d\sigma_{\rm pp}^{\psi}}{dE} = \frac{d\sigma_{pp}^{\psi}}{dy} \propto (1 - \frac{2M_{\perp}}{\sqrt{s}} \cosh y)^{n(\sqrt{s})}$$

• $\mathcal{P}(\epsilon)$: quenching weight, scaling function of $\hat{\omega} = \sqrt{\hat{q}L}/M_{\perp} \times E$

• Effective length $L_{\rm eff}$ is given by Glauber model, $L_{pp}=1.5$ fm

$$\hat{q}(L_{eff} - L_{pp}) = \left(\langle N_A^{\text{part}} \rangle_{\psi} - 1 \right) \frac{\sigma_{\text{broad}}}{\sigma_{\text{inel}}} \mu_{\perp}^2 = \hat{q} \frac{\langle N_A^{\text{part}} \rangle_{\psi} - 1}{\sigma_{\text{inel}} \rho_0}$$
Rodion Kolevatov
Centrality and pt dependence of J/ψ suppression

Model for J/ψ suppression Comparison to data and predictions

Transport coefficient

• \hat{q} related to gluon distribution in a target nucleon [BDMPS 1997]

$$\hat{q}(x) = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \rho x G(x, \hat{q}L)$$

• Typical value for x depends on $t_{\rm hard} \sim \frac{1}{M} \frac{E}{M} \sim 1/(m_{p}x_{2})$:

•
$$t_{\text{hard}} \lesssim L \Rightarrow x = x_0 \simeq (m_N L)^{-1};$$

•
$$t_{hard} > L \Rightarrow x \simeq x_2;$$

Using $xG(x) \sim x^{-0.3}$ for $x \ll 1$,

$$\hat{q}(x) = \hat{q}_0 \left(\frac{10^{-2}}{x}\right)^{0.3}$$
 $x = \min(x_0, x_2)$

\hat{q}_0 only free parameter of the model

Model for J/ψ suppression Comparison to data and predictions

Procedure

- Fit \hat{q}_0 from J/ψ E866 data in p W collisions: $\hat{q}_0 = 0.075 \text{ GeV}^2/\text{fm}$
- 2 Predict J/ψ and Υ suppression for all nuclei and c.m. energies

< ∃ > < ∃ >

Model for J/ψ suppression Comparison to data and predictions

Procedure

- Fit \hat{q}_0 from J/ψ E866 data in p W collisions: $\hat{q}_0 = 0.075 \text{ GeV}^2/\text{fm}$
- 2 Predict J/ψ and Υ suppression for all nuclei and c.m. energies

 Fe/Be ratio well described, supporting the L dependence of the model

Extrapolating to other energies

Two competing mechanisms might alter heavy-quarkonium suppression

• Nuclear absorption if hadron formation occurs inside the medium

$t_{ m form} = \gamma \,\, au_{ m form} \lesssim L$

• Low \sqrt{s} and/or negative $x_{
m F}$, indicated later assuming $au_{
m form}=$ 0.3 fm

Extrapolating to other energies

Two competing mechanisms might alter heavy-quarkonium suppression

• Nuclear absorption if hadron formation occurs inside the medium

 $t_{
m form} = \gamma \,\, au_{
m form} \lesssim L$

• Low \sqrt{s} and/or negative $x_{_{\rm F}}$, indicated later assuming $au_{
m form}=0.3~{
m fm}$ • nPDF/saturation effects when $Q_s^2\sim m_c^2$

$$R_{_{\mathbf{p}}\mathbf{A}}=R_{_{\mathbf{p}}\mathbf{A}}^{\mathsf{E}.\mathsf{loss}}(\hat{q}) imes\ \mathcal{S}_{\mathrm{A}}^{\mathrm{sat}}(\mathcal{Q}_{s})/\mathcal{S}_{\mathrm{p}}^{\mathrm{sat}}(\mathcal{Q}_{s})$$

 $\mathcal{S}^{\mathrm{sat}}_{\mathrm{A}}(\mathit{Q}_{s})$ taken from CGC calculations [Fujii Gelis Venugopalan 2006]

- No additional parameter: $Q_s^2(x,L)=\hat{q}(x)L$ [Mueller 1999]
- $Q_s^2(x = 10^{-2}) = 0.11 0.14 \text{ GeV}^2$ consistent with fits to DIS data [Albacete et al AAMQS 2011]

Model for J/ψ suppression Comparison to data and predictions

RHIC predictions

- Good agreement at all rapidity
- Saturation effects improve the agreement, but taken alone reproduce neither shape nor the magnitude of the suppression

Model for J/ψ suppression Comparison to data and predictions

p_{\perp} dependence

Most general case. The p_t broadening: $|\Delta \vec{p}_{\perp}| = \hat{q} L_{\text{eff}}$

$$\frac{1}{A}\frac{d\sigma_{\rm pA}^{\psi}}{dE \ d^{2}\vec{p}_{\perp}} = \int_{\varepsilon}\int_{\varphi}\mathcal{P}(\varepsilon,E)\frac{d\sigma_{\rm pp}^{\psi}}{dE \ d^{2}\vec{p}_{\perp}}\left(E+\varepsilon,\vec{p}_{\perp}-\Delta\vec{p}_{\perp}\right)$$

• Parametrization consistent with
$$pp$$
 experimental data

$$\frac{d\sigma_{\rm pp}^{\psi}}{dy \ d^2 \vec{p}_{\perp}} \propto \left(\frac{p_0^2}{p_0^2 + p_{\perp}^2}\right)^m \times \left(1 - \frac{2M_{\perp}}{\sqrt{s}} \cosh y\right)^n \equiv \mathcal{N} \times \mu(p_{\perp}) \times \nu(y, p_{\perp})$$

• For $\mathcal{P}(\varepsilon, E)$ peaked at small ε

 $R^{\psi}_{\mathrm{pA}}(y,p_{\perp})\simeq R^{\mathrm{loss}}_{\mathrm{pA}}(y,p_{\perp})\cdot R^{\mathrm{broad}}_{\mathrm{pA}}(p_{\perp})$

イロト イポト イヨト イヨト

Model for J/ψ suppression Comparison to data and predictions

p_{\perp} dependence

Most general case. The p_t broadening: $|\Delta \vec{p}_{\perp}| = \hat{q} L_{\text{eff}}$

$$\frac{1}{A} \frac{d\sigma_{\rm pA}^{\psi}}{dE \ d^2 \vec{p}_{\perp}} = \int_{\varepsilon} \int_{\varphi} \mathcal{P}(\varepsilon, E) \frac{d\sigma_{\rm pp}^{\psi}}{dE \ d^2 \vec{p}_{\perp}} \left(E + \varepsilon, \vec{p}_{\perp} - \Delta \vec{p}_{\perp} \right)$$

$$R^{\psi}_{\mathrm{pA}}(y, p_{\perp}) \simeq R^{\mathrm{loss}}_{\mathrm{pA}}(y, p_{\perp}) \cdot R^{\mathrm{broad}}_{\mathrm{pA}}(y, p_{\perp})$$

- Overall depletion due to parton energy loss
- Possible Cronin peak due to momentum broadening

$$R_{pA}^{broad}(y, p_{\perp}) \equiv \int_{\varphi} \frac{\mu(|\vec{p}_{\perp} - \Delta \vec{p}_{\perp}|)}{\mu(p_{\perp})} \frac{\nu(\vec{E}, \vec{p}_{\perp} - \Delta \vec{p}_{\perp})}{\nu(\vec{E}, p_{\perp})};$$

$$R_{pA}^{loss}(y, p_{\perp}) \equiv \int_{\varepsilon} \mathcal{P}(\varepsilon, E) \inf_{\varepsilon} \left[\frac{E}{E + \varepsilon} \right] \frac{\nu(E + \varepsilon, p_{\perp})}{\nu(E_{\exists} p_{\perp})} \equiv 0.9$$
Redice Koleverov

Model for J/ψ suppression Comparison to data and predictions

E866 p_t dependence

- Good description of $R_{
 ho A/
 ho B}$ for $p_t \lesssim$ 3 GeV
- Possible reasons for discrepancy at $p_t > 3$ GeV:
 - Model calculations at fixed x_F rather than averaging
 - p_t dependence from fit to E789 pp data at $x_E = 0$.

Model for J/ψ suppression Comparison to data and predictions

Centrality

Centrality dependence is given by $L_{\rm eff}$

• Experimental situation

[PHENIX 08, ALICE 12]

- Centrality selection via multiplicity in target fragmentation region $N_A^{\rm ch}$
- N_A^{ch} is strongly correlated with N_A^{part}
- The model

•
$$L_{\text{eff}} = L_{pp} + \frac{\langle N_A^{\text{part}} \rangle_{\psi} - \sigma_{\text{inel}} \rho_0}{\sigma_{\text{inel}} \rho_0}$$

• Glauber model estimates of $\langle N_A^{\text{part}} \rangle_{\psi}$ with constraints on N_A^{part}

• for dAu – estimate of $\langle N_{\rm coll}^{\rm tagged N} \rangle_{\psi}$ with constraints on the overall $N_A^{\rm part}$

[Arleo, RK, Peigné, Rustamova 1304.0901]

くロト く得ト くヨト くヨト 二日

Model for J/ψ suppression Comparison to data and predictions

RHIC predictions

• Good description of p_{\perp} and centrality dependence at y = -1.7

Model for J/ψ suppression Comparison to data and predictions

RHIC predictions

• Good description of p_{\perp} and centrality dependence at y = 0

Model for J/ψ suppression Comparison to data and predictions

RHIC predictions

• Good description of p_{\perp} and centrality dependence at y = 1.7

Model for J/ψ suppression Comparison to data and predictions

LHC predictions

- Moderate effects (\sim 20%) around mid-rapidity, smaller at y < 0
- Large effects above $y \gtrsim 2-3$
- Slightly smaller suppression expected in the Υ_{d} channel $_{\text{CD}}$, $_{\text{CD}}$

Model for J/ψ suppression Comparison to data and predictions

LHC predictions

- Suppression expected up to $p_\perp\simeq$ 3–4 GeV
- Possible enhancement in most central collisions

イロト イポト イヨト イヨト

э

Model for J/ψ suppression Comparison to data and predictions

LHC predictions

• Weaker suppression in the Υ channel, which however extend to slightly larger p_\perp

Model for J/ψ suppression Comparison to data and predictions

Comparison with LHCb

Model for J/ψ suppression Comparison to data and predictions

Comparison with ALICE

・ 同 ト ・ 三 ト ・

Model for J/ψ suppression Comparison to data and predictions

Comparison with ALICE

From Roberta Arnaldi's talk

-

Model for J/ψ suppression Comparison to data and predictions

Comparison with ALICE

From Roberta Arnaldi's talk

Summary

- ullet Energy loss $\Delta E \propto E$ due to coherent radiation
 - Neither initial nor final state effect
 - Parametric dependence of $dI/d\omega$ and ΔE predicted
- ullet Heavy-quarkonium suppression predicted for wide range of \sqrt{s}
 - Good agreement with all existing data vs. $x_{\scriptscriptstyle \sf F}$ (y) and p_{\perp}
 - Natural explanation for the large $x_{\rm F}~J/\psi$ suppression
 - Model supplemented consistently by saturation effects
 - Supports the assumption of long-lived color octet $Q \bar Q$ pairs
 - Fair agreement with the LHC $p{\sf Pb}$ data on J/ψ

イロト イポト イヨト イヨト

Model for J/ψ suppression Comparison to data and predictions

Backup – Quenching weight

• Poisson approximation assuming independent emission can be used for radiation with $t_f \lesssim L$ [BDMS 2001]

$$\mathcal{P}(\epsilon) \propto \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_{i} \frac{dl(\omega_{i})}{d\omega} \right] \delta\left(\epsilon - \sum_{i=1}^{n} \omega_{i}\right)$$

• $\Delta E \propto E$ comes from radiation with $t_f(\omega_i) \sim \omega_i / \Delta q_\perp^2 \gg L$

For $t_f(\omega_i) \sim t_f(\omega_j) \gg L \Rightarrow$ emissions i and j are not independent

• For self-consistency, constrain $\omega_1 \ll \omega_2 \ll \ldots \ll \omega_n$

$$P(\epsilon) \simeq \frac{dI(\epsilon)}{d\omega} \exp\left\{-\int_{\epsilon}^{\infty} d\omega \frac{dI}{d\omega}\right\}$$

Model for J/ψ suppression Comparison to data and predictions

Backup – $L_{\rm eff}$ vs centrality

Glauber, RHIC					Glauber, LHC				
class	$N_p^{\min}; N_p^{\max}$	$\frac{P(\text{class})}{P(N \ge 1)}$	$\langle N_c \rangle$	$L_{\rm Au}$	class	$N_p^{\min}; N_p^{\max}$	$\frac{P(\text{class})}{P(N \ge 1)}$	$\langle N_c \rangle$	$L_{\rm Pb}$
Α	11; 197	0.28	15.9	12.87	1	12; 208	0.246	14.8	13.46
В	8; 12	0.24	10.9	9.62	2	9; 12	0.215	10.5	9.55
С	5; 8	0.23	7.0	7.17	3	5; 8	0.215	6.5	6.29
D	2;4	0.29	3.6	3.84	4	1; 5	0.428	2.4	3.39

Rodion Kolevatov Centrality and p_t dependence of J/ψ suppression

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Model for J/ψ suppression Comparison to data and predictions

Backup – SPS

• Natural explanation from the different suppression in p A vs π A

Model for J/ψ suppression Comparison to data and predictions

Backup – HERA-B

- Also good agreement in the nuclear fragmentation region ($x_{
 m F} < 0$)
- Enhancement predicted at very negative x_F