Probing the Color Glass Condensate: from single inclusive baseline to dihadron correlations Workshop on proton-nucleus collisions at the LHC Trento 2013

> Heikki Mäntysaari In collaboration with T. Lappi

> > University of Jyväskylä Department of Physics

> > > 6.5.2013

Content

Introduction

- 2 DIS as a baseline
- 3 Single inclusive hadron production
- 4 From proton to nucleus
- 5 Dihadron production

Introduction

- Study QCD at high energies
- Evolution in x (energy): BK equation
- Saturation phenomena described by CGC
- Saturation scale $Q_s =$ characteristic momentum scale

pA is interesting as $Q_s^2 \sim A^{1/3}$.

CGC offers a consistent framework to describe small-x data.

- Non-perturbative input: dipole amplitude at $x = x_0$
- rcBK equation gives energy (Bjorken x) evolution

Compute

- DIS
- Single inclusive hadron production in pp and pA
- Dihadron correlations, ...

In this talk: Fit MV model only to HERA data and go consistently to pA! (work in progress)

MV model (no anomalous dimension) because it can be generalized to nuclei unambiguously.

Fitting

Solve rcBK with MV model initial condition (MV: $\gamma \equiv 1$)

$$N_{
ho}(r, y = 0) = 1 - \exp\left[rac{-(r^2 Q_{sp}^2)^{\gamma}}{4} \ln\left(rac{1}{r \Lambda_{
m QCD}} + e
ight)
ight],$$

 $lpha_s(r^2) = rac{12\pi}{(33 - 2N_f) \lnrac{4C^2}{r^2 \Lambda_{
m QCD}^2}}.$

Compute $\sigma_r(\sigma_T, \sigma_L)$ [or F_2]; assume factorizable impact parameter profile for proton.

$$\sigma_{T,L}^{\gamma^* p} = \sigma_0 \int \mathrm{d}z |\Psi_{\gamma^* \to q\bar{q}}^{T,L}|^2 N(r,y)$$

Fitting

Solve rcBK with MV model initial condition (MV: $\gamma \equiv 1$)

$$N_{\rho}(r, y = 0) = 1 - \exp\left[\frac{-(r^2 Q_{s\rho}^2)^{\gamma}}{4} \ln\left(\frac{1}{r\Lambda_{QCD}} + e\right)\right],$$
$$\alpha_s(r^2) = \frac{12\pi}{(33 - 2N_f) \ln\frac{4C^2}{r^2\Lambda_{QCD}^2}}.$$

Compute $\sigma_r(\sigma_T, \sigma_L)$ [or F_2]; assume factorizable impact parameter profile for proton.

$$\sigma_{T,L}^{\gamma^*p} = \sigma_0 \int \mathrm{d}z |\Psi_{\gamma^* \to q\bar{q}}^{T,L}|^2 N(r,y)$$

Fit: ($\chi^2/d.o.fpprox$ 3, not as good as AAMQS with $\gamma>$ 1)

- Initial saturation scale $Q_{sp}^2=0.12\,{
 m GeV}^2$
- Λ_{QCD} : $C^2 = 6$

• Proton DIS area $\sigma_0/2=16\,{
m mb}$ (factor 2 from optical theorem)

Fit result

Fitted to $Q^2 < 50 \, {
m GeV}^2$, HERA data: arXiv:0911.0884, AAMQS fit: 1012.4408

Heikki Mäntysaari (JYFL)

Probing the CGC

6.5.2013 5 / 27

Value of Λ_{QCD}

$$\alpha_s(r^2) = \frac{12\pi}{(33 - 2N_f) \ln \frac{4C^2}{r^2 \Lambda_{\rm QCD}^2}}$$

Fit result: $C^2 \sim 6$. Analytically (Kovchegov, Weigert, 2007): $4C^2 = 4e^{-2\gamma_E}$ \Rightarrow Effectively $\Lambda_{\text{QCD}} \sim 50 \text{ MeV}$?? (NLO effects \rightarrow slower evolution?)

Dipole amplitude from JIMWLK Solid: momentum space α_s Dashed: $4C^2 = 4e^{-2\gamma_E}$

T. Lappi, H. M. Eur. Phys. J. C73 (2013) 2307

Single inclusive hadron production from CGC

Go to pp. The "correct" k_T factorization:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}^2 \rho_T \mathrm{d}y} = \frac{2\alpha_s}{C_{\mathrm{F}} \rho_T^2} \int \mathrm{d}^2 q_T \frac{\varphi_{\mathrm{XI}}(q_T)}{q_T^2} \frac{\varphi_{\mathrm{XI}}(k_T - q_T)}{(k_T - q_T)^2}$$

 φ_{x_1,x_2} : dipole (not WW) UGD of hadron 1/2. Obtainable from dipole amplitude N.

Blaizot, Lappi, Mehtar-Tani, arXiv:1005.0955

Single inclusive hadron production from CGC

$$\frac{\mathrm{d}\sigma}{\mathrm{d}^2 p_T \mathrm{d}y} = \frac{2\alpha_s}{C_{\mathrm{F}} p_T^2} \int \mathrm{d}^2 q_T \frac{\varphi_{\mathsf{x}_1}(q_T)}{q_T^2} \frac{\varphi_{\mathsf{x}_2}(p_T - q_T)}{(p_T - q_T)^2}$$

Assuming that $p_T \gg Q_s$ we get the hybrid formalism (Note: $\varphi \sim \sigma_0/2 = \text{proton DIS area}$).

$$\frac{\mathrm{d}N}{\mathrm{d}y\mathrm{d}^2p_T} = \frac{\sigma_0/2}{\sigma_{\mathrm{inel}}} \frac{1}{(2\pi)^2} xg(x, Q^2)\tilde{S}(p_T),$$

where

$$xg(x,Q^2) = rac{C_{\mathrm{F}}\sigma_0/2}{2\pi^2 \alpha_s} \int^{Q^2} rac{\mathrm{d}^2 q_T}{(2\pi)^2} q_T^2 \tilde{S}(q_T),$$

(or e.g. CTEQ) and \tilde{S} is Fourier transfer of 1 - N(r) (adj. rep.).

Note: At RHIC (LHC) $(\sigma_0/2)/\sigma_{\text{inel}} \sim 0.4 (0.3)$

k_T factorization vs hybrid formalism

At midrapidity k_T factorization (dashed lines) $\sim 2 \times$ hybrid (with xg from UGD, solid lines). Smaller difference at forward rapidities. Same p_T slope.

Questions

Use information only from ep DIS and compute pp and pA observables.

- What K factor is needed? (and is one enough?)
- What is the *p*_T slope?

Now correct normalization, so K factor tells how much the LO result differs from data!

Single inclusive pp data and K factors

All models give same p_T slope but different normalization p_T slope does not work very well at large p_T

Data: arXiv:1205.5724

Single inclusive pp data and K factors

AAMQS would work much better, but anomalous dimension makes it difficult to generalize to nuclei.

Single inclusive pp data and K factors

MV-fit: RHIC data roughly works with a single K factor (LHC K = 1.3) (PHENIX data would prefer larger, STAR smaller)

STAR: nucl-ex/0602011, BRAHMS: nucl-ex/0403005 PHENIX: B. Meredith (PhD Thesis)

Heikki Mäntysaari (JYFL)

Question

What is the saturation scale of the nucleus?

Start from the dipole-proton cross section (small r up to logarithms)

$$\sigma_{\rm dip}^{p} = \sigma_0 N \sim \sigma_0 r^2 Q_{sp}^2 / 4.$$

Write the dipole-nucleus cross section (correct dilute limit $\sigma_{dip}^{A} \sim A \sigma_{dip}^{p}$)

$$\frac{\mathrm{d}\sigma_{\mathsf{dip}}^{A}}{\mathrm{d}^{2}b} = 2N_{A}(b) = 2\left(1 - \exp\left[\frac{-AT_{A}(b)}{2}\sigma_{\mathsf{dip}}^{p}\right]\right).$$

Require: $N_A \sim r^2 Q_{s_A}^2/4$

$$Q_{sA}^2(b) = \frac{\sigma_0}{2} A T_A(b) Q_{sp}^2.$$

From proton to nucleus

$$Q_{sA}^2(b) = rac{\sigma_0}{2} A T_A(b) Q_{sp}^2.$$

 $R_{pA}(y=0) \rightarrow 1$ at large p_T independently of $\sqrt{s_{NN}}!$.

Consistent with ALICE pA data (k_T factorization, LO-DSS fragfun)

ALICE p + Pb spectrum, k_T factorization

K factor fitted to pp data. Again slope does not work at large p_T . k_T factorization and hybrid formalism give same result (with different K).

Rapidity dependence of R_{pA}

Centrality dependence increases at forward rapidities

Hybrid formalism, LO-CTEQ PDF, LO DSS FF.

Heikki Mäntysaari (JYFL)

Rapidity dependence of R_{pA}

Centrality dependence increases at forward rapidities

Hybrid formalism, LO-CTEQ PDF, LO DSS FF.

Heikki Mäntysaari (JYFL)

CGC vs EPS09s

CGC predicts faster centrality and especially rapidity evolution than EPS09s (NLO pQCD by I. Helenius, see Ilkka's talk on Wednesday)

$$p + Pb / p + p \rightarrow \pi^0 + X$$
, $\sqrt{s} = 5020 \,\text{GeV}$, $0 - 20\%$

Hybrid formalism, LO-CTEQ PDF, LO DSS FF.

Heikki Mäntysaari (JYFL)

Central

CGC vs EPS09s

CGC predicts faster centrality and especially rapidity evolution than EPS09s (NLO pQCD by I. Helenius, see Ilkka's talk on Wednesday)

 $p+Pb\,/\,p+p \rightarrow \pi^0+X,\,\sqrt{s}=5020\,{\rm GeV},\,40-60\%$

Hybrid formalism, LO-CTEQ PDF, LO DSS FF.

Heikki Mäntysaari (JYFL)

- Centrality dependence is larger at forward rapidities
- No Cronin peak at midrapidity (LHC)
- Large suppression at more forward rapidities
- Much faster rapidity evolution than in EPS09s
- Larger dependence on centrality than in EPS09s

Dihadron correlations

RHIC, two particle collision vs. $\Delta \phi$: away side peak goes away p+p peripheral d+Au central d+Au

22 / 27

CGC description: quark emits a gluon and scatters off the target. Momentum transfer $\sim Q_s \Rightarrow$ explains disappearance of the away side peak

Dihadrons at RHIC

In nucleus saturation scale is significantly larger \Rightarrow Back-to-back structure is washed out.

T. Lappi, H.M. Nucl.Phys. A908 (2013) 51-72

Note: here MV model with initial condition $Q_{sA}^2 \approx N_{bin}^{pA} Q_{sp}^2$

Heikki Mäntysaari (JYFL)

Dihadrons at RHIC

Relatively good description of the PHENIX data (STAR data also works)

Where is the back-to-back suppression at the LHC? Forward-forward correlations would be very interesting...

ALICE, Phys.Lett. B719 (2013) 29-41

- Using only ep DIS as an input we compute single particle production in pp and pA.
- Good description of RHIC single inclusive spectrum and LHC $R_{pA}(y = 0)$, LHC p_T slope does not work well.
- LHC spectra seem to favor anomalous dimension.
- Centrality and rapidity dependent predictions for R_{pA} , faster evolution than predicted by NLO pQCD calculations (EPS09s).
- Dihadron correlations at RHIC are well understood, LHC data will be interesting.

BACKUPS

R_{pA} , model dependence

Heikki Mäntysaari (JYFL)

6.5.2013 29 / 27

Quadrupole operator

$Q = N_{\rm c}^{-1} \langle \operatorname{Tr} U(b) U^{\dagger}(b') U(x') U^{\dagger}(x) \rangle, \ S = S^{(2)} = N_{\rm c}^{-1} \langle \operatorname{Tr} U(x) U^{\dagger}(x') \rangle$

Motivation for approximations

Dipole amplitude S is easy to obtain from $BK \Rightarrow$ approximation depending only on dipole amplitude is much easier for practical work

Approximating the quadrupole Q

- Naive Large- $N_c Q(b, b', x', x) = \frac{1}{2}[S(x, b)S(x', b') + S(x, x')S(b, b')]$ previous phenomenology: w.o. inelastic contribution S(x, x')S(b, b')
- Gaussian approximation (and large- $N_{
 m c}$ limit)

Gaussian approximation: assume that the correlators of the color charges are Gaussian \Rightarrow depends only on two-point functions

• We use the full Gaussian approximation which includes the inelastic contribution

Comparison with full JIMWLK evolution

• Gaussian approximation is accurate, Naive Large- N_c is not.

Heikki Mäntysaari (JYFL)

CGC calculation by C. Marquet (Nucl.Phys. A796 (2007)), $q \rightarrow qg$ (at the LHC need also $g \rightarrow gg$):

$$\frac{\mathrm{d}\sigma}{\mathrm{d}^2 k_T \mathrm{d}^2 q_T \mathrm{d}y_q \mathrm{d}y_k} \sim xq(x,\mu^2) \int \frac{\mathrm{d}^2 x}{(2\pi)^2} \frac{\mathrm{d}^2 x'}{(2\pi)^2} \frac{\mathrm{d}^2 b}{(2\pi)^2} \frac{\mathrm{d}^2 b'}{(2\pi)^2} e^{ik_T(x'-x)} e^{iq_T(b'-b)} \\ |\phi^{q \to qg}(x-b,x'-b')|^2 \Big\{ S^{(6)} - S^{(3)} - S^{(3)} + S^{(2)} \Big\}$$

Dipole amplitude N is not enough, need correlators of n > 2 Wilson lines

$$\mathcal{S}^{(6)} \sim \langle {
m Tr} \ U(b) U^{\dagger}(b') U(x') U^{\dagger}(x)
angle \, {
m Tr} \ U^{\dagger}(x) U(x')$$

n > 2: BK evolution equation \rightarrow JIMWLK, or here: Gaussian approximation

Double parton scattering

DPS in CGC framework: $S^{(6)}$ contains IR divergent contribution (gluon emitted far away from the quark), DPDF should cancel

$$\sim xf(x) \left[\int^{\Lambda} \mathrm{d}^2 n |\psi(n)|^2\right] \tilde{S}_A(k) \tilde{S}(q),$$

for $\Lambda \ll k, q, \psi$ is the splitting function $q \rightarrow qg$. \tilde{S} : FT of S.

Double parton scattering

How to calculate DPS in CGC?

- Remove IR divergent contribution from $S^{(6)}$
- (a): assume DPDF $f(x_1, x_2) \sim f(x_1)f(x_2)$ with kinematical constraint $x_1 + x_2 < 1$
- (b): (single inclusive)², dominates in forward rapidities

Dihadrons at RHIC

Back-to-back peak disappears when trigger (or associate) particle $p_T \sim Q_s$.

Note: here MV model with initial condition $Q_{sA}^2 \approx N_{bin}^{pA} Q_{sp}^2$

Heikki Mäntysaari (JYFL)

Relatively good description of the experimental data

T. Lappi, H.M. Nucl.Phys. A908 (2013) 51-72