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Outline

! Dihadron production in forward region in pA collisions

! JIMWLK evolution of dipoles, quadrupoles, ... 

! Production at different rapidities
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! The partonic “phase diagram” and saturation

! High energy scattering and Wilson lines 

! The Gaussian approximation



Partonic “phase diagram”
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Saturation momentum

! Saturation when  
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The process

□ Large-x quark from proton splits into quark-gluon pair

!  Interacts with soft components of nucleus 

! Quark-gluon pair “measured” in forward region
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The outgoing state

! Mixed representation: transverse momenta → coordinates

!  Nucleus viewed as large classical color field

! Eikonal interaction → Wilson lines:
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The cross section

! From                                            calculate cross section
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Di-hadron azimuthal correlations
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Lappi, Mantysaari ’12

T. Lappi, H. Mäntysaari / Nuclear Physics A 908 (2013) 51–72 65

Fig. 7. The total quark–gluon parton-level dihadron production yield at forward RHIC kinematics, for trigger transverse
momentum p

trig
T = 2 GeV, and different values of the associate transverse momentum pass

T = 0.5,1,1.5 GeV and y =
3.4. Shown is only the large Nc result. The DPS contribution is included and the result is normalized by the pedestal
yield.

Fig. 8. The π0 azimuthal correlation compared to the PHENIX [11] dAu result for two different p
trig
T bins. The "ϕ-

independent pedestal in the plot is adjusted to fit the experimental data, see Table 1 for the calculated estimates. The
initial saturation scales are Q2

s0 = 1.51 GeV2 (solid line) and Q2
s0 = 0.72 GeV2 (dashed line).

PHENIX has also published data for larger trigger particle momentum 2 < p
trig
T < 5 GeV.

We cannot describe the observed relative increase of the peak height compared to lower values
of the trigger momenta in this kinematics. This phenomenon can be seen in parton-level results
(see Fig. 5), but in PHENIX kinematics we are so close to the kinematical boundary that in our
calculation the deuteron parton distribution function suppresses the peak.

Fig. 10 compares our result for the nuclear modification factor JdAu of the area under the
peak to the PHENIX experimental result [11]. The experimental data are given as a function

T. Lappi, H. Mäntysaari / Nuclear Physics A 908 (2013) 51–72 67

Fig. 10. Integrated yield under the away side peak in central dAu collision divided by the corresponding yield in pp
compared to the forward rapidity part of the PHENIX data [11].

Fig. 11. The π0 azimuthal correlation compared to the preliminary STAR [10] result. The initial saturation scales are
Q2

s0 = 1.51 GeV2 (solid line) and Q2
s0 = 0.72 GeV2 (dashed line).

make the agreement worse.2 Note also that we are assuming collinear factorization of partons
into hadrons, which is very crude at these small transverse momenta. Any kT -smearing from
fragmentation would broaden the away-side peak.

7. Conclusions

We have in this paper performed a calculation of nuclear modifications of forward dihadron
correlations in the CGC framework. We use a running coupling BK evolution for the dipole and
a factorized Gaussian approximation for the higher-point functions of Wilson lines to describe

2 When comparing to the result in Ref. [23] note also that there is a significant numerical error in the calculation of
Ref. [23], which we thank C. Marquet for indicating to us.

! For p1T, p2T > Qs , width in !" ~ Qs / piT

! For p1T, p2T << Qs , IR divergent: 
    subtracted and added as DPS in a collinear treatment



Wilson line correlators

! Dipole                                 , quadrupole
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Ŝ12 =
1

Nc
tr(V †

1 V2) Q̂1234 =
1

Nc
tr(V †

1 V2V
†
3 V4)

! At large-Nc can factorize 

! S not enough for at least two particles measured.
    But S and Q is all we need for any number of particles.

hQ̂ŜiY = hQ̂iY hŜiY

Kovner, Lublinsky ’06 / Dominguez, Marquet, Stasto, Xiao ’12



Color Glass Condensate

! QCD, frozen sources, occupation numbers of order   
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!  All orders in                   and classical field  

1/↵s

↵s ln 1/x Aµ
a ⇠ O(1/g)

First idea : McLerran, Venugopalan ’93



JIMWLK evolution of correlators

! QCD dynamics encoded in JIMWLK Hamiltonian
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! Evolution of expectation value of arbitrary correlator
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! Easy to work out: act on end-point, use Fierz identities.  
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Jalilian-Marian, Iancu, McLerran, Kovner, Leonidov, Weigert ’97-’00



The Dipole
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! Weak scattering: linear in T = 1 - S << 1,  BFKL, easy to solve 

! Strong scattering, assume large Nc: linear in S
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! Local in S, trivially solved if we know Qs(Y)

! Well-known eqn:

Balitsky ’96 / Kovchegov ’99



The Quadrupole
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Jalilian-Marian, Kovchegov ’04 (in factorized form)



Quadrupole in limiting cases

! Weak scattering, expand Wilson lines, 2-gluon exchange
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Q̂1234 ' 1� T̂12 + T̂13 � T̂14 � T̂23 + T̂24 � T̂34

! Evolving like “six BFKL’s”

! Strong scattering, assume large Nc, keep quadratic terms, local
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! Given Qs(Y) and dipole, can solve for quadrupole, but better ...



Look for functional form

! Write logs in terms of log-derivative of dipole

• Leads to functional form: Quadrupole in terms of dipole

• Better than log-accuracy

• Extends to running coupling

• An, a priori, unexpected result

! Ordinary 1st order inhomogeneous differential equation 

15



Solution to the quadrupole

hQ̂1234iY =
q

hŜ12iY hŜ32iY hŜ34iY hŜ14iY

2

4 hQ̂1234iY0q
hŜ12iY0hŜ32iY0hŜ34iY0hŜ14iY0

+
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dy
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@

@y

hŜ12iyhŜ34iy + hŜ14iyhŜ32iy
hŜ13iyhŜ24iy

3

5

! Expanding solution for small T: correct result.
    Linear Hamiltonian, Q linear in T for small T

! Valid in two limits, not exact at transition but cannot be bad 

! Can integrate over y for simple configurations
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! Local in Y under reasonable assumptions
Iancu, DNT ’11



The Gaussian approximation

At saturation, dropping real terms, cutoff z-integration 

Hsat ' � 1
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Modify the “Sudakov” kernel to extend at low density 
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The solution is a Gaussian wavefunction
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! Same approximation at the level of the Hamiltonian:
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MFA Nc = 3
MFA large-Nc

Factorized Nc = 3
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Iancu, DNT ’11
with data from Dumitru, Jalilian-Marian, Lappi, Schenke, Venugopalan ’11
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Gaussian average quadrupole equation for given configuration 

Solve for S, compare to BK

Various running coupling scenarios

(Verified Levin-Tuchin law at saturation and extracted Qs)
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2g production with Y1 >> Y2

Without extra gluon: Scattering of gluonic quadrupole

Fig1: Easy to systematize : “real” JIMWLK evolution of G1

Fig2: Complicated: “real”evolution of source of G1

Virtual terms: without source evolution, G1 evolution IR-divergent
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Two particle production with Y1 >> Y2

! Need to describe wavefunction squared of projectile:
    two types of Wilson lines

! Physical quark is math. dipole: S12(xx̄) =
1
Nc

tr
�
V̄
x̄

V †
x

�

! Generating functional. Evolve, produce gluon, set V̄ = V

Kovner, Lublinsky ’06

Hp = 1
4⇡3
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! Solution?
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Langevin form of JIMWLK

Nucleus R-mover, first approximation ~ #(x-)

Blaizot, Iancu, Weigert ’02

Wilson lines built stochastically adding layers in x-
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K is WW kernel, $ random color charge, U leads to cascade 
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=
p
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R
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U ba
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Gaussian noise

Iancu, DNT ’11

Lappi, Mantysaari ’12
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!

"
# #$

Symmetric longitudinal expansion
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Langevin form of WFS

Single noise, same as before

¯V †
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(n"+ ") = exp(i"↵̄a
Lxt

a
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As before for V. In complex conjugate amplitude:
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How to treat functional derivatives?



Conclusion

! Justify Gaussian approximation at finite Nc:
   An analytical solution to JIMWLK (as function of S)
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! Wilson lines expand symmetricaly in longitudinal direction

! Particle production at same rapidity needs only S and Q at
    large Nc (good enough)

! Particle production at different rapidities is more involved:
    color charge sources of softest gluons also scatter

! Set-up a Langevin approach
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BACKUP SLIDES



Constituents of a hadron

! Proton, or generic hadron, is complicated in rest frame
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! Hadronic and vacuum fluctuations 

! Non-perturbative with same lifetime �tRF ⇠ 1/⇤QCD



Infinite momentum frame and DIS

! IMF: Hadronic fluctuations live longer 
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!  Longer than vacuum fluctuations

�tIMF ⇠ �/⇤QCD

!  Longer than collision time, e.g. in DIS �t

coll

⇠ 2xP/Q2

e − e −

P
q,x q

!   Quark with                                                  seen by photon�t

fluct

⇠ 2xP/k2? & �t

coll



Soft and collinear gluons

! 
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!  Emission of soft and collinear gluons is favored

!  Large logs can overcome smallness of coupling

!  Source lives longer than emitted parton: frozen

dP = CR
↵s(k2?)

⇡

2

d2k?
k

2
?

dx

x

x

(1−x) ,

,=kz z

z

k

−kzpppp

p

p

!  Gluons dominate at small-x



Cascades and evolution

! Successive emissions: DGLAP or BFKL cascade  
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!  Resum all diagrams 
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!  Evolution equation
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⇠ ↵sCF
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1
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exp(!↵̄sY )

d

dY
fg = !↵̄sfg



Kinematic regimes

! BFKL and DGLAP: linear, incoherent emissions 

31

!  DGLAP: smaller and smaller partons of size 1/Q2

!  BFKL: typically same size partons

!  Partons will “overlap”, coherent, non-linear evolution

Q
S
-1

� �



Single particle production

□ Large-x quark from proton: eikonal trajectory

!  Interacts with soft components of nucleus 

! Quark “measured” in forward region
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Wilson lines

! Mixed representation: transverse momenta → coordinates

!  Nucleus viewed as large classical color field

! Eikonal interaction → Wilson lines:
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The cross section

! Multiply by c.c. and F.T. to calculate cross section
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! QCD dynamics in h. . . iY =

Z
DA+WY [A+] . . .

!                                              in forward region,  

d�qA!qX

dyd2p
= x1fq(x1,p

2)

Z

r
e�ir·p 1

Nc

D
tr[V (x)V †(y)] + . . .

E

Y

! Summing over final color, average initial: 1/Nc tr ...

e�Y = x2 =
|p|e�y

p
s

⌧ 1 x1 =
|p|eyp

s



Comparing with data
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JIMWLK evolution

! Evolution for functional of color sources
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@WY [⇢]

@Y
= HJIMWLKWY [⇢]

! Average over color sources

! Solve classical Yang-Mills equations to get the field 

hO[A]iY =
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D⇢WY [⇢]O[A(⇢)]

D

ab
⌫ F

⌫µ
b = �

µ+
⇢

a(x�
,x?)



vs numerical solution
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! Wilson lines expand symmetricaly in longitudinal direction

Ŝ6x1x2x3x4 =
N2

c

N2
c � 1

Q̂1234Ŝ43 �
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N2
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Ŝ12

hQ̂ŜiY =
(Nc + 2)(Nc � 1)

2Nc
hŜi
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3Nc+1
Nc+1
Y

! 6-point function
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! Line configuration: 



Other special configurations
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! Wilson lines expand symmetricaly in longitudinal direction

hQ̂1234iY = hŜ12iY hŜ34iY

! Factorization violations at finite Nc (at saturation)
D
Ŝ13Ŝ32 �

1

N2
c

Ŝ12

E

Y
=

N2
c � 1

N2
c

"
hŜ13iY hŜ32iY

hŜ12iY

# 1
(N2

c�1)

hŜ13iY hŜ32iY



The right-derivatives

! Functional derivatives act on upper endpoint: L-derivative

�

�↵a
u

V †
x

= ig�
xu

taV †
x

! Adjoint Wilson lines transform to R-derivatives: lower endpoint

(eV †)ac
�

�↵a
u

V †
x

= ig�
xu

V †
x

tc

! Wilson lines expand symmetricaly in longitudinal direction
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V †
n+1(x) = exp[ig✏↵n+1(x)]V

†
n (x) exp[ig✏↵�(n+1)(x)]

! Wilson lines expand symmetricaly in longitudinal direction



An even simpler expression

! Deep at saturation solve for dipole (fixed coupling)

h ˆSijiY ' exp

h
� 1

2!
ln

2
(r2ijQ

2
s)

i

! Possible to integrate over y

hQ̂1234iY =
ln[hŜ12iY hŜ34iY /hŜ13iY hŜ24iY ]
ln[hŜ12iY hŜ34iY /hŜ14iY hŜ23iY ]

hŜ12iY hŜ34iY

+
ln[hŜ14iY hŜ23iY /hŜ13iY hŜ24iY ]
ln[hŜ14iY hŜ23iY /hŜ12iY hŜ34iY ]

hŜ14iY hŜ23iY

! Still correct for small T, symmetric under exchange of 2 and 4
40

Jalilian-Marian, Kovchegov ’04
Dominguez, Marquet, Xiao, Yuan ’11



The Gaussian approximation

! Expression for Q first derived in MV model = special Gaussian

! Virtual terms arise from Gaussian part of H

! All correlators in terms of 2-point function → Gaussian kernel

! Valid at finite Nc

! At saturation drop last two terms of gluon emission

! At weak scattering only 2-point function and products

41
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vs numerical solution
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! Wilson lines expand symmetricaly in longitudinal direction
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“Internal check”
! At large Nc for example: 
   Solve BK and MFA from averaging JIMWLK kernel
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! Wilson lines expand symmetricaly in longitudinal direction
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Scaling
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! Qs(Y) sets the scale: dependence only on rQs(Y) around Qs
��������� ��� �������� HERA
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(Golec-Biernat, Kwieciński, Staśto)
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Gluon distribution and gluon production in AA
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C(Y,p) = p
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! Distribution

! Production: collide two ‘‘color glasses’’



Multiplicities in AA
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! Multiplicities should not be affected by final state


