

Results (and future prospects) of the CMS experiment in photon-induced collisions in *pp* collisions

PhotonLHC2014, CERN

L. Forthomme (CMS collaboration)

CP3, UCLouvain

2-5 June 2014

Motivations

Study of the reactions

$$pp \rightarrow p^{(*)}Xp^{(*)}$$

where many production mechanisms ($\gamma\gamma$, $\gamma\mathbb{P}$, \mathbb{PP} ,...) can produce the central system.

Very rare, but very clean events to study the QED at high energies :

- Large **rapidity gaps** between the central system and the outgoing remnants or scattered protons (forward regions)
- · Few tracks from the considered vertex, very low activity in the central detector

Outline

Exclusive 2-photon production of lepton pairs $\gamma\gamma \rightarrow e^+e^ \gamma\gamma \rightarrow \mu^+\mu^-$

```
2 Search for AQGCs in \gamma\gamma \rightarrow W^+W^-
       Inelastic yield
       Search for \gamma \gamma \rightarrow W^+ W^-
       Limits on anomalous quartic gauge couplings
```


3 Differential DY cross-section in *pp* collisions

4 The CMS-TOTEM Precision Proton Spectrometer

CMS Integrated Luminosity, pp

Outline

Exclusive 2-photon production of lepton pairs $\gamma\gamma \rightarrow e^+e^ \gamma\gamma \rightarrow \mu^+\mu^-$

Exclusive $\gamma \gamma \rightarrow \ell^+ \ell^-$ production

JHEP 11 (2012) 080 ($\gamma\gamma \rightarrow e^+e^-$) & JHEP 11 (2012) 052 ($\gamma\gamma \rightarrow \mu^+\mu^-$)

Search for two-photon production of dileptons (electrons and muons)

Key features

Pure QED process (perfectly described by theory) Dielectron channel :

 $E_T(e^{\pm}) > 5.5 \text{ GeV}, |\eta(e^{\pm})| < 2.1$

Dimuon channel :

 $\begin{array}{l} p_T(\mu^{\pm}) > 4 \; {\rm GeV}, \left| \eta(\mu^{\pm}) \right| < 2.5, \\ m(\mu^+\mu^-) > 11.5 \; {\rm GeV}, \; \Delta\phi(\mu^+\mu^-)/\pi > \; 0.9, \\ \Delta p_T(\mu^+\mu^-) < 1 \; {\rm GeV} \end{array}$

One vertex with two leptons and **no** additional tracks

Signal generated using LPAIR

- **17 observed candidates** for the $\gamma\gamma \rightarrow e^+e^-$ process, SM expectations : 16.3 ± 1.3 (syst.) signal and 0.85 ± 0.28 (syst.) background events
- Production cross-section for the $\gamma\gamma \rightarrow \mu^+\mu^-$ signal with 40 pb⁻¹ at 7 TeV :

 $\sigma^{\text{prod}} = 3.38^{+0.58}_{-0.55} \text{ (stat.)} \pm 0.16 \text{ (syst.)} \pm 0.14 \text{ (lumi.) pb}$

Exclusive 2-photon production of lepton pairs

L. Forthomme (CMS collaboration)

Outline

• Exclusive 2-photon production of lepton pairs $\gamma\gamma \rightarrow e^+e^ \gamma\gamma \rightarrow \mu^+\mu^-$

```
2 Search for AQGCs in \gamma\gamma \rightarrow W^+W^-
Inelastic yield
Search for \gamma\gamma \rightarrow W^+W^-
Limits on anomalous quartic gauge couplings
```

3 Differential DY cross-section in pp collisions

Search for two-photon production of W pairs

JHEP 07 (2013) 116

Motivations

- observe (or set limits on the production rate...)
- search for anomalous behaviours : *Anomalous Quartic Gauge Couplings* (AQGCs)

AQGC model

Effective Lagrangian (dimension-6 operators) : G. Belanger et al., Eur. Phys. J. C13 (2000) 283293

$$\mathcal{L}_{AQGC} \ni \left\{ \begin{array}{l} \mathcal{L}_{6}^{c} = -\frac{e^{2}}{16} \frac{a_{c}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} \left(W^{+\alpha} W^{-}_{\beta} - W^{-\alpha} W^{+}_{\beta} \right) - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{c}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta} \right. \\ \left. \mathcal{L}_{6}^{0} = -\frac{e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W^{-}_{\alpha} - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha} \right.$$

Search for AQGCs in $\gamma \gamma \rightarrow W^+W^-$

Preliminary statement : fraction of inelastic cross-section

JHEP 07 (2013) 116

Problematic

Currently, no kinematic information for the outgoing protons (or remnants)

→ How to quote a prediction for the single- and double-dissociative **inelastic contributions**, given the **pure elastic** scenario ?

Preliminary statement : fraction of inelastic cross-section

JHEP 07 (2013) 116

Problematic

Currently, no kinematic information for the outgoing protons (or remnants)

→ How to quote a prediction for the single- and double-dissociative **inelastic contributions**, given the **pure elastic** scenario ?

Inelastic contributions

Given the high statistics of the **dilepton channel**, inelastic part of the signal can be extracted from data for **any given phase space region** :

A look (back) at $\gamma\gamma \rightarrow \mu^+\mu^-$

JHEP 07 (2013) 116

Key features

- "High-statistics", well-theoretically described channel
- Single lepton selection : $p_T(\mu) > 20 \text{ GeV}, |\eta(\mu)| < 2.4$
- Two kinematic regions
 - Elastic-enhanced : $\Delta p_T < 1$ GeV and $\Delta \phi / \pi > 0.9$
 - Dissociation-enhanced : "anti-elastic"
- Dilepton primary vertex with no additional tracking activity

Region	Data	Data/MC
Elastic Dissociative	$\begin{array}{c} 820 \pm 28.6 \\ 1312 \pm 36.2 \end{array}$	$\begin{array}{c} 0.905 \pm 0.044 \\ 0.717 \pm 0.026 \end{array}$

Elastic, no Z peak

Overall agreement in the elastic region, **deficit** of data observed in the **dissociative** region (mainly at high $p_T(\mu\mu)$ values)

 \rightarrow phenomenology of the rescattering effects not implemented in LPAIR so far...

Inelastic, no Z peak

Search for two-photon production of W pairs and ...

JHEP 07 (2013) 116

Search strategy

Look for events with :

- Two high-energy well-reconstructed leptons associated to one single vertex
- No extra tracks on the primary vertex (exclusivity condition)

Extract prediction for the **observation cross-section** for the $\gamma\gamma \rightarrow W^+W^-$ process

Inelastic yield

Data-driven "inelastic scaling factor" F defined using the region :

 $m(\ell^{\pm}\ell^{\mp}) > 160 \text{ GeV} \simeq 2 \times M_W$

Overall signal scaling to take into account inelastic contributions for $\gamma\gamma \rightarrow W^+W^-$:

 $F = 3.23 \pm 0.53$ (stat. + syst.)

Search for two-photon production of W pairs and ...

C

JHEP 07 (2013) 116

Preselection

- e − μ triggers with asymmetric p_T thresholds (H → W⁺W[−] searches)
- m(eµ) > 20 GeV
- Single lepton identification :
 - $p_T(\mu), E_T(e) > 20 \text{ GeV}$
 - $|\eta(\mu)|, |\eta(e)| < 2.4$
- No additional tracks on dilepton vertex

Signal regions

Defined by the lower bound on $p_T(e\mu)$:

- "SM-enhanced region" : $p_T(e\mu) > 30 \text{ GeV}$
- "AQGC-enhanced region" : $p_T(e\mu) > 100 \text{ GeV}$

Signal generated using CalcHEP 2.5.4, W decay with <code>Pythia 6.422</code>

Search for two-photon production of W pairs and ...

JHEP 07 (2013) 116

Region	SM	AQGCs
Background Signal	$\begin{array}{c} 0.84 \pm 0.15 \\ 2.2 \pm 0.4 \end{array}$	0.14 ± 0.02
Observed	2	0

 SM region (p_T(eµ) > 30 GeV) Observed production cross-section

$$\sigma_{\rm obs}\left(pp \to p^{(*)}(\gamma\gamma \to W^+W^-)p^{(*)}\right)$$

$$\times BR(W^{\pm} \rightarrow \mu^{\pm}\nu, e^{\pm}\nu) = 2.2^{+3.3}_{-2.0}$$
 fb

(SM prediction = 4.0 ± 0.7 fb)

• AQGC region ($p_T(e\mu) > 100 \text{ GeV}$) Upper limit on production cross-section at 95% C.L. :

$$\sigma\left(pp \to p^{(*)}(\gamma\gamma \to W^+W^-)p^{(*)}\right) \times BR(W^{\pm} \to \mu^{\pm}\nu, \ e^{\pm}\nu) < \ 1.9 \text{ fb}$$

which can be translated into limits on AQGCs...

Search for AQGCs in $\gamma \gamma \rightarrow W^+W^-$

... limits on anomalous quartic gauge couplings

JHEP 07 (2013) 116

1-D limits at 95% C.L. on the anomalous parameters (in GeV⁻²) :

		OPAL (2004)	DØ (2013)	CMS $\gamma\gamma \rightarrow WW$ (2013)
a_0^W/Λ^2 [GeV ⁻²]	no form factor	$\pm 2 \times 10^{-2}$	$\pm 4.3 imes 10^{-4}$	$\pm 4.0 \times 10^{-6}$
	$\Lambda_{\text{cutoff}} = 500 \text{ GeV}$		$\pm 2.5 \times 10^{-3}$	$\pm 1.5 \times 10^{-4}$
a_c^W/Λ^2 [GeV ⁻²]	no form factor	^{+3.7} _{-5.2} × 10 ⁻²	$\pm 1.5 \times 10^{-3}$	$\pm 1.5 \times 10^{-5}$
	$\Lambda_{\text{cutoff}} = 500 \text{ GeV}$	-	$\pm 9.2 \times 10^{-3}$	$\pm 5.0 \times 10^{-4}$

Up to two orders of magnitude

improvements to previously fixed limits

- OPAL (LEP2, e⁺e⁻) [arXiv:0402021]
- DØ (Tevatron, *pp*) [arXiv:1305.1258]

Still tighter than the fully inclusive CMS $WW\gamma$ study [arXiv:1404.4619] :

Outline

Exclusive 2-photon production of lepton pairs $\gamma\gamma \rightarrow e^+e^ \gamma\gamma \rightarrow \mu^+\mu^-$

```
Search for AQGCs in γγ → W<sup>+</sup>W<sup>-</sup>
Inelastic yield
Search for γγ → W<sup>+</sup>W<sup>-</sup>
Limits on anomalous quartic gauge couplings
```


The CMS-TOTEM Precision Proton Spectrometer

Differential DY cross-section in pp collisions

L. Forthomme (CMS collaboration)

Differential and double-differential DY cross-sections

JHEP 12 (2013) 030

Study of the **differential** $(m_{\ell\ell})$ and **double-differential** $(m_{\ell\ell}, |y|)$ Drell-Yan cross-sections :

$$\frac{\mathrm{d}\sigma_{\mathrm{DY}}}{\mathrm{d}m_{ee}}, \ \frac{\mathrm{d}\sigma_{\mathrm{DY}}}{\mathrm{d}m_{\mu\mu}}, \quad \text{and} \quad \frac{\mathrm{d}^2\sigma_{\mathrm{DY}}}{\mathrm{d}m_{\mu\mu}\ \mathrm{d}|y|}$$

Key features

 Di-muons, di-electron, and combined mass ranges :

 $15 \text{ GeV} < m_{\ell\ell} < 1500 \text{ GeV}$ (sing.-differ. $ee, \mu\mu$) 20 GeV < m_{uu} < 1500 GeV (doub.-differ. $\mu\mu$)

• Single lepton acceptance :

 $|\eta(e)| < 2.5, E_T(e) > 10, 20 \text{ GeV}$ $|\eta(\mu)| < 2.4, p_T(\mu) > 9, 14 \text{ GeV}$

• Normalisation to the Z-peak region $(60 \text{ GeV} < m_{\ell\ell} < 120 \text{ GeV})$

L. Forthomme (CMS collaboration)

C

JHEP 12 (2013) 030

- Comparison to NLO (Powheg-Pythia), NNLO (Fewz) predictions for various PDF sets: CT10, NNPDF2.1, MSTW2008, HERAPDF15, JR09, ABKM09, and CT10W
- Unfolding to extract the differential (and double-differential) cross-sections
- Total cross-section (combined channels) :

 $\sigma_{\rm obs}^{\rm total}$ = 986.4 \pm 0.6 (stat.) \pm 5.9 (exp. syst.) \pm 21.7 (th. syst.) \pm 21.7 (lum.) pb

• Cross-section in Z region (combined, $60 < m_{\ell\ell} < 120 \text{ GeV}, |y| < 2.4$)

 $\sigma_{obs}^{Z\,region}$ = 524.7 \pm 0.4 (stat.) \pm 5.1 (exp. syst.) \pm 1.2 (th. syst.) \pm 11.5 (lum.) pb

Differential and double-differential DY cross-sections

JHEP 12 (2013) 030

- Double-differential cross-section knowledge enables the probe of |y| for each mass bin
- NNPDF2.1 describes well for low $m_{\mu\mu}$, and JR09 overshoots data for high masses

What about the $\gamma\gamma$ processes ?

- $pp \rightarrow p^{(*)}\gamma\gamma p^{(*)} \rightarrow p^{(*)}\ell^+\ell^-p^{(*)}$ treated as a background
- Taken into account in the LO-NLO differences of the **EW corrections**
- Yield : up to 10% differences in high-mass regions
- Generator : Fewz v3.1.b2

Double-diff. cross-sections ranges (μ channel) probing : (|y| < 2.4 and 20 < $m_{\ell\ell}$ < 1500 GeV)

 $3 \times 10^{-4} < x < 0.5,$ 500 GeV² < Q² < 9 × 10⁴ GeV²

Differential DY cross-section in pp collisions

L. Forthomme (CMS collaboration)

PhotonLHC2014, CERN 16/19

Outline

Exclusive 2-photon production of lepton pairs $\gamma\gamma \rightarrow e^+e^ \gamma\gamma \rightarrow \mu^+\mu^-$

```
Search for AQGCs in \gamma\gamma \rightarrow W^+W^-
Inelastic yield
Search for \gamma\gamma \rightarrow W^+W^-
Limits on anomalous quartic gauge couplings
```

3 Differential DY cross-section in *pp* collisions

A look forward – The CMS-TOTEM Precision Proton Spectrometer

CMS peak interactions per crossing, pp

General motivations

With **increasing number** of **primary vertices** in each event, (track-based) selection efficiency drops for exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$, $\gamma\gamma \rightarrow W^+W^-$, $\gamma\gamma \rightarrow \dots$ searches

2 solutions

- · loosen the exclusivity condition (no extra tracks)
- · add information on the primary vertex location

Key points

Set of detectors to be installed in the (very-)forward region of CMS (220-240 m) to :

- Tag the unfragmented protons at high luminosity / low β^*
- Reconstruct their kinematics (embedded tracking system)
 - 3D silicon sensors (+ CMS PSI46Dig readout)
 - Preliminary tests : σ_{x,y} ~ 11-13 μm

- Match the interaction with the central system (timing detectors)
 - σ_t ~ 10 ps for a 2 mm vertex-z resolution
 - Fine granularity (high hit occupancy)
 - Radiation hardness
 - Several designs under study : Čerenkov (QUARTIC, GasToF), diamond sensor (R&D)

2 designs under investigation :

- Roman Pots (in collaboration with TOTEM)
- · Moveable beam pipe

Prototype to be installed and tested in 2015, TDR to be released soon

Precision physics

- Searches for $\gamma\gamma \rightarrow \ell^+\ell^-$
- Search for $\gamma\gamma \to W^+W^-$
- Differential DY cross-section
- Observation of **17** exclusive $\gamma\gamma \rightarrow e^+e^-$ events
- Exclusive $\gamma\gamma \rightarrow \mu^+\mu^-$ production cross-section (40 pb⁻¹ at 7 TeV) :

 $\sigma^{\text{prod}} = 3.38^{+0.58}_{-0.55} \text{ (stat.)} \pm 0.16 \text{ (syst.)} \pm 0.14 \text{ (lumi.) pb}$

Precision physics

- Searches for $\gamma\gamma \rightarrow \ell^+\ell^-$
- Search for $\gamma \gamma \rightarrow W^+ W^-$
- Differential DY cross-section
- Still one of the lowest production cross-section probed at the LHC (~ 100 fb)
- · LEP constraints on AQGCs overshot by two order of magnitude
- · Competitiveness of exclusive searches wrt fully inclusive ones

Precision physics

- Searches for $\gamma\gamma \rightarrow \ell^+\ell^-$
- Search for $\gamma\gamma \to W^+W^-$
- Differential DY cross-section
- Accurate measurement of differential σ(Z, γ^{*} → e⁺e⁻, μ⁺μ⁻) with respect to m_{ℓℓ} (and |y| for μμ)
- Most precise inclusive Z cross-section observations (60 < $m_{\ell\ell}$ < 120 GeV) at a hadron collider
- $d^2\sigma/dm_{\mu\mu}d|y|$ comparison with actual PDF sets provides an efficient probe to update them, first observation at a hadron collider

Backup

$\mathbb{PP} \rightarrow \gamma \gamma$ analysis

Trigger	3023496
Photon reconstruction	1683526
Photon identification	40692
Cosmic rays rejection	34234
Exclusivity condition	0

 $\gamma\gamma \rightarrow e^+e^-$ analysis

Cut	Remaining events
Trigger	3023496
Electron reconstruction	132271
Electron identification	1668
Cosmic rays rejection	1321
Exclusivity condition	17

Rapidity gap survival probability

Process	State	S ²
Elastic		1
Single-dissociation	low mass high mass	$\begin{array}{c} 0.86 \pm 0.03 \\ 0.81 \pm 0.03 \end{array}$
Double-dissociation	low mass & low mass low mass & high mass high mass & high mass	0.3–0.45 0.2–0.28 0.08–0.16

Low mass : $M_X < 2.0-2.5 \text{ GeV}$

Cut	Remaining events
Trigger	$7.87 imes10^{6}$
Exclusivity condition	921
Muon identification	724
$p_T(\mu) > 4 \text{ GeV}, \eta(\mu) < 2.1$	438
$m(\mu\mu) > 11.5 \text{ GeV}$	270
3D angle $< 0.95\pi$	257
$1 - \Delta \phi(\mu \mu) / \pi < 0.1$	203
$\Delta p_T(\mu\mu) < 1 \text{ GeV}$	148

Cut	Remaining events
Trigger	9086
$m(\mu\mu) > 20 \text{ GeV}$	8200
Muon, electron identification	724
Exclusivity condition	6
$p_T(\mu\mu) > 30 \text{ GeV}$	2

Signal region

CMS Experiment at LHC, CERN Data recorded: Tua Apr 26 02:04:57 2011 CEST Run/Event: 163402 / 256774116 Lumi section: 391 Orbit/Crossing: 102356584 / 1972

First candidate events

Only tracks from the $e\mu$ primary vertex, pileup events hidden

CMS Experiment at LHC, CERN Data recorded: Mon Sep 26 19:02:09 2011 CEST Run/Event: 177201 / 318972926 Lumi section: 254 Orbit/Crossing: 66499638 / 3254

	σ_{obs} in the Z-peak region in det. acceptance (60 < m < 120 GeV, y ; 2.4)
Data	$524.7\pm0.4~(\text{stat.})\pm5.1~(\text{exp. syst.})\pm1.2~(\text{th. syst.})\pm11.5~(\text{lum.})~\text{pb}$
CT10 NNLO NNPDF2.1 NNLO MSTW2008 NNLO JR09 NNLO ABKM09 NNLO HERAPDF15 NNLO	$\begin{array}{l} 534.29 \pm 0.36 \; (stat) \pm 16.60 \; (PDF) \; pb \\ 524.76 \pm 0.68 \; (stat) \pm 6.38 \; (PDF) \; pb \\ 524.02 \pm 0.38 \; (stat.) \pm 17.46 \; (PDF) \; pb \\ 485.97 \pm 0.36 \; (stat.) \pm 11.78 \; (PDF) \; pb \\ 534.69 \pm 0.43 \; (stat.) \pm 9.30 \; (PDF) \; pb \\ 531.92 \pm 0.23 \; (stat.) \pm 6.25 \; (PDF) \; pb \end{array}$