

Paula Collins, CERN

Workshop on photon-induced collisions at the LHC

June 2-4 2014

On behalf of the LHCb collaboration

5.12. 2012 10:17:53 Run 133742 Event 1824718177 bld 146

Talk Outline

- CEP @ LHCb
- CEP → muons
 - LHCb 2010 and 2011 results for J/ψ, ψ(2s):
 - JPG 40 (2013) 045001
 - arXiv: 1401.3288 (accepted by JPG)
 - □ Exclusive QED di-photon and $\chi_{c0,1,2}$ (1P) production
 - LHCb-CONF-2011-022
 - Future prospects
- CEP →hadrons
 - Physics motivation to enhance reach for hadronic final states
 - New trigger strategy
- Extending LHCb coverage with forward shower counters the Herschel project

LHCb Detector

Single arm forward spectrometer dedicated to precision flavour physics

Paula Collins, LHCb

LHCb Angular Coverage

VELO Sub Detector

VELO Sub Detector

CEP events and backgrounds

$B_s \rightarrow \mu^+ \mu^-$ event in LHCb

Not a typical event – but a very typical topology!

CEP event in LHCb

Two muons and no other activity

LHCb and Pile-Up

So far LHCb CEP Analyses have used single interaction events to more effectively veto additional activity

LHCb benefits from low pileup conditions – with move to 25 ns this will

give a huge yield in LS2

Year	2010	2011	2012	2015-17
Integrated Luminosity (fb ⁻¹)	0.04	1.1	2.1	~5
Useful fraction for CEP studies (e- ^µ)	21%	24%	19%	~37%

Fraction of crossings with N interactions is given by

$$f(N) = \frac{e^{-\mu}\mu^N}{N!}$$

LHCb for CEP

LHCb very well suited to studies of CEP production

Access to high rapidities

 $2<\eta<5$ acceptance for forward tracking; good complementarity with ATLAS/CMS Some sensitivity to backwards tracks with -3.5 < $\eta<$ -1.5

Relatively low pileup

Analysis greatly simplified by using single interaction events

Trigger

First level trigger output rate of 1 MHz muon/calo + some VELO information available Flexibility available at second level trigger with full event information

Excellent particle ID

Possibility to distinguish CEP decays to $K,\!p,\!\mu,\!\pi$ final states

Sensitivity to low p and low p_T particles both at trigger stage, and for precise reconstruction

RICH Particle ID performance

VELO impact parameter resolution

Di-μ (+γ) CEP signals in LHCb

Exchange of a colourless object: γ , pomeron \rightarrow two muons (+ photon) + rapidity gaps Single elastic process \rightarrow protons escape undetected in beampipe

Non-resonant di-μ (di-γ fusion)

di- μ from J/ ψ , ψ (2S) (γ pomeron fusion)

di- μ from $\chi_c \rightarrow J/\psi \gamma$ (di-pomeron exchange)

Di- μ (+ γ) CEP signals in LHCb

Exchange of a colourless object: γ , pomeron \rightarrow two muons (+ photon) + rapidity gaps Single elastic process \rightarrow protons escape undetected in beampipe

di- μ from J/ ψ , ψ (2S) (γ pomeron fusion)

di- μ from $\chi_c \rightarrow J/\psi \gamma$ (di-pomeron exchange)

Non resonant dimuon production

QED Process – accurate predictions

Candidate for precise luminosity determination at the LHC

Di- μ (+ γ) CEP signals in LHCb

Exchange of a colourless object: γ , pomeron \rightarrow two muons (+ photon) + rapidity gaps Single elastic process \rightarrow protons escape undetected in beampipe

Resonant process

Photoproduction: Test of QCD and description of diffraction and soft process Sensitive to diffractive PDF at very low x (to 5 x 10⁻⁶)
Search for Odderon and saturation effects

Di- μ (+ γ) CEP signals in LHCb

Exchange of a colourless object: γ , pomeron \rightarrow two muons (+ photon) + rapidity gaps Single elastic process \rightarrow protons escape undetected in beampipe

Resonant process
Double Pomeron exchange
Standard candle for other DPE
processes e.g. Higgs

di-µ triggering in LHCb

Typical events

Many tracks + high P_T objects

Picked up with high efficiency by standard LHCb triggers

CEP events

No other activity in event; low P_T

Dedicated high efficiency trigger:

Level 0: 1μ (p_T>400 MeV) or 2μ (p_T> 80 MeV)

+ low multiplicity calorimeter signature

High Level Trigger: di-μ candidate with p_T<900MeV

or M>2.7 GeV/c²

Rapidity gap selection of CEP candidates

Di-μ triggered events

Backward tracks=0

LHCb

Number of forward tracks

CEP candidates

VELO RZ view

Exclusive dimuon candidates

Events passing 2011 Low Multiplicity Dimuon Trigger

Feed-down backgrounds

Feed-down from $\psi(2s) \rightarrow J/\psi \ X$

with undetected X (e.g. $X = \pi^+ \pi^-$)

Require # Tracks = 2

Estimate residual background from Starlight + full LHCb simulation, normalised to data

Feed-down from $\chi_c \rightarrow J/\psi \gamma$ with undetected γ Require # photons = 0

Estimate residual background from SuperChic + full LHCb simulation,normalised to data

Cross Section Measurement

Similar procedure for $\psi/\psi(2s)$

Signal + Inelastic background (ψ)

Signal shape

Estimated from Superchic using $exp(-b p_T^2)$

Slope b estimated from explicit calculation using HERA data: $\sim 6 \text{ GeV}^{-2} \text{ (signal)} \sim 1 \text{ GeV}^{-2} \text{ (bckd)}$ Fit gives b = 5.70 +/- 0.11 GeV⁻² (signal) and = 0.97 +/- 0.04 GeV⁻² (bckd)

Inelastic backgrounds

One/two of the protons dissasociates / additional gluon radiations Extra particles are undetected

P_T shape estimated from data, behaviour as a function of number of tracks cross checked with PYTHIA and LPAIR

Signal + Inelastic bckd ($\psi(2S)$)

Signal shape

Estimated from Superchic using $exp(-b p_T^2)$

Slope b estimated from calculation using HERA data: $\sim 5.5 \text{ GeV}^{-2}$ (signal) $\sim 0.6 \text{ GeV}^{-2}$ (bckd) Fit gives b = 5.1 +/- 0.7 GeV⁻² (signal) and = 0.8 +/- 0.2 GeV⁻² (bckd)

Inelastic backgrounds

One/two of the protons dissasociates / additional gluon radiations Extra particles are undetected

P_T shape estimated from data, behaviour as a function of number of tracks cross checked with PYTHIA and LPAIR

J/ψ and $\psi(2S)$ Results

Cross section x branching ratio with decay products in LHCb acceptance:

^{*} SuperChic prediction does not include survival factor

Differential cross sections

J/ψ production σ as a function of rapidity

Differential cross section re-calculated in 10 rapidity bins Results can then be compared to H1/ZEUS data using known photon flux for a photon of energy k

$$\frac{\mathrm{d}\sigma}{\mathrm{d}y}_{pp\to pVp} = r(y) \left[k_+ \frac{\mathrm{d}n}{\mathrm{d}k_+} \sigma_{\gamma p\to Vp}(W^+) + k_- \frac{\mathrm{d}n}{\mathrm{d}k_-} \sigma_{\gamma p\to Vp}(W^-) \right]$$
Absorptive correction
$$r(y) = 0.85 - \frac{0.1|y|}{3}$$

$$\frac{\mathrm{d}n}{\mathrm{d}k} = \frac{\alpha_{em}}{2\pi k} \left[1 + \left(1 - \frac{2k}{\sqrt{s}} \right)^2 \right] \left(\log A - \frac{11}{6} + \frac{3}{A} - \frac{3}{2A^2} + \frac{1}{3A^3} \right)$$

For each point there are two solutions for W, the photon-proton c.m. energy \rightarrow use power law behaviour for photoproduction $\sigma(W) = aW^{\delta}$

Fit to the differential data:

$$a = 81/90$$

 $\delta = 0.67$

J/ψ photoproduction σ

Deviation from pure power-law. i.e. NLO required or only power-law for W>W₀

Sensitivity to saturation effects

Motka, Watt, PRD 78 014023 (2008) Gay Ducati et al., arXiv: 1305.4611

Exclusive diphoton dimuons and X_c

Dimuons with mass>2.5 GeV

+ resonances excluded

 $J/\psi + \gamma$ mass

LHCb
Preliminary
Result
LHCb-CONF-2011-022

$$\begin{split} \sigma_{\chi_{e0}\to\mu^+\mu^-\gamma} &= 9.3 + /- 2.2 + /- 3.5 + /- 1.8 \text{ pb} \\ \sigma_{\chi_{e1}\to\mu^+\mu^-\gamma} &= 16.4 + /- 5.3 + /- 5.8 + /- 3.2 \text{ pb} \\ \sigma_{\chi_{e2}\to\mu^+\mu^-\gamma} &= 28.0 + /- 5.4 + /- 9.7 + /- 5.4 \text{ pb} \\ \sigma_{\gamma\gamma\to\mu^+\mu^-} &= 67 + /- 10 + /- 5 + /- 15 \text{ pb} \end{split}$$

CEP di-µ Future Prospects

Mass peaks hinted at will benefit from higher stats; low mass vector mesons, upsilons, di- μ + X states...

More accurate measurements of branching ratios and ratios of branching ratios, improved fits to signal and background (simulation of central exclusive J/ψ with additional gluon interactions would be welcome!)

Use of LHCb detector activity e.g. VELO clusters, not just tracks, to reject backgrounds

Use of converted photons to improve χ mass resolutions

Predictions: arXiv 1307.7099

X(3872)

Has been observed inclusively arXiv: 1112.5310 Could it be produced exclusively?

 J^{PC} of X(3872) shown by LHCb to be 1⁺⁺ (arXiv: 1302.6269) χ_c has been hinted at by LHCb to be produced exclusively

Observation of X(3872) produced in CEP can shed light on its nature in particular its fraction as a bound state

Di-meson production

arXiv: 1105.1626, arXiv: 1405.0018

Vanishing cross section when gluons in Jz=0 Flavour non-singlet mesons suppressed (e.g. $\pi\pi/KK$) Flavour singlet (e.g. $\eta\Box\eta\Box$ production) can proceed via

Triggering on CEP→hadrons

Low multiplicity hadronic final states require special treatment to survive LHCb trigger June 2012: New Trigger implemented → significant improvement!

Threefold strategy:

Use of "Pile-up" stations ("upstream" silicon sensors) at L0 stage to veto backwards activity

F Greater pass through trigger rate exploiting small events and short processing times

Soft p_T cuts essential for hadronic final states from low p_T objects

Silicon sensors at 8.2<R<42mm and z>-315mm 40 MHz readout Very effective VETO

CEP→hadrons at LHCb

Main physics goals:

- Study charmonium states decaying into two and four-body final states (e.g. $\chi_{c0} \rightarrow K^+K^{-}$, $\pi^+\pi^-$) to complement di-muon studies
- Study production of open charm in such events
- Spectroscopy: e.g. search for higher mass charmonia states decaying to open charm, e.g. $\chi_{c2}(2P)$

New trigger has collected ~ 1.4 fb⁻¹ of integrated luminosity (~ 19% useful for CEP)

Dedicated trigger lines include:

- standard D decays
- charmonia decays to 2 and 4 body final states
- Inclusive di kaon line
- Low mass resonance line to search for e.g. K_S, Φ

Extending LHCb coverage

Extending LHCb Coverage

- LHCb plans to accumulate >5-6 fb-1 of data in low pile-up conditions (μ ~1) during Run II, providing a unique opportunity to extend the forward physics programme
- Idea of Herschel is to install scintillation counters in the tunnel where the beam pipe is accessible
 - Detect showers from high rapidity particles interacting with beam pipe elements

- Central Exclusive Physics, which currently suffers from a large background of undetectable events where the proton breaks up in the forward direction will be greatly enhanced
- FSC will also act as general rapidity gap detectors and will identify very forward showers in low mass diffractive excitation
- LHCb readout also offers potential to incorporate signals into trigger at L0 (40 MHz) trigger
- Other topics such luminosity measurement and understanding of machine backgrounds may also benefit
- Similar systems have been successfully deployed at CDF and CMS

Detector Layout

Detectors consist of 4 plastic scintillator plates, 20 mm thick, glued to "fishtail" light guides

Two different radii of inner cut-out depending on beampipe layout PMT identified, and under test Hamamatsu R1828-01

- 0.2 mA average anode current
- Customised high-rate base being produced
- Benefit from experience of LHCb BLS experience

Mechanical Supports

"Datataking"

"Parking"

- Support frame of station at +20 m is attached to shielding wall between muon system and LHC tunnel
- Supports for other stations are bolted to tunnel floor
- Pneumatic motion system to retract scintillators from high fluence region if data taking is not possible for extended time periods

Simulation – Rates and Efficiences

- Efficiency is good even for low energy particles, beyond geometric acceptance (due to showering) shown here for pions with pT=1.5 GeV
- Each station must be sensitive to ~ 100 hits to effectively veto single diffractive events, while tolerating
- ~2500 hits/event in minimum bias operating conditions

PMT, base + light guide, preliminary cosmic tests

Dedicated base with zener diodes to control voltage at input dynodes under test
Cosmic stand results indicate light yield of ~200 p.e.
Different geometries of wave guide under study
Clipping scheme implemented to eliminate spillover to next bunch crossing
Schedule is very tight, especially concerning tunnel

Nph.e. = 200.8 ± 30

FSC#I, #WA7157, CLIP#III, F2_00047.txt, 02-Apr-2014 23:41:13 <COSMIC>=92.6pC

installations

Q, pC

Integration into LHC Layout

Conclusions

- LHCb has a rich programme of CEP measurements ahead
 - 2011+2012 data at 3.5 and 4 TeV, with ~20% of luminosity useable; to repeat and refine previous measurements and add many new final states
 - Hadronic triggers active in 2012; probe χ_c production and search for open charm production
 - Herschel project underway, to add significant background rejection for LS2

Thank you for your attention

Backup

Comparison to theory

- V. P. Gonçalves and M. V. T. Machado, Vector meson production in coherent hadronic interactions: an update on predictions for RHIC and LHC, Phys. Rev. C84 (2011) 011902, arXiv:1106.3036.
- S. Jones, A. Martin, M. Ryskin, and T. Teubner, Probes of the small x gluon via exclusive J/ψ and Υ production at HERA and the LHC, JHEP **1311** (2013) 085, arXiv:1307.7099.
- L. Motyka and G. Watt, Exclusive photoproduction at the Fermilab Tevatron and CERN LHC within the dipole picture, Phys. Rev. **D78** (2008) 014023, arXiv:0805.2113.
- W. Schäfer and A. Szczurek, Exclusive photoproduction of J/ψ in proton-proton and proton-antiproton scattering, Phys. Rev. **D76** (2007) 094014, arXiv:0705.2887.
- S. R. Klein and J. Nystrand, Photoproduction of quarkonium in proton proton and nucleus nucleus collisions, Phys. Rev. Lett. 92 (2004) 142003, arXiv:hep-ph/0311164.
- L. A. Harland-Lang, V. A. Khoze, M. G. Ryskin, and W. J. Stirling, Central exclusive χ_c meson production at the Tevatron revisited, Eur. Phys. J. C65 (2010) 433, arXiv:0909.4748.