Practical Statistics for Particle Physicists Lecture 1

Harrison B. Prosper Florida State University

European School of High-Energy Physics Parádfürdő, Hungary

5 – 18 June, 2013

1

Outline

• Lecture 1

- Descriptive Statistics
- Probability & Likelihood
- Lecture 2
 - The Frequentist Approach
 - The Bayesian Approach
- Lecture 3
 - Analysis Example

Definition: A **statistic** is any function of the data *X*. Given a sample $X = x_1, x_2, ..., x_N$, it is often of interest to compute statistics such as

the sample average

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

and the sample variance

$$S^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$$

In any analysis, it is good practice to study **ensemble averages**, denoted by < ... >, of relevant statistics

Ensemble Average	< <i>x</i> >
Mean	μ
Error	$\mathcal{E} = x - \mu$
Bias	$b = < x > -\mu$
Variance	$V = <(x - < x >)^2 >$
Mean Square Error	$MSE = <(x - \mu)^2 >$

$$MSE = \langle (x - \mu)^2 \rangle$$
$$= V + b^2$$

Exercise 1: Show this

The **MSE** is the most widely used measure of **closeness** of an ensemble of statistics $\{x\}$ to the **true value** μ

The root mean square (RMS) is

$$RMS = \sqrt{MSE}$$

Consider the *ensemble* average of the *sample* variance

$$< S^{2} > = <\frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2} >$$

$$= <\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} - \frac{2}{N} \sum_{i=1}^{N} x_{i} \overline{x} + \frac{1}{N} \sum_{i=1}^{N} \overline{x}^{2} >$$

$$= \frac{1}{N} \sum_{i=1}^{N} < x_{i}^{2} > - < \overline{x}^{2} >$$

$$= < x^{2} > - < \overline{x}^{2} >$$

The ensemble average of the sample variance

has a negative bias of -V/N

Exercise 2: Show this

Descriptive Statistics – Summary

The sample average

is an unbiased estimate of the ensemble average

The **sample variance** is a biased estimate of the ensemble variance

Basic Rules

1.
$$P(A) \ge 0$$

2.
$$P(A) = 1$$

3. P(A) = 0

if A is true if A is false

Sum Rule

4.
$$P(A+B) = P(A) + P(B)$$

if AB is false *

Product Rule

5. P(AB) = P(A|B) P(B) *

*A+B = A or B, AB = A and B, A|B = A given that B is true

By definition, the **conditional probability** of A given B is

$$P(\mathbf{A} \mid \mathbf{B}) = \frac{P(\mathbf{AB})}{P(\mathbf{B})}$$

P(**A**) is the probability of A *without restriction*.

P(A|B) is the probability of A when we *restrict* to the conditions under which B is true.

$$P(\boldsymbol{B} \mid \boldsymbol{A}) = \frac{P(\boldsymbol{A}\boldsymbol{B})}{P(\boldsymbol{A})}$$

From P(AB) = P(B | A)P(A)we deduce = P(A | B)P(B)Bayes' Theorem:

A and B are mutually exclusive if

P(AB) = 0

A and B are exhaustive if

$$P(\mathbf{A}) + P(\mathbf{B}) = 1$$

Theorem

 $P(\mathbf{A} + \mathbf{B}) = P(\mathbf{A}) + P(\mathbf{B}) - P(\mathbf{AB})$

Exercise 3: Prove theorem

Probability Binomial & Poisson Distributions

A Bernoulli trial has two outcomes:

S = success or F = failure.

Example: Each collision between protons at the LHC is a Bernoulli trial in which something interesting happens (*S*) or does not (*F*).

Let *p* be the probability of a success, which is assumed to be the *same at each trial*. Since *S* and *F* are *exhaustive*, the probability of a failure is 1 - p. For a given order *O* of *n* trails, the probability Pr(k,O|n) of *exactly k* successes and n - k failures is

$$\Pr(\mathbf{k}, O, n) = p^k (1-p)^{n-k}$$

If the order *O* of successes and failures is irrelevant, we can eliminate the order from the problem integrating over all possible orders

This yields the **binomial distribution**

Binomial
$$(k,n,p) \equiv \binom{n}{k} p^k (1-p)^{n-k}$$

which is sometimes written as $k \sim \text{Binomial}(n, p)$

We can prove that the mean number of successes a is

a = p n. **Exercise 4**: Prove it

Suppose that the probability, *p*, of a success is very small,

then, in the limit $p \to 0$ and $n \to \infty$, such that *a* is *constant*, **Binomial**(*k*, *n*, *p*) \to **Poisson**(*k*, *a*).

The Poisson distribution is generally regarded as a good model for a **counting experiment**

Exercise 5: Show that $Binomial(k, n, p) \rightarrow Poisson(k, a)$

Common Distributions and Densities

Uniform(x,a)Gaussian(x, μ, σ) Chisq(x,n)Gamma(x,a,b)Exp(x,a)Binomial(k, n, p)Poisson(k,a)Multinomial(k, n, p)

1/a $\exp[-(x-\mu)^2/(2\sigma^2)]/(\sigma\sqrt{2\pi})$ $x^{n/2-1} \exp(-x/2) / [2^{n/2} \Gamma(n/2)]$ $x^{b-1}a^b \exp(-ax) / \Gamma(b)$ $a \exp(-ax)$ $\binom{n}{k} p^k (1-p)^{n-k}$ $a^{k} \exp(-a) / k!$ $\frac{n!}{k_{i}!\cdots k_{i}!}\prod_{i=1}^{K}p_{i}^{k_{i}}, \sum_{i=1}^{K}p_{i}=1, \sum_{i=1}^{K}k_{i}=n$

Probability – What is it Exactly?

There are at least two *interpretations* of probability:

 Degree of belief in, or plausibility of, a proposition Example:

It will snow in Geneva on Friday

2. Relative frequency of outcomes in an *infinite* sequence of *identically repeated* trials

Example:

trials: proton-proton collisions at the LHCoutcome: the creation of a Higgs boson

The *likelihood function* is simply the probability, or probability density function (**pdf**), *evaluated at the observed data*.

Example 1: Top quark discovery (D0, 1995)

p(D|d) = Poisson(D|d) probability to get a count D

p(17|d) = Poisson(17|d) *likelihood* of observation D = 17

 $Poisson(D|d) = exp(-d) d^D / D!$

PHYSICAL REVIEW D 87, 052017 (2013)

Search for contact interactions using the inclusive jet p_T spectrum in pp collisions at $\sqrt{s} = 7$ TeV

S. Chatrchyan *et al.** (CMS Collaboration) (Received 21 January 2013; published 26 March 2013)

Example 3:

Red shift and distance modulus measurements of

N = 580 Type Ia supernovae $p(D \mid \Omega_{M}, \Omega_{\Delta}, Q) = \prod_{i=1}^{N} \text{Gaussian}(x_{i}, \mu(z_{i}, \Omega_{M}, \Omega_{\Delta}, Q), \sigma_{i}) \xrightarrow{\text{supernovae}} 45 \prod_{i=1}^{n} \text{Gaussian}(x_{i}, \mu(z_{i}, \Omega_{M}, \Omega_{\Delta}, Q), \sigma_{i}) \xrightarrow{\text{supernovae}} 40 \prod_{i=1}^{n} \text{Gaussian}(x_{i}, \mu(z_{i}, \Omega_{M}, \Omega_{\Delta}, Q), \sigma_{i}) \xrightarrow{\text{supernovae}} 40 \prod_{i=1}^{n} \text{Gaussian}(x_{i}, \mu(z_{i}, \Omega_{M}, \Omega_{\Delta}, Q), \sigma_{i}) \xrightarrow{\text{supernovae}} 40 \prod_{i=1}^{n} \text{Gaussian}(x_{i}, \mu(z_{i}, \Omega_{M}, \Omega_{\Delta}, Q), \sigma_{i}) \xrightarrow{\text{supernovae}} 40 \prod_{i=1}^{n} \text{Gaussian}(x_{i}, \mu(z_{i}, \Omega_{M}, \Omega_{\Delta}, Q), \sigma_{i}) \xrightarrow{\text{supernovae}} 40 \prod_{i=1}^{n} \text{Gaussian}(x_{i}, \mu(z_{i}, \Omega_{M}, \Omega_{\Delta}, Q), \sigma_{i}) \xrightarrow{\text{supernovae}} 40 \prod_{i=1}^{n} \text{Gaussian}(x_{i}, \mu(z_{i}, \Omega_{M}, \Omega_{\Delta}, Q), \sigma_{i}) \xrightarrow{\text{supernovae}} 40 \prod_{i=1}^{n} \text{Gaussian}(x_{i}, \mu(z_{i}, \Omega_{M}, \Omega_{\Delta}, Q), \sigma_{i}) \xrightarrow{\text{supernovae}} 40 \prod_{i=1}^{n} \text{Gaussian}(x_{i}, \mu(z_{i}, \Omega_{M}, \Omega_{\Delta}, Q), \sigma_{i}) \xrightarrow{\text{supernovae}} 40 \prod_{i=1}^{n} \text{Gaussian}(x_{i}, \mu(z_{i}, \Omega_{M}, \Omega_{\Delta}, Q), \sigma_{i}) \xrightarrow{\text{supernovae}} 40 \prod_{i=1}^{n} \text{Gaussian}(x_{i}, \mu(z_{i}, \Omega_{M}, \Omega_{\Delta}, Q), \sigma_{i}) \xrightarrow{\text{supernovae}} 40 \prod_{i=1}^{n} \text{Gaussian}(x_{i}, \mu(z_{i}, \Omega_{M}, \Omega_{\Delta}, Q), \sigma_{i}) \xrightarrow{\text{supernovae}} 40 \prod_{i=1}^{n} \text{Gaussian}(x_{i}, \mu(z_{i}, \Omega_{M}, \Omega_{\Delta}, Q), \sigma_{i})$

This is an example of an *un-binned* likelihood

Example 4: Higgs to γγ
The discovery of the neutral Higgs boson in the di-photon final state made use of an an *un-binned* likelihood,

$$p(x \mid s, m, w, b) = \exp[-(s + b)] \prod_{i=1}^{N} \left[sf_s(x_i \mid m, w) + bf_b(x_i) \right]$$

where	X	= di-photon masses	
	m	= mass of new particle	E
	W	= width of resonance	b
	S	= expected signal	1i
	b	= expected background	u
	$f_{\rm s}$	= signal model	th
	f_h	= background model	g
	20	-	

Exercise 6: Show that a binned multi-Poisson likelihood yields an un-binned likelihood of this form as the bin widths go to zero

Given the likelihood function we can answer questions such as:

- 1. How do I estimate a parameter?
- 2. How do I quantify its accuracy?
- 3. How do I test an hypothesis?
- 4. How do I quantify the significance of a result?

Writing down the likelihood function requires:

- 1. Identifying all that is *known*, e.g., the observations
- 2. Identifying all that is *unknown*, e.g., the parameters
- 3. Constructing a probability model *for both*

Likelihood – Top Quark Discovery

Example 1: Top Quark Discovery (1995), D0 Results

knowns: D = 17 events $B = 3.8 \pm 0.6$ background events

unknowns:

b	expected background count
S	expected signal count
d = b + s	expected event count

Note: we are uncertain about *unknowns*, so 17 ± 4.1 is a statement about *d*, *not about the observed count* 17!

Likelihood – Top Quark Discovery

Probability:

 $p(D \mid s, b) = \text{Poisson}(D, s + b) \text{Poisson}(Q, bk)$ $= \frac{(s + b)^{D} e^{-(s + b)}}{D!} \frac{(bk)^{Q} e^{-bk}}{\Gamma(Q + 1)}$ Likelihood:

 $p(17 \mid s, b)$

where

$$B = Q / k \qquad Q = (B / \delta B)^2 = (3.8 / 0.6)^2 = 41.11$$

$$\delta B = \sqrt{Q} / k \qquad k = B / \delta B^2 = 3.8 / 0.6^2 = 10.56$$

Summary

Statistic

A statistic is *any* function of potential observations

Probability

Probability is an *abstraction* that must be interpreted

Likelihood

The likelihood is the probability (or probability density) of potential observations *evaluated at the observed data*

Tutorials

Location:

http://www.hep.fsu.edu/~harry/ESHEP13

Download tutorials.tar.gz and unpack tar zxvf tutorials.tar.gz

Need:

Recent version of Root linked with RooFit and TMVA