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Descriptive Statistics




Descriptive Statistics — 1

Definition: A statistic 1s any function of the data X.
Given a sample X = x,, x,, ... xy, 1t 1S often of interest
to compute statistics such as

1 N
the sample average X = ﬁ 2 X,
i=1

1 & _
and the sample variance | Y ? = ﬁ z (x ;X )2
i=1

In any analysis, 1t 1s good practice to study ensemble
averages, denoted by < ... >, of relevant statistics




Descriptive Statistics — 2

Ensemble Average

Mean

Error

Bias

Variance

Mean Square Error

<X>

u

E=x—U
b=<x>-U

V=<(x—<x>)">
MSE = < (x — )’ >




Descriptive Statistics — 3

MSE =< (X — ‘Ll)z > Exercise 1:

, Show this
=V +b

The MSE 1is the most widely used measure of closeness of an
ensemble of statistics {x} to the true value u

The root mean square (RMS) 1s

RMS = +MSE




Descriptive Statistics — 4

Consider the ensemble average of the sample variance

1 N
<S8’ >=< FE(xi -X)’ >

R NS D
NizliNi:Ii N3

= <xl.2>—<3?2>
Ni=1

—<x’>—<x’>




Descriptive Statistics — 5

The ensemble average of the sample variance

<S’>=<x’>—<x’>

9) <X2> N_l 9)
=< X >-— — <X >
N N
_y -
N

has a negative bias of -/ N

Exercise 2:
Show this




Descriptive Statistics — Summary

The sample average
1s an unbiased estimate
of the ensemble average

The sample variance
1s a biased estimate

of the ensemble variance




Probability




Probability — 1

Basic Rules

1. P(A)>0

2. PA)=1 if A 1s true

3. P(A)=0 if A 1s false
Sum Rule

4. P(A+B)=P(A)+P(B) if AB 1s false *
Product Rule

5. P(AB)=P(AB) P(B) *

*A+tB=Aor B, AB=Aand B, A|B=A given that B is true
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Probability — 2

By definition, the conditional probability of A given B 1s

P(AIB):P(AB)

P(B)

%

P(A) 1s the probability of A without
restriction.

P(A|B) 1s the probability of A when
we restrict to the conditions under
which B i1s true.

P(AB)

P(BIA)= PO
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From
we deduce

Probability — 3

P(AB) = P(B| A)P(A)

Bayes’ Theorem:

P(B| A)=

P(A|B)P(B)

P(A)

@

= P(A| B)P(B)
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Probability — 4

A and B are mutually exclusive 1f
P(AB)=0

A and B are exhaustive 1f

P(A)+ P(B)=1
Theorem

P(A+ B)= P(A)+ P(B)— P(AB)

Exercise 3: Prove theorem
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Probability
Binomial & Poisson Distributions




Binomial & Poisson Distributions — 1

A Bernoulli trial has two outcomes:
S = success or F = failure.

Example: Each collision between protons at the LHC 1s a
Bernoulli trial in which something interesting happens (.5)
or does not (F).
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Binomial & Poisson Distributions — 2

Let p be the probability of a success, which 1s assumed to be
the same at each trial. Since S and F are exhaustive, the
probability of a failure 1s 1 — p. For a given order O of n
trails, the probability Pr(k,O|n) of exactly k successes and

n — k failures 1s

Pr(k,0,n)= p"(1- p)""

17



Binomial & Poisson Distributions — 3
If the order O of successes and failures 1s 1irrelevant, we can

eliminate the order from the problem integrating over all
possible orders

Pr(k,n)= ¥ Pr(k,0,n)= ¥ p*(1—p)"™*

© 00 000000006 06 000

This yields the binomial distribution
Binomial(k,n,p) = (’,;‘)pk(l —p) "

which is sometimes written as k ~ Binomial(#, p)
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Binomial & Poisson Distributions — 3

We can prove that the mean number of successes a 1s

a=pn. |Exercise 4: Prove it

Suppose that the probability, p, of a success 1s very small,

then, 1n the limit p — 0 and » — oo, such that a 1s constant,
Binomial(k, n, p) — Poisson(k, a).

The Poisson distribution is generally regarded as a good
model for a counting experiment

Exercise 5: Show that Binomial(k, n, p) — Poisson(k, a)
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Common Distributions and Densities

Uniform(x,a)
Gaussian(x, l,0)
Chisq(x,n)
Gammal(x,a,b)
Exp(x,a)
Binomial(k,n, p)
Poisson(k,a)

Multinomial(k,n, p)

1/a

exp[—(x— p1)* / (26°)]/ (o27)
x"*exp(=x/2)/[2"°T(n/2)]
x""'a” exp(—ax) / T'(b)
aexp(—ax)

(1)p*a-py*

a exp(—a) / k!

le , Zp =1, Zk =n

.Kll

20



Probability — What is it Exactly?

There are at least two interpretations of probability:

1. Degree of belief 1n, or plausibility of, a proposition
Example:
It will snow 1in Geneva on Friday

2. Relative frequency of outcomes in an infinite
sequence of identically repeated trials

Example:
trials: proton-proton collisions at the LHC
outcome: the creation of a Higgs boson
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Likelihood




Likelihood — 1

The likelihood function 1s simply the probability, or probability
density function (pdf), evaluated at the observed data.

Example 1: Top quark discovery (D0, 1995)
p(D| d) = Poisson(D |d)  probability to get a count D
p(17|d) = Poisson(17|d)  likelihood of observation D = 17

Poisson(D|d) = exp(-d) dP / D!
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Likelihood — 2

Example 2:
Multiple counts D, with a fixed

total count N
p(D | p)=Multinomial(D,N, p)

D=D,,--.D,, p=p, - Dx

K
YD =N
i=1

This 1s an example of
a multi-binned likelihood
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Likelihood — 3

Example 3:

Red shift and distance modulus measurements of

N = 580 Type Ia supernovae

=.

p(D1Q,,.Q,.0)= 3
N 3

H Gaussian(x;,u(z,;,<2,,,L,,0),0, g
i=1 &
D=z,x to, S

l

This 1s an example of
an un-binned likelithood

N
(&)

D
o

35

# The Union2.1 Compilation
[ The Supernova Cosmology Project
http://supernova.lbl.gov/Union/figures/ |

SCPUnion2.1_mu_vs_z.txt

0.5 1

15
redshift z
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Likelihood — 4

Example 4: Higgs to vy

The discovery of the neutral Higgs boson in the di-photon final
state made use of an an un-binned likelihood,

p(xls,mw,b)=exp[—(s+ b)]ﬁ[sf;(xi | m,w)+ bfb(xl.)]

where x

SN

= di-photon masses

= mass of new particle
= width of resonance

= expected signal

= expected background
= signal model

= background model

Exercise 6: Show that a
binned multi-Poisson

likelihood yields an
un-binned likelihood of

this form as the bin widths

g0 to zero
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Likelihood — 5

Given the likelihood function we can answer questions such
as:

How do I estimate a parameter?
How do I quantify its accuracy?
How do I test an hypothesis?

= =

How do I quantify the significance of a result?

Writing down the likelihood function requires:
1. Identifying all that is known, e.g., the observations
2. Identifying all that 1s unknown, e.g., the parameters
3. Constructing a probability model for both
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Likelihood — Top Quark Discovery

Example 1: Top Quark Discovery (1995), DO Results

knowns:
D =17 events
B =3.8 £ 0.6 background events

unknowns:
b expected background count
S expected signal count
d=b+s expected event count

Note: we are uncertain about unknowns, so 17 +4.11s a
statement about d, not about the observed count 17!
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Likelihood — Top Quark Discovery

Probability:
p(D s, b)="Poisson(D, s + b) Poisson(Q, bk)
~(s+b)” e U (bk)Ce ™

Likelihood: D! He+h
p(171s,b)
where
B =0Q/k O=(B/6B) =(3.8/0.6)"=41.11

0B =Q/k k=B/6B>=38/0.6>=10.56
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Likelihood — Higgs to yy (CMS)

Example 4: Higgs to yy

background model
x=m,

f,(x) = Aexp[—(bx + ax’)]

signal model

£ (x I m,w)

= Gaussian(x, n1, w)

400+

J

P

1200
12001
=> i
“Yo00[-
8001
6001
4001

2001

background = 30568
mass = 124.78 + 0.29
signal = 204 £ 63 ]
width = 0.85 £0.27

+ 185

956'

120 130 140 150

m,., (GeV)

p(x|s,m,w,b)=exp[—(s +b)]ﬁ[s f.(x, 1mw)+bf,(x,)]

160
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Likelihood — Higgs to yy (CMS)

width = 0.1 GeV
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Likelihood — Higgs to yy (CMS)

width = 0.5 GeV
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Likelihood — Higgs to yy (CMS)

width = 1.0 GeV
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Likelihood — Higgs to yy (CMS)

width = 1.5 GeV
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Likelihood — Higgs to yy (CMS)

width = 2.0 GeV
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Summary

Statistic
A statistic 1s any function of potential observations

Probability
Probability 1s an abstraction that must be interpreted

Likelihood
The likelihood 1s the probability (or probability density)

of potential observations evaluated at the observed data
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Tutorials

Location:
http:// www.hep.fsu.edu/~harry/ESHEP13

Download
tutorials.tar.gz
and unpack

tar zxv{ tutorials.tar.gz

Need:
Recent version of Root linked with RooFit and TMV A
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