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Definition: A statistic is any function of the data X. 
Given a sample X = x1, x2, … xN, it is often of interest  
to compute statistics such as  

the sample average 

and the sample variance  

In any analysis, it is good practice to study ensemble 
averages, denoted by < … >, of relevant statistics 
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Ensemble Average 

Mean 

Error 

Bias 

Variance 

Mean Square Error 
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  V =< (x− < x >)2 >

  MSE = < (x − µ)2 >



6 

The MSE is the most widely used measure of closeness of an 
ensemble of statistics {x} to the true value µ  

The root mean square (RMS) is 

Exercise 1: 
Show this 



Consider the ensemble average of the sample variance 
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The ensemble average of the sample variance 

has a negative bias of  –V / N  
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Exercise 2: 
Show this 



The sample average 
is an unbiased estimate 
of the ensemble average 

The sample variance  
is a biased estimate 
of the ensemble variance 
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Basic Rules  
 1.  P(A) ≥ 0     
 2.  P(A) = 1    if A is true 
 3.  P(A) = 0    if A is false 

Sum Rule 
 4.  P(A+B) = P(A) + P(B)  if AB is false * 

Product Rule    
 5.  P(AB) = P(A|B) P(B) *   

*A+B = A or B,   AB = A and B,  A|B = A given that B is true 



P(A | B) = P(AB)
P(B)

By definition, the conditional probability of A given B is 

P(A) is the probability of A without 
restriction.  

P(A|B) is the probability of A when  
we restrict to the conditions under  
which B is true. 

P(B | A) = P(AB)
P(A)
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From 
we deduce 
Bayes’ Theorem: 
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A and B are mutually exclusive if 

   P(AB) = 0 

A and B are exhaustive if 

   P(A) + P(B) = 1 
Theorem 
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Exercise 3: Prove theorem 
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  Pr(k,O,n) = pk (1− p)n− k



If the order O of successes and failures is irrelevant, we can 
eliminate the order from the problem integrating over all 
possible orders 

This yields the binomial distribution 

which is sometimes written as  
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Pr(k,n) = Pr(k,O,n)

O
∑ = pk (1− p)n− k

O
∑

Binomial(k,n, p) ≡ k
n( ) pk (1− p)n− k

 
k  Binomial(n, p)
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Exercise 5: Show that Binomial(k, n, p) → Poisson(k, a)  

Exercise 4: Prove it 
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1 / a

exp[−(x − µ)2 / (2σ 2 )] / (σ 2π )
xn /2−1 exp(−x / 2) / [2n /2Γ(n / 2)]
xb−1ab exp(−ax) / Γ(b)
aexp(−ax)

k
n( ) pk (1− p)n− k
ak exp(−a) / k!

n!
k1!kK !

pi
ki

i=1

K

∏ , pi = 1
i=1

K

∑ , ki = n
i=1

K

∑

Uniform(x,a)
Gaussian(x,µ,σ )
Chisq(x,n)
Gamma(x,a,b)
Exp(x,a)
Binomial(k,n, p)
Poisson(k,a)
Multinomial(k,n, p)
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There are at least two interpretations of probability: 

1.  Degree of belief in, or plausibility of, a proposition 
Example: 

 It will snow in Geneva on Friday  

2.  Relative frequency of outcomes in an infinite 
sequence of identically repeated trials 
 Example: 
       trials:  proton-proton collisions at the LHC 
       outcome:  the creation of a Higgs boson 
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The likelihood function is simply the probability, or probability 
density function (pdf), evaluated at the observed data. 

Example 1: Top quark discovery (D0, 1995) 

 p(D| d) = Poisson(D |d)  probability to get a count D 

 p(17|d) = Poisson(17|d)  likelihood of observation D = 17 

     Poisson(D|d) = exp(-d) dD / D! 
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Example 2:  
Multiple counts Di with a fixed 
total count N 

This is an example of  
a multi-binned likelihood 

 

p(D | p) =Multinomial(D,N , p)
D = D1,,DK , p = p1,, pK

Di = N
i=1

K

∑
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The Union2.1 Compilation

The Supernova Cosmology Project

http://supernova.lbl.gov/Union/figures/

SCPUnion2.1_mu_vs_z.txt
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Example 3:  
Red shift and distance modulus measurements of  
N = 580 Type Ia supernovae 

This is an example of  
an un-binned likelihood 

p(D |ΩM ,ΩΔ ,Q) =

Gaussian(xi ,µ(zi ,ΩM ,ΩΔ ,Q),σ i )
i=1

N

∏
D = zi , xi ±σ i
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Example 4: Higgs to γγ 
The discovery of the neutral Higgs boson in the di-photon final 

state made use of an an un-binned likelihood, 

where  x  = di-photon masses 
  m  = mass of new particle 
  w  = width of resonance 
  s  = expected signal 
  b  = expected background 
  fs  = signal model 
  fb  = background model  

p(x | s,m,w,b) = exp[−(s + b)] s fs (xi | m,w) + b fb (xi )[ ]
i=1

N

∏

Exercise 6: Show that a  
binned multi-Poisson  
likelihood yields an 
un-binned likelihood of 
this form as the bin widths 
go to zero 
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Given the likelihood function we can answer questions such 
as: 

1.  How do I estimate a parameter? 
2.  How do I quantify its accuracy? 
3.  How do I test an hypothesis? 
4.  How do I quantify the significance of a result? 

Writing down the likelihood function requires: 
1.  Identifying all that is known, e.g., the observations 
2.  Identifying all that is unknown, e.g., the parameters 
3.  Constructing a probability model for both 
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Example 1: Top Quark Discovery (1995), D0 Results 

 knowns: 
  D = 17 events   
  B = 3.8 ± 0.6 background events 

 unknowns: 
  b   expected background count 
  s   expected signal count 
  d = b + s  expected event count 

Note: we are uncertain about unknowns, so 17 ± 4.1 is a 
statement about d, not about the observed count 17! 



Probability: 

Likelihood: 

where 
 B  = Q / k 
 δB  = √Q / k  
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Q = (B /δB)2 = (3.8 / 0.6)2 = 41.11
k = B /δB2 = 3.8 / 0.62 = 10.56

p(D | s, b) = Poisson(D, s + b) Poisson(Q, bk)

=
(s + b)D e−(s+b)

D!
(bk)Q e−bk

Γ(Q +1)

p(17 | s, b)
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Example 4: Higgs to γγ 

background model 

signal model 
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x = mγγ

fb (x) = Aexp[−(bx + ax
2 )]

fs (x | m,w)
=  Gaussian(x, m, w)

p(x | s,m,w,b) = exp[−(s + b)] s fs (xi | m,w) + b fb (xi )[ ]
i=1

N

∏
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Statistic 
  A statistic is any function of potential observations 

Probability 
Probability is an abstraction that must be interpreted  

Likelihood 
The likelihood is the probability (or probability density)  
of potential observations evaluated at the observed data 



Location: 
http://www.hep.fsu.edu/~harry/ESHEP13 

Download  
 tutorials.tar.gz 

and unpack 
 tar zxvf tutorials.tar.gz 

Need: 
 Recent version of Root linked with RooFit and TMVA 
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