Practical Statistics for Particle Physicists Lecture 1

Harrison B. Prosper

Florida State University

European School of High-Energy Physics
Parádfürdő, Hungary

5 - 18 June, 2013

Outline

- Lecture 1
- Descriptive Statistics
- Probability \& Likelihood
- Lecture 2
- The Frequentist Approach
- The Bayesian Approach
- Lecture 3
- Analysis Example

Descriptive Statistics

Descriptive Statistics - 1

Definition: A statistic is any function of the data X.
Given a sample $X=x_{1}, x_{2}, \ldots x_{\mathrm{N}}$, it is often of interest to compute statistics such as
the sample average

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

and the sample variance $S^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}$
In any analysis, it is good practice to study ensemble averages, denoted by $<\ldots>$, of relevant statistics

Descriptive Statistics - 2

Ensemble Average

Mean
$<x>$
μ
$\varepsilon=x-\mu$
$b=<x>-\mu$
Variance

Mean Square Error

$$
V=<(x-<x>)^{2}>
$$

$$
\mathrm{MSE}=\left\langle(x-\mu)^{2}\right\rangle
$$

Descriptive Statistics - 3

$$
\begin{aligned}
\mathrm{MSE} & =\left\langle(x-\mu)^{2}\right\rangle \\
& =V+b^{2}
\end{aligned}
$$

Exercise 1:

 Show thisThe MSE is the most widely used measure of closeness of an ensemble of statistics $\{\mathbf{x}\}$ to the true value μ

The root mean square (RMS) is

$$
\mathrm{RMS}=\sqrt{\mathrm{MSE}}
$$

Descriptive Statistics - 4

Consider the ensemble average of the sample variance

$$
\begin{aligned}
<S^{2}> & =<\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}> \\
& =<\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}-\frac{2}{N} \sum_{i=1}^{N} x_{i} \bar{x}+\frac{1}{N} \sum_{i=1}^{N} \bar{x}^{2}> \\
& =\frac{1}{N} \sum_{i=1}^{N}<x_{i}^{2}>-<\bar{x}^{2}> \\
& =<x^{2}>-<\bar{x}^{2}>
\end{aligned}
$$

Descriptive Statistics - 5

The ensemble average of the sample variance

$$
\begin{aligned}
<S^{2}> & =<x^{2}>-<\bar{x}^{2}> \\
& =<x^{2}>-\frac{<x^{2}>}{N}-\left(\frac{N-1}{N}\right)<x>^{2} \\
& =V-\frac{V}{N}
\end{aligned}
$$

has a negative bias of $-V / N$

Descriptive Statistics - Summary

The sample average is an unbiased estimate
of the ensemble average

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

The sample variance is a biased estimate of the ensemble variance

$$
S^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

Probability

Probability - 1

Basic Rules

1. $\mathrm{P}(\mathrm{A}) \geq 0$
2. $\mathrm{P}(\mathrm{A})=1$
3. $P(A)=0$
if A is true
if A is false

Sum Rule

4. $\mathrm{P}(\mathrm{A}+\mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B}) \quad$ if AB is false *

Product Rule

5. $\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B})$ *
$* A+B=A$ or $B, \quad A B=A$ and $B, \quad A \mid B=A$ given that B is true

Probability - 2

By definition, the conditional probability of A given B is

$$
P(A \mid B)=\frac{P(A B)}{P(B)}
$$

$P(\mathrm{~A})$ is the probability of A without restriction.
$P(\mathrm{~A} \mid \mathrm{B})$ is the probability of A when we restrict to the conditions under which B is true.

$$
P(B \mid A)=\frac{P(A B)}{P(A)}
$$

Probability - 3

From

$$
\begin{aligned}
P(A B) & =P(B \mid A) P(A) \\
& =P(A \mid B) P(B)
\end{aligned}
$$

Bayes' Theorem:

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

A
B

Probability - 4

A and B are mutually exclusive if

$$
P(A B)=0
$$

A and B are exhaustive if

$$
P(A)+P(B)=1
$$

Theorem

$$
P(A+B)=P(A)+P(B)-P(A B)
$$

Exercise 3: Prove theorem

Probability
 Binomial \& Poisson Distributions

Binomial \& Poisson Distributions - 1

A Bernoulli trial has two outcomes:
$S=$ success or $F=$ failure.

Example: Each collision between protons at the LHC is a Bernoulli trial in which something interesting happens (S) or does not (F).

Binomial \& Poisson Distributions - 2

Let p be the probability of a success, which is assumed to be the same at each trial. Since S and F are exhaustive, the probability of a failure is $\mathbf{1}-\boldsymbol{p}$. For a given order \boldsymbol{O} of \boldsymbol{n} trails, the probability $\operatorname{Pr}(k, O \mid n)$ of exactly \boldsymbol{k} successes and $\boldsymbol{n}-\boldsymbol{k}$ failures is

$$
\operatorname{Pr}(k, O, n)=p^{k}(1-p)^{n-k}
$$

Binomial \& Poisson Distributions - 3

If the order \boldsymbol{O} of successes and failures is irrelevant, we can eliminate the order from the problem integrating over all possible orders

$$
\operatorname{Pr}(k, n)=\sum_{O} \operatorname{Pr}(k, O, n)=\sum_{O} p^{k}(1-p)^{n-k}
$$

This yields the binomial distribution

$$
\operatorname{Binomial}(k, n, p) \equiv\binom{n}{k} p^{k}(1-p)^{n-k}
$$

which is sometimes written as $k \sim \operatorname{Binomial}(n, p)$

Binomial \& Poisson Distributions - 3

We can prove that the mean number of successes a is

$$
a=p n . \quad \text { Exercise 4: Prove it }
$$

Suppose that the probability, \boldsymbol{p}, of a success is very small, $\bigcirc \bigcirc \bigcirc$ then, in the limit $\boldsymbol{p} \rightarrow 0$ and $n \rightarrow \infty$, such that \boldsymbol{a} is constant, $\operatorname{Binomial}(k, n, p) \rightarrow \operatorname{Poisson}(k, a)$.

The Poisson distribution is generally regarded as a good model for a counting experiment
Exercise 5: Show that $\operatorname{Binomial}(k, n, p) \rightarrow \operatorname{Poisson}(k, a)$

Common Distributions and Densities

Uniform (x, a)
$\operatorname{Gaussian}(x, \mu, \sigma)$
$\operatorname{Chisq}(x, n)$
$\operatorname{Gamma}(x, a, b)$
$\operatorname{Exp}(x, a)$
$\operatorname{Binomial}(k, n, p)$
Poisson (k, a)
$\operatorname{Multinomial}(k, n, p)$
$1 / a$
$\exp \left[-(x-\mu)^{2} /\left(2 \sigma^{2}\right)\right] /(\sigma \sqrt{2 \pi})$
$x^{n / 2-1} \exp (-x / 2) /\left[2^{n / 2} \Gamma(n / 2)\right]$
$x^{b-1} a^{b} \exp (-a x) / \Gamma(b)$
$a \exp (-a x)$
$\binom{n}{k} p^{k}(1-p)^{n-k}$
$a^{k} \exp (-a) / k!$
$\frac{n!}{k_{1}!\cdots k_{K}!} \prod_{i=1}^{K} p_{i}^{k_{i}}, \sum_{i=1}^{K} p_{i}=1, \sum_{i=1}^{K} k_{i}=n$

Probability - What is it Exactly?

There are at least two interpretations of probability:

1. Degree of belief in, or plausibility of, a proposition Example:

It will snow in Geneva on Friday
2. Relative frequency of outcomes in an infinite sequence of identically repeated trials Example:
trials: proton-proton collisions at the LHC
outcome: the creation of a Higgs boson

Likelihood

Likelihood - 1

The likelihood function is simply the probability, or probability density function (pdf), evaluated at the observed data.

Example 1: Top quark discovery (D0, 1995)
$p(D \mid d)=\operatorname{Poisson}(D \mid d) \quad$ probability to get a count D
$p(17 \mid d)=\operatorname{Poisson}(17 \mid d) \quad$ likelihood of observation $D=17$
$\operatorname{Poisson}(D \mid d)=\exp (-d) d^{D} / D!$

Likelihood - 2

Example 2:

Multiple counts D_{i} with a fixed total count N
$p(D \mid p)=\operatorname{Multinomial}(D, N, p)$
$D=D_{1}, \cdots, D_{K}, \quad p=p_{1}, \cdots, p_{K}$
$\sum_{i=1}^{K} D_{i}=N$
This is an example of
a multi-binned likelihood

PHYSICAL REVIEW D 87, 052017 (2013)
Search for contact interactions using the inclusive jet p_{T} spectrum in $p \boldsymbol{p}$ collisions at $\sqrt{s}=7 \mathrm{TeV}$

Likelihood - 3

Example 3:

Red shift and distance modulus measurements of
$N=580$ Type Ia supernovae
$p\left(D \mid \Omega_{M}, \Omega_{\Delta}, Q\right)=$
$\prod_{i=1}^{N} \operatorname{Gaussian}\left(x_{i}, \mu\left(z_{i}, \Omega_{M}, \Omega_{\Delta}, Q\right), \sigma_{i}\right)$
$D=z_{i}, x_{i} \pm \sigma_{i}$

This is an example of an un-binned likelihood

Likelihood - 4

Example 4: Higgs to $\gamma \gamma$
The discovery of the neutral Higgs boson in the di-photon final state made use of an an un-binned likelihood,

$$
p(x \mid s, m, w, b)=\exp [-(s+b)] \prod_{i=1}^{N}\left[s f_{s}\left(x_{i} \mid m, w\right)+b f_{b}\left(x_{i}\right)\right]
$$

where $x \quad=$ di-photon masses
$\begin{array}{ll}m & =\text { mass of new particle } \\ w & =\text { width of resonance } \\ s & =\text { expected signal } \\ b & =\text { expected background }\end{array}$
$f_{s} \quad=$ signal model
$f_{b} \quad=$ background model

Exercise 6: Show that a binned multi-Poisson likelihood yields an un-binned likelihood of this form as the bin widths go to zero

Likelihood - 5

Given the likelihood function we can answer questions such as:

1. How do I estimate a parameter?
2. How do I quantify its accuracy?
3. How do I test an hypothesis?
4. How do I quantify the significance of a result?

Writing down the likelihood function requires:

1. Identifying all that is known, e.g., the observations
2. Identifying all that is unknown, e.g., the parameters
3. Constructing a probability model for both

Likelihood - Top Quark Discovery

Example 1: Top Quark Discovery (1995), D0 Results
knowns:

$$
\begin{aligned}
& D=17 \text { events } \\
& B=3.8 \pm 0.6 \text { background events }
\end{aligned}
$$

unknowns:
b
S

$$
d=b+s
$$

expected background count expected signal count expected event count

Note: we are uncertain about unknowns, so 17 ± 4.1 is a statement about d, not about the observed count 17!

Likelihood - Top Quark Discovery

Probability:

$$
p(D \mid s, b)=\operatorname{Poisson}(D, s+b) \operatorname{Poisson}(\mathrm{Q}, b k)
$$

Likelihood: $\quad=\frac{(s+b)^{D} e^{-(s+b)}}{D!} \frac{(b k)^{Q} e^{-b k}}{\Gamma(Q+1)}$

$$
p(17 \mid s, b)
$$

where

$$
\begin{array}{ll}
B=Q / k & Q=(B / \delta B)^{2}=(3.8 / 0.6)^{2}=41.11 \\
\delta B=\sqrt{ } \mathrm{Q} / \mathrm{k} & k=B / \delta B^{2}=3.8 / 0.6^{2}=10.56
\end{array}
$$

Likelihood - Higgs to $\gamma \gamma($ CMS $)$

Example 4: Higgs to $\gamma \gamma$
background model
$x=m_{r}$
$f_{b}(x)=A \exp \left[-\left(b x+a x^{2}\right)\right]$
signal model
$f_{s}(x \mid m, w)$
$=\operatorname{Gaussian}(x, m, w)$

$p(x \mid s, m, w, b)=\exp [-(s+b)] \prod_{i=1}^{N}\left[s f_{s}\left(x_{i} \mid m, w\right)+b f_{b}\left(x_{i}\right)\right]$

Likelihood - Higgs to $\gamma \gamma(\mathrm{CMS})$

Summary

Statistic

A statistic is any function of potential observations

Probability

Probability is an abstraction that must be interpreted

Likelihood

The likelihood is the probability (or probability density) of potential observations evaluated at the observed data

Tutorials

Location:
http://www.hep.fsu.edu/~harry/ESHEP13

Download
tutorials.tar.gz
and unpack
tar zxvf tutorials.tar.gz

Need:
Recent version of Root linked with RooFit and TMVA

