2nd Lecture When (some) QCD matters

- Isospin and SU(3) flavor Measuing α , SU(3)
- The heavy quark limit

Heavy quark symmetry, OPE, exclusive / inclusive decays

• Semileptonic and radiative *b* decays

 $b \rightarrow s \gamma$, etc.

• SCET and nonleptonic decays — skip, but include slides

B decays to charm, Λ_b decay charmless *B* decays, different approaches

Interplay of electroweak and strong interactions

 $-\frac{2}{3}n_f > 0$

- How to learn about high energy physics from low energy hadronic processes?
- QCD coupling is scale dependent, $\alpha_s(m_B) \sim 0.2$

$$= \frac{\alpha_s(\Lambda)}{1 + \frac{\alpha_s}{2\pi}\beta_0 \ln \frac{\mu}{\Lambda}}, \qquad \beta_0 = 11$$

Nobel prize in 2004: Politzer, Wilczek, Gross

 $\alpha_s(\mu)$

Interplay of electroweak and strong interactions

- How to learn about high energy physics from low energy hadronic processes?
- QCD coupling is scale dependent, $\alpha_s(m_B) \sim 0.2$

$$\alpha_s(\mu) = \frac{\alpha_s(\Lambda)}{1 + \frac{\alpha_s}{2\pi}\beta_0 \ln \frac{\mu}{\Lambda}}, \qquad \beta_0 = 11 - \frac{2}{3}n_f > 0$$

High energy (short distance): perturbation theory is useful

Low energy (long distance): QCD becomes nonperturbative \Rightarrow It is usually very hard, if not impossible, to make precise calculations

- Solutions: New symmetries in some limits: effective theories (heavy quark, chiral) Certain processes are determined by short-distance physics Lattice QCD (bite the bullet — limited cases)
- Incalculable nonperturbative hadronic effects sometimes limit sensitivity

Disentangling weak and strong interactions

- Want to learn about electroweak physics, but hadronic physics is nonperturbative Model independent continuum approaches:
- (1) Symmetries of QCD (exact or approximate)
 - E.g.: $\sin 2\beta$ from $B \to J/\psi K_S$: amplitude not calculable Solution: CP symmetry of QCD (θ_{QCD} can be neglected) $\langle \psi K_S | \mathcal{H} | B^0 \rangle = -\langle \psi K_S | \mathcal{H} | \overline{B}^0 \rangle \times [1 + \mathcal{O}(\alpha_s \lambda^2)]$
- (2) Effective field theories (separation of scales)
 E.g.: |V_{cb}| and |V_{ub}| from semileptonic B decays
 Solution: Heavy quark expansions

$$\Gamma = |V_{cb}|^2 \times (\text{known factors}) \times [1 + \mathcal{O}(\Lambda_{\rm QCD}^2/m_b^2)]$$

Many relevant scales: $B o X_s \gamma$

• Separate physics at: $(m_{t,W} \sim 100 \,\text{GeV}) \gg (m_b \sim 5 \,\text{GeV}) \gg (\Lambda \sim 0.5 \,\text{GeV})$

Inclusive decay: $X_s = K^*, \ K^{(*)}\pi, \ K^{(*)}\pi\pi$, etc.

Diagrams with many gluons are crucial, resumming certain subset of them affects rate at factor-of-two level

Rate in SM calculated to < 10%, using several effective theories, renormalization group, operator product expansion... one of the most involved SM analyses

Solution: Short distance dominated (some issues discussed later)

Some caveats

- Lot at stake: theoretical tools for semileptonic and rare decays are the same
 - Measurements of CKM elements
 - Better understanding of hadronic physics improves sensitivity to new physics
- For today's talk: [strong interaction] model independent \equiv theor. uncertainty suppressed by small parameters
 - ... so theorists argue about $\mathcal{O}(1)\times \mbox{(small numbers)}$ instead of $\mathcal{O}(1)$ effects
- Most of the progress have come from expanding in powers of Λ/m_Q , $\alpha_s(m_Q)$... a priori not known whether $\Lambda \sim 200 \text{ MeV}$ or $\sim 2 \text{ GeV}$ $(f_{\pi}, m_{\rho}, m_K^2/m_s)$
 - ... need experimental guidance to see how well the theory works

The SM shows impressive consistency — separate what's "proven" / "hoped" Only robust deviations from model independent theory are likely to be interesting $(2\sigma: 50 \text{ theory papers} \quad 3\sigma: 200 \text{ theory papers} \quad 5\sigma: \text{ strong sign of an effect})$

Isospin and SU(3) flavor

Extracting α from $B \to \pi \pi$

• Until \sim 1997 the hope was to determine α simply from:

$$\frac{\Gamma(\overline{B}^0(t) \to \pi^+\pi^-) - \Gamma(B^0(t) \to \pi^+\pi^-)}{\Gamma(\overline{B}^0(t) \to \pi^+\pi^-) + \Gamma(B^0(t) \to \pi^+\pi^-)} = S\sin(\Delta m t) - C\cos(\Delta m t)$$

 $\arg \lambda_{\pi^+\pi^-} = (B - \text{mix} = 2\beta) + (\overline{A}/A = 2\gamma + ...) \Rightarrow \text{measures } \sin 2\alpha \text{ if amplitudes}$ with one weak phase dominated — relied on expectation that P/T = small

 $\mathcal{B}(B \to K\pi) > \mathcal{B}(B \to \pi\pi) \Rightarrow$ comparable amplitudes with different weak & strong phases (roughly $|P/T| \gtrsim 0.3$)

• Models in which the dominant NP effect is the modification of the $B^0 - \overline{B}^0$ mixing amplitude have $\gamma = \pi - \beta - \alpha$, so reducing the uncertainty of α effectively improves the determination of γ and the bound on NP

$B ightarrow \pi\pi$ — isospin analysis

- Isospin started with (p, n) symmetry, broken by $(m_d m_u)/\Lambda_{\rm QCD}$
- (u, d): *I*-spin doublet $(\pi \pi)_{\ell=0} \rightarrow I_f = 0$ or $I_f = 2$ other quarks and gluons: I = 0 (1×1) $(\Delta I = \frac{1}{2})$ $(\Delta I = \frac{3}{2})$ γ, Z : mixtures of I = 0, 1 I = 0 final state forbidden by Bose symmetry
- Hamiltonian has two parts: $\Delta I = \frac{1}{2} \Rightarrow I_f = 0$ $\Delta I = \frac{3}{2} \Rightarrow I_f = 2$... only two amplitudes

Note: γ and Z penguins violate isospin and yield some (small) uncertainties Experimentally, need all (tagged) rates + time dependent $B \rightarrow \pi^+\pi^-$ asymmetry

• Three rates $\overline{B}{}^0 \to \pi^+\pi^-$, $\overline{B}{}^0 \to \pi^0\pi^0$, $B^- \to \pi^0\pi^-$ determine magnitudes and relative strong phase of two amplitudes; similarly for B^0 and B^+ decay

Isospin analysis (cont.)

Isospin symmetry implies that 6 amplitudes form two triangles with common base

$$\begin{aligned} \frac{A^{+-}}{\sqrt{2}} + A^{00} &= A^{+0}, \qquad \frac{\bar{A}^{+-}}{\sqrt{2}} + \bar{A}^{00} &= \bar{A}^{-0} \\ |A^{+0}| &= |\bar{A}^{-0}| \end{aligned}$$
$$\begin{aligned} A^{+-} &\equiv A(B^0 \to \pi^+ \pi^-) \quad \bar{A}^{+-} &\equiv A(\bar{B}^0 \to \pi^+ \pi^-) \\ A^{00} &\equiv A(B^0 \to \pi^0 \pi^0) \qquad \bar{A}^{00} &\equiv A(\bar{B}^0 \to \pi^0 \pi^0) \\ A^{+0} &\equiv A(B^+ \to \pi^+ \pi^0) \qquad \bar{A}^{-0} &\equiv A(B^- \to \pi^- \pi^0) \end{aligned}$$

• $B \rightarrow \rho \pi$: 4 isospin amplitudes \Rightarrow pentagon relations (not used)

Dalitz plot analysis allows considering $\pi^+\pi^-\pi^0$ final state only

$B \to \rho \rho$: the best α at present

• $\rho\rho$ is mixture of CP even/odd (as all VV modes); data: CP = even dominates Isospin analysis applies for each L, or in transversity basis for each σ (= 0, ||, \perp)

• Small rate:
$$\mathcal{B}(B \to \rho^0 \rho^0) = (0.73 \pm 0.28) \times 10^{-6} \Rightarrow$$
 small penguin pollution
 $\frac{\mathcal{B}(B \to \pi^0 \pi^0)}{\mathcal{B}(B \to \pi^+ \pi^0)} \approx 0.35$ vs. $\frac{\mathcal{B}(B \to \rho^0 \rho^0)}{\mathcal{B}(B \to \rho^+ \rho^0)} \approx 0.03$

- Ultimately, more complicated than $\pi\pi$, I = 1 possible due to finite Γ_{ρ} , giving $\mathcal{O}(\Gamma_{\rho}^2/m_{\rho}^2)$ effects [can be constrained]
 - $B \to \rho \rho$ isospin analysis: $\alpha = (90 \pm 5)^{\circ}$
- Also $B \rightarrow \rho \pi$ Dalitz plot analysis
- $\rho\rho$ mode dominates α determination for now, may change at a super *B* factory

Recall: the $B ightarrow K\pi$ puzzle

• SCET / factorization predicts: $\arg(C/T) = \mathcal{O}(\Lambda_{QCD}/m_b)$ and $A + P_{ew}$ small

This makes it hard to understand above data:

- P and T: nonzero relative strong and weak phases to give $A_{K^+\pi^-}$
- T and C: same weak phase and predicted to have small relative strong phase
- Huge fluctuations? Breakdown of $1/m \exp$? Missing something subtle? BSM?

Flavor SU(3) — a timely example

- First observation of B_s CPV: $A_{CP}(B_s^0 \to K^-\pi^+) = 0.27 \pm 0.04$ [LHCb, arXiv:1304.6173]
- Compare: $B^0_d \to K^+\pi^- \quad (\bar{b} \to \bar{s}q\bar{q}) \quad \text{vs.} \quad B^0_s \to K^-\pi^+ \quad (\bar{b} \to \bar{d}q\bar{q})$

Can use *U*-spin $(d \leftrightarrow s)$ subgroup of SU(3): (B_d, B_s) , \mathcal{H} , (π^+, K^+) , (π^-, K^-) final state $U = 0, 1 \Rightarrow$ two reduced matrix elements

$$A(B_d^0 \to K^+\pi^-) = V_{cb}^* V_{cs} \left(P_c - P_t + T_{c\bar{c}s} \right) + V_{ub}^* V_{us} \left(T_{u\bar{u}s} + P_u - P_t \right) \equiv P + T$$

 $A(B_s^0 \to K^- \pi^+) = V_{cb}^* V_{cd} \left(P_c - P_t + T_{c\bar{c}s} \right) + V_{ub}^* V_{ud} \left(T_{u\bar{u}s} + P_u - P_t \right) = -\lambda P + \lambda^{-1} T$

• LHCb quotes the SU(3) relation:

$$\Delta \equiv \frac{\mathcal{A}_{\rm CP}(B_d \to K^+\pi^-)}{\mathcal{A}_{\rm CP}(B_s \to K^-\pi^+)} + \frac{\mathcal{B}(B_s \to K^-\pi^+)}{\mathcal{B}(B_d \to K^+\pi^-)} \frac{\tau_d}{\tau_s} = -0.02 \pm 0.05 \pm 0.04$$

• Looks obscure — where does this come from?

Flavor SU(3) vs factorization at $\mu \sim m_b$

• Saw yesterday:
$$\Gamma_{CP}(i \to f) \equiv \Gamma(i \to f) - \Gamma(\bar{i} \to \bar{f}) = 4A_1A_2 \sin(\phi_1 - \phi_2) \sin(\delta_1 - \delta_2)$$

Define:
$$\tilde{\Delta} \equiv \frac{\Gamma_{\rm CP}(B_d \to K^+\pi^-) + \Gamma_{\rm CP}(B_s \to K^-\pi^+)}{\Gamma_{\rm CP}(B_d \to K^+\pi^-) - \Gamma_{\rm CP}(B_s \to K^-\pi^+)} = 0.01 \pm 0.11$$

In fact $\widetilde{\Delta} = 0 + \text{typical size of } SU(3)$ breaking, whereas Δ depends also on |P/T|

• Using factorization $\widetilde{\Delta} \ll 1$ iff: $F_{B \to \pi} f_K \approx F_{B_s \to K} f_{\pi}$

Need $B_s \to K$ form factor from LQCD (extract $|V_{ub}|$ at LHCb from $B_s \to K^+ \mu^- \nu$?) Similar SU(3) relations: $B_s^0 \to K^+ K^- \longleftrightarrow B_d^0 \to \pi^+ \pi^ B_s^0 \to \pi^+ \pi^- \longleftrightarrow B_d^0 \to K^+ K^-$

• Which relation works well will help answer what's at play [Grossman, ZL, Robinson, to appear]

Heavy quark symmetry

Heavy quark symmetry

- $Q \overline{Q}$: positronium-type bound state, perturbative in the $m_Q \gg \Lambda_{QCD}$ limit
- $Q \overline{q}$: wave function of the light degrees of freedom ("brown muck") insensitive to spin and flavor of Q

B meson is a lot more complicated than just a $b \bar{q}$ pair

- In the $m_Q \gg \Lambda_{\rm QCD}$ limit, the heavy quark acts as a static color source with fixed four-velocity v^{μ}
- $\Rightarrow SU(2n)$ heavy quark spin-flavor symmetry at fixed v^{μ}

- Similar to atomic physics: $(m_e \ll m_N)$
 - 1. Flavor symmetry ~ isotopes have similar chemistry [Ψ_e independent of m_N]
 - 2. Spin symmetry ~ hyperfine levels almost degenerate $[\vec{s}_e \vec{s}_N \text{ interaction} \rightarrow 0]$

Spectroscopy of heavy-light mesons

• In $m_Q \gg \Lambda_{\text{QCD}}$ limit, spin of the heavy quark is a good quantum number, and so is the spin of the light d.o.f., since $\vec{J} = \vec{s}_Q + \vec{s}_l$ and

angular momentum conservation: $[\vec{J}, \mathcal{H}] = 0$ heavy quark symmetry: $[\vec{s}_Q, \mathcal{H}] = 0$ $\} \Rightarrow [\vec{s}_l, \mathcal{H}] = 0$

For a given s_l , two degenerate states:

$$J_{\pm} = s_l \pm \frac{1}{2}$$

 $\Rightarrow \Delta_i = \mathcal{O}(\Lambda_{\text{QCD}})$ — same in *B* and *D* sector

Doublets are split by order $\Lambda^2_{\rm QCD}/m_Q$, e.g.: $m_{D^*} - m_D \simeq 140 \,\text{MeV}$ $m_{B^*} - m_B \simeq 45 \,\text{MeV}$

Aside: a puzzle

- Vector-pseudoscalar mass splitting is $\propto 1/m_Q \Rightarrow m_V^2 m_P^2 = \text{const.}$
 - Experimentally: $m_{B^*}^2 m_B^2 = 0.49 \,\text{GeV}^2$ $m_{B_s}^2 m_{B_s}^2 = 0.50 \,\text{GeV}^2$ $m_{D^*}^2 - m_D^2 = 0.54 \,\text{GeV}^2$ $m_{D_s}^2 - m_{D_s}^2 = 0.58 \,\text{GeV}^2$

Aside: a puzzle

• Vector–pseudoscalar mass splitting is $\propto 1/m_Q \Rightarrow m_V^2 - m_P^2 = \text{const.}$

 $\begin{array}{lll} \mbox{Experimentally:} & m_{B^*}^2 - m_B^2 = 0.49 \, {\rm GeV}^2 & m_{B_s}^2 - m_{B_s}^2 = 0.50 \, {\rm GeV}^2 \\ & m_{D^*}^2 - m_D^2 = 0.54 \, {\rm GeV}^2 & m_{D_s}^2 - m_{D_s}^2 = 0.58 \, {\rm GeV}^2 \\ & m_{K^*}^2 - m_K^2 = 0.55 \, {\rm GeV}^2 \\ & m_{\rho}^2 - m_{\pi}^2 = 0.57 \, {\rm GeV}^2 \\ \end{array}$

- The HQS argument relies on $m_Q \gg \Lambda_{\rm QCD}$, so something more has to go on...
- It is not only important to test how a theory works, but also how it breaks down! [An approximation should work when it the expansion parameter is small, and fail when it's O(1)]

Successes in charm spectrum

• D_1 narrow width:

S-wave $D_1 \rightarrow D^* \pi$ allowed by angular momentum conservation, but forbidden in the $m_Q \rightarrow \infty$ limit by heavy quark spin symmetry

Mass splittings of orbitally excited states is small:

 $m_{D_2^*} - m_{D_1} = 37 \text{ MeV} \ll m_{D^*} - m_D$ vanishes in the quark model, since it arise from $\langle \vec{s}_Q \cdot \vec{s}_{\bar{q}} \, \delta^3(\vec{r}) \rangle$

Spectroscopy of D mesons

Semileptonic and rare *B* decays

- $|V_{ub}|$ is the dominant uncertainty of the side of the UT opposite to β
 - $|V_{ub}|$ is crucial for comparing treedominated and loop-mediated pro- \models cesses
- Error of $|V_{cb}|$ is a large part of the uncertainty in the ϵ_K constraint, and in $K \rightarrow \pi \nu \bar{\nu}$ when it's measured

Rare $b \to s\gamma$, $s \ell^+ \ell^-$, and $s \nu \bar{\nu}$ decays are sensitive probes of the Standard Model

Exclusive $B ightarrow D^{(*)} \ell ar{ u}$ decay

- In the $m_{b,c} \gg \Lambda_{\text{QCD}}$ limit, configuration of brown muck only depends on the fourvelocity of the heavy quark, but not on its mass and spin
- On a time scale $\ll \Lambda_{\text{QCD}}^{-1}$ weak current changes $b \to c$ i.e.: $\vec{p_b} \to \vec{p_c}$ and possibly $\vec{s_Q}$ flips

In $m_{b,c} \gg \Lambda_{\rm QCD}$ limit brown muck only feels $v_b \to v_c$

Form factors independent of Dirac structure of weak current \Rightarrow all form factors related to a single function of $w = v \cdot v'$, the Isgur-Wise function, $\xi(w)$

Contains all nonperturbative low-energy hadronic physics

• $\xi(1) = 1$, because at "zero recoil" configuration of brown muck not changed at all

$$B
ightarrow D^{(*)} \ell ar{
u}$$
 form factors

• Lorentz invariance \Rightarrow 6 form factors

$$\langle D(v')|V_{\nu}|B(v)\rangle = \sqrt{m_B m_D} \left[h_+ (v+v')_{\nu} + h_- (v-v')_{\nu} \right]$$

$$\langle D^*(v')|V_{\nu}|B(v)\rangle = i\sqrt{m_B m_{D^*}} h_V \epsilon_{\nu\alpha\beta\gamma} \epsilon^{*\alpha} v'^{\beta} v^{\gamma}$$

$$\langle D(v')|A_{\nu}|B(v)\rangle = 0$$

$$\langle D^*(v')|A_{\nu}|B(v)\rangle = \sqrt{m_B m_{D^*}} \left[h_{A_1} (w+1)\epsilon_{\nu}^* - h_{A_2} (\epsilon^* \cdot v)v_{\nu} - h_{A_3} (\epsilon^* \cdot v)v_{\nu}' \right]$$

$$V_{\nu} = \bar{c}\gamma_{\nu}b, \quad A_{\nu} = \bar{c}\gamma_{\nu}\gamma_5b, \quad w \equiv v \cdot v' = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}, \quad \text{and} \quad h_i = h_i(w,\mu)$$

• In $m_Q \gg \Lambda_{
m QCD}$ limit, up to corrections suppressed by α_s and $\Lambda_{
m QCD}/m_{c,b}$

$$h_{-} = h_{A_2} = 0$$
, $h_{+} = h_V = h_{A_1} = h_{A_3} = \xi(w)$

The α_s corrections are calculable $\Lambda_{\rm QCD}/m_{c,b}$ corrections is where model dependence enters

[↑] Isgur-Wise function

 $|V_{cb}|$ from $B o D^{(*)} \ell ar{
u}$

• Extract $|V_{cb}|$ from $w \equiv v \cdot v' = (m_B^2 + m_D^2 - q^2)/(2m_Bm_D) \rightarrow 1$ limit of the rate $\frac{d\Gamma(B \rightarrow D^{(*)}\ell\bar{\nu})}{dw} = (\dots)(w^2 - 1)^{3/2(1/2)} |V_{cb}|^2 \mathcal{F}^2_{(*)}(w)$ $\swarrow w \equiv v \cdot v' \qquad \text{Isgur-Wise function} + \dots$ $\mathcal{F}(1) = \mathbf{1}_{\text{Isgur-Wise}} + 0.02_{\alpha_s,\alpha_s^2} + \frac{(\text{lattice or models})}{m_{c,b}} + \dots$ $\mathcal{F}_*(1) = \mathbf{1}_{\text{Isgur-Wise}} - 0.04_{\alpha_s,\alpha_s^2} + \frac{\mathbf{0}_{\text{Luke}}}{m_{c,b}} + \frac{(\text{lattice or models})}{m_{c,b}^2} + \dots$

• Lattice QCD: $\mathcal{F}_*(1) = 0.921 \pm 0.024$, $\mathcal{F}(1) = 1.074 \pm 0.024$ [arXiv:0808.2519, hep-lat/0409116]

Need constraints on shape to fit

[Boyd, Grinstein, Lebed; Caprini, Lellouch, Neubert]

• Need some understanding of decays to higher mass X_c states (backgrounds)

Heavy quark expansion

The multipole expansion

Physics at $r \sim L$ is complicated

Depends on the details of the charge distribution

The multipole expansion

Physics at $r \gg L$ is much simpler

Charge distribution characterized by total charge, q

Details suppressed by powers of L/r, and can be parameterized in terms of p_i, Q_{ij}, \ldots

Simplifications occur due to separating physics at different distance scales

 Complicated charge distribution can be replaced by a point source with additional interactions (multipoles) — underlying idea of effective theories

The multipole expansion (cont.)

• Potential:
$$V(x) = q \frac{1}{r} + p_i \frac{x_i}{r^3} + \frac{1}{2} Q_{ij} \frac{x_i x_j}{r^5} + \dots$$

Short distance quantities: $q = \int \rho(x) d^3x$, $p_i = \int x_i \rho(x) d^3x$, etc.

Long distance quantities:
$$\left\langle \frac{1}{r} \right\rangle$$
, $\left\langle \frac{x_i}{r^3} \right\rangle$, $\left\langle \frac{x_i x_j}{r^5} \right\rangle$, etc.

- Higher multipoles: new interactions from "integrating out" short distance physics
- Useful tool independent of the fact whether we know the underlying theory or not
- Any theory at momentum $p \ll M$ can be described by an effective Hamiltonian

$$H_{\rm eff} = H_0 + \sum_i \frac{C_i}{M^{n_i}} O_i$$

 $M \rightarrow \infty$ limit + corrections with well-defined power counting H_0 may have more symmetries than full theory at nonzero p/MCan work to higher orders in p/M; can sum logs of p/M

Inclusive heavy hadron decays

- Sum over hadronic final states, subject to constraints determined by short distance physics
 - Decay: short distance (calculable)
 - Hadronization: long distance (nonperturbative), but probability to hadronize is unity; sum over details

Optical theorem + operator product expansion (OPE) + heavy quark symmetry

Can think of the OPE as expansion of forward scattering amplitude in $k \sim \Lambda_{\rm QCD}$

Operator product expansion

• Consider semileptonic $b \to u$ decay: $O_{bu} = -\frac{4G_F}{\sqrt{2}} V_{ub} \underbrace{(\bar{u} \gamma^{\mu} P_L b)}_{J_{bu}^{\mu}} \underbrace{(\bar{\ell} \gamma_{\mu} P_L \nu)}_{J_{\ell\nu}}$ Decay rate: $\Gamma(B \to X_u \ell \bar{\nu}) \sim \sum_{X_c} \int d[PS] \left| \langle X_u \ell \bar{\nu} | O_{bu} | B \rangle \right|^2$

Factor to: $B \to X_u W^*$ and $W^* \to \ell \bar{\nu}$, concentrate on hadronic part

$$W^{\mu\nu} \sim \sum_{X_c} \delta^4(p_B - q - p_X) \left| \langle B | J_{bu}^{\mu\dagger} | X_u \rangle \left\langle X_u | J_{bu}^{\nu} | B \right\rangle \right|^2 = \operatorname{Im} T^{\mu\nu}$$

(optical theorem) $T^{\mu\nu} = i \int dx \, e^{-iq \cdot x} \left\langle B | T \left\{ J_{bu}^{\mu\dagger}(x) \, J_{bu}^{\nu}(0) \right\} | B \right\rangle$

• Operators: $\bar{b} b \rightarrow$ free quark decay, $\langle \bar{b}D^2b \rangle$, $\langle \bar{b}\sigma_{\mu\nu}G^{\mu\nu}b \rangle \sim m_{B^*}^2 - m_B^2$, etc.

$$\mathrm{d}\Gamma = egin{pmatrix} b \ \mathrm{quark} \\ \mathrm{decay} \end{pmatrix} imes \left\{ 1 + rac{0}{m_b} + rac{f(\lambda_1, \lambda_2)}{m_b^2} + \ldots + lpha_s(\ldots) + lpha_s^2(\ldots) + \ldots
ight\}$$

• As for $e^+e^- \rightarrow$ hadrons, question is when perturbative calculation can be trusted

Classic application: inclusive $|V_{cb}|$

• Want to determine $|V_{cb}|$ from $B \to X_c \ell \bar{\nu}$:

$$\begin{split} \Gamma(B \to X_c \ell \bar{\nu}) &= \frac{G_F^2 |V_{cb}|^2}{192 \pi^3} \left(4.7 \, \text{GeV} \right)^5 (0.534) \times \\ & \left[1 - 0.22 \left(\frac{\Lambda_{1S}}{500 \, \text{MeV}} \right)^{-0.011} \left(\frac{\Lambda_{1S}}{500 \, \text{MeV}} \right)^2 - 0.052 \left(\frac{\lambda_1}{(500 \, \text{MeV})^2} \right) - 0.071 \left(\frac{\lambda_2}{(500 \, \text{MeV})^2} \right) \\ & - 0.006 \left(\frac{\lambda_1 \Lambda_{1S}}{(500 \, \text{MeV})^3} \right) + 0.011 \left(\frac{\lambda_2 \Lambda_{1S}}{(500 \, \text{MeV})^3} \right) - 0.006 \left(\frac{\rho_1}{(500 \, \text{MeV})^3} \right) + 0.008 \left(\frac{\rho_2}{(500 \, \text{MeV})^3} \right) \\ & + 0.011 \left(\frac{T_1}{(500 \, \text{MeV})^3} \right) + 0.002 \left(\frac{T_2}{(500 \, \text{MeV})^3} \right) - 0.017 \left(\frac{T_3}{(500 \, \text{MeV})^3} \right) - 0.008 \left(\frac{T_4}{(500 \, \text{MeV})^3} \right) \\ & + 0.096\epsilon - 0.030\epsilon_{\text{BLM}}^2 + 0.015\epsilon \left(\frac{\Lambda_{1S}}{500 \, \text{MeV}} \right) + \dots \right] \\ \\ \\ \text{Corrections:} \quad \mathcal{O}(\Lambda/m): \sim 20\%, \qquad \mathcal{O}(\Lambda^2/m^2): \sim 5\%, \qquad \mathcal{O}(\Lambda^3/m^3): \sim 1 - 2\%, \\ & \mathcal{O}(\alpha_s): \sim 10\%, \qquad \text{Unknown terms:} < 1 - 2\% \end{split}$$

Matrix elements extracted from shape variables — good fit to lots of data

• Error of $|V_{cb}| \sim 2\%$ — a precision field; uncomfortable $\sim 2\sigma$ tension with exclusive

g / /e

Reasonably good fits

No evidence for deviations from quark-hadron duality

[BaBar, arXiv:0908.0415, similar results from Belle]

The challenge of $|V_{ub}|$ measurements

- Side opposite to β ; precision crucial to be sensitive to NP in $\sin 2\beta$ via mixing
- Inclusive: rate known to $\sim 5\%$; cuts to remove $B \rightarrow X_c \ell \bar{\nu}$ introduce small parameters that complicate expansions Nonperturbative *b* distribution function ("shape function")

determines tails (e.g., shifts endpoint $\frac{1}{2}m_b \rightarrow \frac{1}{2}m_B$) \Rightarrow related to $B \rightarrow X_s \gamma$ photon spectrum

Exclusive:

$$\frac{\mathrm{d}\Gamma(\overline{B}^{0} \to \pi^{+}\ell\bar{\nu})}{\mathrm{d}q^{2}} = \frac{G_{F}^{2}|\vec{p}_{\pi}|^{3}}{24\pi^{3}}|V_{ub}|^{2}|f_{+}(q^{2})|^{2}$$

Tools: Lattice QCD, under control at large q^2 (small $|\vec{p}_{\pi}|$) Dispersion rel: constrain shape using few $f_+(q^2)$ values

• Many challenging open questions, active areas to date

- Both of these spectra determined at lowest order by the *b* quark PDF in *B* meson
- Lots of work toward extending beyond leading order; some open issues remain

Inclusive $B o X_s \gamma$ calculations

• Two-body decay at lowest order: $O_7 = \overline{m}_b \overline{s} \sigma_{\mu\nu} e F^{\mu\nu} P_R b$ One of the (if not "the") most elaborate SM calculations (constrains many models)

• NNLO practically completed [Misiak et al., hep-ph/0609232]

 $\mathcal{O}(10^4)$ diagrams, 4-loop running, 3-loop matching and matrix elements

• SM prediction: $\mathcal{B}(B \to X_s \gamma) |_{E_{\gamma} > 1.6 \text{GeV}} = (3.15 \pm 0.23) \times 10^{-4}$ Measurement: $(3.43 \pm 0.22) \times 10^{-4}$

Regions of $B o X_s \gamma$ phase space

- $B \to X_u \ell \bar{\nu}$ is more complicated: hadronic physics depends not on one (E_{γ}) but two variables (best choice: $p_X^{\pm} = E_X \mp |\vec{p}_X|$ "jettyness" of hadronic final state)
- Existing approaches based on theory in one region, expect future improvements

$B ightarrow X_s \gamma$ and the 2HDM

In Type-II 2HDM (as in the MSSM) the H[±] contribution always enhances the rate
 In SUSY cancellations can occur, strong bounds remain, depend on many param's

Solid: $\mathcal{B}(B \to X_s \gamma)$ for $\tan \beta = 2$ in Type-II 2HDM

- Dashed: SM prediction
- Dotted: experimental data

If all else fails: "Grinstein-type double ratios"

- Continuum theory may be competitive using HQS + chiral symmetry suppression
- $\frac{f_B}{f_{B_s}} \times \frac{f_{D_s}}{f_D}$ lattice: double ratio = 1 within few % [Grinstein '93]

• $\frac{f^{(B \to \rho \ell \bar{\nu})}}{f^{(B \to K^* \ell^+ \ell^-)}} \times \frac{f^{(D \to K^* \ell \bar{\nu})}}{f^{(D \to \rho \ell \bar{\nu})}} \text{ or } q^2 \text{ spectra } - \text{accessible soon?} \qquad \text{[ZL, Wise; Grinstein, Pirjol]}$

Numerous variations in the literature

$$\frac{\mathcal{B}(B \to \ell \bar{\nu})}{\mathcal{B}(B_s \to \ell^+ \ell^-)} \times \frac{\mathcal{B}(D_s \to \ell \bar{\nu})}{\mathcal{B}(D \to \ell \bar{\nu})} \quad -\text{very clean... by} \sim 2020?$$
[ZL, Ringberg '03]

• $\frac{\mathcal{B}(B_u \to \ell \bar{\nu})}{\mathcal{B}(B_d \to \mu^+ \mu^-)}$ — uses only isospin... around 2025? [Grinstein, CKM'06]

The theoretically cleanest $|V_{ub}|$ I know... Need lots of LHCb and Belle II data...

[A high precision $\mathcal{B}(B_d \to \mu^+ \mu^-)$ measurement — run/upgrade LHCb forever...]

New physics in V_{ub} ?

- Inclusive & exclusive V_{ub} determinations in tension: $[(4.4\pm0.3) \text{ vs.} (3.4\pm0.3)] \times 10^{-3}$ CKM fit in the SM favors smaller values from exclusive decays
- A right-handed current

 $\epsilon_R \left(\overline{u} \, \gamma^\mu P_{\mathbf{R}} \, b
ight) \left(\overline{\ell} \, \gamma_\mu P_L \, \nu
ight)$

affects inclusive $B \to X_u \ell \bar{\nu}$ rate $\propto \epsilon_R^2$

It affects the exclusive rates $\propto \epsilon_R$

• NP at 10-20% of the SM may still contribute to semileptonic decays as well!

[F. Bernlochner, CKM 2012]

Need much larger Belle II data sets to probe this conclusively

Also related to $B o X_s \ell^+ \ell^-$

Theory most precise for $1 \,\mathrm{GeV}^2 < q^2 < 6 \,\mathrm{GeV}^2$

- NNLL perturbative calculations

– Nonperturbative corrections to q^2 spectrum

• Theory same as for in inclusive $|V_{ub}|$ measurements (similar phase space cuts)

 $A_{\mathrm{FB}} ext{ in } B o K^* \ell^+ \ell^-$

 Noticed that zero of A_{FB} was insensitive to form factor models
 [Burdman]

Decay rate depends on several form factors, were assumed to be independent functions of $q^2=m_{\ell^+\ell^-}^2$.

Despite the spectrum being model dependent, zero-

• For $q^2 \ll m_B^2$, the K^* is highly boosted; can use softcollinear effective theory (SCET) to write form factors as sum of two terms: soft form factor & hard scattering

First term obeys symmetry relations, unclear to what extent it dominates over 2nd

• If it does, then A_{FB} changes sign: $C_9^{\text{eff}}(s_0) = -\frac{2m_B m_b}{s_0} C_7^{\text{eff}} \times [1 + O(\alpha_s, \Lambda_{\text{QCD}}/m_b)]$

Substantial discovery potential in many modes

- Some of the theoretically cleanest modes
 (ν, τ, inclusive) only
 possible at e⁺e⁻
- Many modes first seen at Belle II or LHCb
- In some decay modes, even in 2025:
 - (Exp. bound)/SM $\gtrsim 10^3$ (E.g.: $B_{(s)} \rightarrow \tau^+ \tau^-, e^+ e^$ lots of model building...)

[Grossman, ZL, Nir, 0904.4262, Prog. Theor. Phys. special issue commemorating the KM Nobel Prize]

_	Observable	Approximate	Present	Uncertainty / number of events	
	Observable	SM prediction	status	Super- B (50 ab ⁻¹)	LHCb $(10 \mathrm{fb}^{-1})$
S	$S_{\psi K}$	input	0.671 ± 0.024	0.005	0.01
	$S_{\phi K}$	$S_{\psi K}$	0.44 ± 0.18	0.03	0.1
/	$S_{\eta'K}$	$S_{\psi K}$	0.59 ± 0.07	0.02	not studied
	$\alpha(\pi\pi, \rho\rho, \rho\pi)$	α	$(89 \pm 4)^{\circ}$	2°	4°
	$\gamma(DK)$	γ	$(70^{+27}_{-30})^{\circ}$	2°	3°
	$S_{K^*\gamma}$	few \times 0.01	-0.16 ± 0.22	0.03	
	$S_{B_s \to \phi \gamma}$	few $\times 0.01$			0.05
	$\beta_s(B_s \to \psi \phi)$	1°	$(22^{+10}_{-8})^{\circ}$	<u>2000</u>	0.3°
	$\beta_s(B_s \to \phi \phi)$	1°	—		1.5°
	$A^d_{ m SL}$	-5×10^{-4}	$-(5.8 \pm 3.4) \times 10^{-3}$	10^{-3}	10^{-3}
	$A^s_{ m SL}$	2×10^{-5}	$(1.6 \pm 8.5) \times 10^{-3}$	$\Upsilon(5S)$ run?	10^{-3}
	$A_{CP}(b \to s\gamma)$	< 0.01	-0.012 ± 0.028	0.005	
,	$ V_{cb} $	input	$(41.2 \pm 1.1) \times 10^{-3}$	1%	
	$ V_{ub} $	input	$(3.93 \pm 0.36) \times 10^{-3}$	4%	
	$B \to X_s \gamma$	3.2×10^{-4}	$(3.52 \pm 0.25) \times 10^{-4}$	4%	
~	$B \to \tau \nu$	1×10^{-4}	$(1.73 \pm 0.35) \times 10^{-4}$	5%	(<u>*</u> 2)
3	$B \to X_s \nu \bar{\nu}$	3×10^{-5}	$< 6.4 \times 10^{-4}$	only $K\nu\bar{\nu}$?	1000
	$B \to X_s \ell^+ \ell^-$	6×10^{-6}	$(4.5 \pm 1.0) \times 10^{-6}$	6%	not studied
	$B_s \to \tau^+ \tau^-$	1×10^{-6}	< few %	$\Upsilon(5S)$ run?	
	$B \to X_s \tau^+ \tau^-$	5×10^{-7}	< few %	not studied	—
	$B \rightarrow \mu \nu$	4×10^{-7}	$< 1.3 \times 10^{-6}$	6%	
	$B \rightarrow \tau^+ \tau^-$	5×10^{-8}	$< 4.1 \times 10^{-3}$	$\mathcal{O}(10^{-4})$	_
	$B_s \rightarrow \mu^+ \mu^-$	3×10^{-9}	$< 5 \times 10^{-8}$		$> 5\sigma$ in SM
	$B \rightarrow \mu^+ \mu^-$	1×10^{-10}	$< 1.5 \times 10^{-8}$	$< 7 \times 10^{-9}$	not studied
	$B \to K^* \ell^+ \ell^-$	1×10^{-6}	$(1\pm0.1)\times10^{-6}$	15k	36k
	$B \to K \nu \bar{\nu}$	4×10^{-6}	$< 1.4 \times 10^{-5}$	20%	

Look for "odd" things

- Cast a wide net broad program is critical:
 - $\begin{array}{ll} B \to (\gamma +) \text{ invisible} & [\text{Belle, 1206.5948; BaBar, 1206.2543}] \\ B \to X_s + \text{ invisible} & \\ \Upsilon(1S) \to \text{ invisible} & [\text{Belle, hep-ex/0611041; BaBar, 0908.2840}] \\ \Upsilon(nS) \to \gamma + \text{ invisible} & [\text{e.g., for } 1S \text{ and } 3S: \text{BaBar, 0808.0017, 1007.4646}] \end{array}$
 - $e^+e^- \to (\gamma +)$ invisible
- Also include "invisible" replaced by a new resonance; may decay to $\ell^+\ell^-$, etc.
- au and μ lepton flavor violation
- Searches for violations of conservation laws
- Obvious! most cited Belle paper: X(3872), most cited BaBar paper: $D_{s0}^*(2317)$

Example: bump searches in $B \to K^{(*)} \ell^+ \ell^-$

• Can probe certain DM models with *B* decays E.g., "axion portal": light ($\leq 1 \text{ GeV}$) scalar particle coupling as $(m_{\psi}/f_a) \overline{\psi} \gamma_5 \psi a$

[[]Freytsis, ZL, Thaler, arXiv:0911.5355]

• In most of parameter space best bound is from $B \to K \ell^+ \ell^-$

My Belle II "best buy" list

• Key observables: (i) sensitive to different NP, (ii) measurements can improve by order of magnitude, (iii) not limited by hadronic uncertainties

- Difference of *CP* asymmetries, $S_{\psi K_S} S_{\phi K_S}$, $S_{\psi K_S} S_{\eta' K_S}$, etc.
- γ from CP asymmetries in tree-level decays vs. γ from $S_{\psi K_S}$ and $\Delta m_d/\Delta m_s$
- Search for charged lepton flavor violation, $au o \mu \gamma$, $au o 3\mu$, and similar modes
- Search for CP violation in $D^0 \overline{D}^0$ mixing
- CP asymmetry in semileptonic decay (dilepton asymmetry), $A_{\rm SL}$
- CP asymmetry in the radiative decay, $S_{K_S\pi^0\gamma}$
- Rare decay searches and refinements: $b \to s \nu \bar{\nu}, B \to \tau \bar{\nu}$, etc.
- Improve magnitudes of CKM elements
- Complementary to LHCb
- Any one of these measurements has the potential to establish new physics

My LHCb "best buy" list

- LHCb will probe B_s sector at a level comparable to B_d
 - The CP asymmetry, $S_{B_s \to \psi \phi}$
 - Difference of *CP* asymmetries, $S_{B_s \to \psi \phi} S_{B_s \to \phi \phi}$
 - $B_s \rightarrow \mu^+ \mu^-$, search for $B_d \rightarrow \mu^+ \mu^-$, other rare / forbidden decays
 - 10^{4-5} events in $B \to K^{(*)}\ell^+\ell^-$, $B_s \to \phi\gamma$, ... test Dirac structure, BSM op's
 - $\gamma \text{ from } B \to DK \text{ and } B_s \to D_s K$
 - Search for charged lepton flavor violation, $au
 ightarrow 3\mu$ and other modes if possible
 - Search for CP violation in $D^0 \overline{D}^0$ mixing
- Very broad program, complementary to Belle II
- With large BSM discovery potential

- Lots of progress for $|V_{cb}|$ and $|V_{ub}|$, determinations from exclusive decays largely in the hands of lattice QCD, room for progress in continuum tension is troubling
- Theoretical tools for rare decays are similar, so developments often simultaneous
- Theory progress in understanding nonleptonic decays; unfortunately the best understood cases are not the most interesting to learn about weak scale physics
- More work and data needed to understand the expansions Why some predictions work at $\leq 10\%$ level, while others receive $\sim 30\%$ corrections Clarify role of charming penguins, chirally enhanced terms, annihilation, etc.
- Active field, experimental data stimulated lots of theory developments, expect more work & progress as LHCb and Belle II provide challenges and opportunities

Read at your own risk...