2nd Lecture

When (some) QCD matters

- Isospin and $S U(3)$ flavor

Measuing $\alpha, S U(3)$

- The heavy quark limit

Heavy quark symmetry, OPE, exclusive / inclusive decays

- Semileptonic and radiative b decays $b \rightarrow s \gamma$, etc.
- SCET and nonleptonic decays - skip, but include slides
B decays to charm, Λ_{b} decay
charmless B decays, different approaches

Interplay of electroweak and strong interactions

- How to learn about high energy physics from low energy hadronic processes?
- QCD coupling is scale dependent, $\alpha_{s}\left(m_{B}\right) \sim 0.2$

$$
\alpha_{s}(\mu)=\frac{\alpha_{s}(\Lambda)}{1+\frac{\alpha_{s}}{2 \pi} \beta_{0} \ln \frac{\mu}{\Lambda}}, \quad \beta_{0}=11-\frac{2}{3} n_{f}>0
$$

Nobel prize in 2004:
Politzer, Wilczek, Gross

$$
Z L-p .2 / 1
$$

Interplay of electroweak and strong interactions

- How to learn about high energy physics from low energy hadronic processes?
- QCD coupling is scale dependent, $\alpha_{s}\left(m_{B}\right) \sim 0.2$

$$
\alpha_{s}(\mu)=\frac{\alpha_{s}(\Lambda)}{1+\frac{\alpha_{s}}{2 \pi} \beta_{0} \ln \frac{\mu}{\Lambda}}, \quad \beta_{0}=11-\frac{2}{3} n_{f}>0
$$

High energy (short distance): perturbation theory is useful

Low energy (long distance): QCD becomes nonperturbative \Rightarrow It is usually very hard, if not impossible, to make precise calculations

- Solutions: New symmetries in some limits: effective theories (heavy quark, chiral) Certain processes are determined by short-distance physics Lattice QCD (bite the bullet - limited cases)
- Incalculable nonperturbative hadronic effects sometimes limit sensitivity

$$
Z L-p .2 / 1
$$

Disentangling weak and strong interactions

- Want to learn about electroweak physics, but hadronic physics is nonperturbative Model independent continuum approaches:
- (1) Symmetries of QCD (exact or approximate)
E.g.: $\sin 2 \beta$ from $B \rightarrow J / \psi K_{S}$: amplitude not calculable Solution: $C P$ symmetry of QCD (θ_{QCD} can be neglected)

$$
\left\langle\psi K_{S}\right| \mathcal{H}\left|B^{0}\right\rangle=-\left\langle\psi K_{S}\right| \mathcal{H}\left|\bar{B}^{0}\right\rangle \times\left[1+\mathcal{O}\left(\alpha_{s} \lambda^{2}\right)\right]
$$

- (2) Effective field theories (separation of scales)
E.g.: $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ from semileptonic B decays Solution: Heavy quark expansions

$$
\Gamma=\left|V_{c b}\right|^{2} \times(\text { known factors }) \times\left[1+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}\right)\right]
$$

Many relevant scales: $B \rightarrow X_{s} \gamma$

- Separate physics at: $\left(m_{t, W} \sim 100 \mathrm{GeV}\right) \gg\left(m_{b} \sim 5 \mathrm{GeV}\right) \gg(\Lambda \sim 0.5 \mathrm{GeV})$

Inclusive decay:
$X_{s}=K^{*}, K^{(*)} \pi, K^{(*)} \pi \pi$, etc.
Diagrams with many gluons are crucial, resumming certain subset of them affects rate at factor-of-two level

Rate in SM calculated to $<10 \%$, using several effective theories, renormalization group, operator product expansion... one of the most involved SM analyses

- Solution: Short distance dominated (some issues discussed later)

Some caveats

- Lot at stake: theoretical tools for semileptonic and rare decays are the same
- Measurements of CKM elements
- Better understanding of hadronic physics improves sensitivity to new physics
- For today's talk: [strong interaction] model independent

$$
\equiv \text { theor. uncertainty suppressed by small parameters }
$$

... so theorists argue about $\mathcal{O}(1) \times$ (small numbers) instead of $\mathcal{O}(1)$ effects

- Most of the progress have come from expanding in powers of $\Lambda / m_{Q}, \alpha_{s}\left(m_{Q}\right)$
... a priori not known whether $\Lambda \sim 200 \mathrm{MeV}$ or $\sim 2 \mathrm{GeV}\left(f_{\pi}, m_{\rho}, m_{K}^{2} / m_{s}\right)$
... need experimental guidance to see how well the theory works

To avoid...

The SM shows impressive consistency — separate what's "proven" / "hoped" Only robust deviations from model independent theory are likely to be interesting ($2 \sigma: 50$ theory papers $3 \sigma: 200$ theory papers 5σ : strong sign of an effect)
$Z L-p .2 / 5$

Isospin and $S U(3)$ flavor

Extracting α from $B \rightarrow \pi \pi$

- Until ~ 1997 the hope was to determine α simply from:

$$
\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)-\Gamma\left(B^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)+\Gamma\left(B^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)}=S \sin (\Delta m t)-C \cos (\Delta m t)
$$

$\arg \lambda_{\pi^{+} \pi^{-}}=(B$-mix $=2 \beta)+(\bar{A} / A=2 \gamma+\ldots) \Rightarrow$ measures $\sin 2 \alpha$ if amplitudes with one weak phase dominated - relied on expectation that $P / T=$ small
$\mathcal{B}(B \rightarrow K \pi)>\mathcal{B}(B \rightarrow \pi \pi) \Rightarrow$ comparable amplitudes with different weak \& strong phases (roughly $|P / T| \gtrsim 0.3$)

- Models in which the dominant NP effect is the modification of the $B^{0}-\bar{B}^{0}$ mixing amplitude have $\gamma=\pi-\beta-\alpha$, so reducing the uncertainty of α effectively improves the determination of γ and the bound on NP

$B \rightarrow \pi \pi$ - isospin analysis

- Isospin started with (p, n) symmetry, broken by $\left(m_{d}-m_{u}\right) / \Lambda_{\mathrm{QCD}}$
- $(u, d): I$-spin doublet other quarks and gluons: $I=0$

$$
\begin{array}{ccccc}
(\pi \pi)_{\ell=0} & \rightarrow & I_{f}=0 & \text { or } & I_{f}=2 \\
(1 \times 1) & & \left(\Delta I=\frac{1}{2}\right) & & \left(\Delta I=\frac{3}{2}\right)
\end{array}
$$

γ, Z : mixtures of $I=0,1$
$I=0$ final state forbidden by Bose symmetry

- Hamiltonian has two parts: $\Delta I=\frac{1}{2} \Rightarrow I_{f}=0$

$$
\Delta I=\frac{3}{2} \Rightarrow I_{f}=2 \quad \ldots \text { only two amplitudes }
$$

Note: γ and Z penguins violate isospin and yield some (small) uncertainties
Experimentally, need all (tagged) rates + time dependent $B \rightarrow \pi^{+} \pi^{-}$asymmetry

- Three rates $\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}, \bar{B}^{0} \rightarrow \pi^{0} \pi^{0}, B^{-} \rightarrow \pi^{0} \pi^{-}$determine magnitudes and relative strong phase of two amplitudes; similarly for B^{0} and B^{+}decay

Isospin analysis (cont.)

- Isospin symmetry implies that 6 amplitudes form two triangles with common base
$\frac{A^{+-}}{\sqrt{2}}+A^{00}=A^{+0}, \quad \frac{\bar{A}^{+-}}{\sqrt{2}}+\bar{A}^{00}=\bar{A}^{-0}$

$$
\left|A^{+0}\right|=\left|\bar{A}^{-0}\right|
$$

$A^{+-} \equiv A\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right) \quad \bar{A}^{+-} \equiv A\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)$
$A^{00} \equiv A\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right) \quad \bar{A}^{00} \equiv A\left(\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right)$
$A^{+0} \equiv A\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right) \quad \bar{A}^{-0} \equiv A\left(B^{-} \rightarrow \pi^{-} \pi^{0}\right)$

- $B \rightarrow \rho \pi: 4$ isospin amplitudes \Rightarrow pentagon relations (not used)

Dalitz plot analysis allows considering $\pi^{+} \pi^{-} \pi^{0}$ final state only

$2 \delta=$ difference between $\arg \lambda_{\pi^{+} \pi^{-}}$and 2α

$B \rightarrow \rho \rho:$ the best α at present

- $\rho \rho$ is mixture of $C P$ even/odd (as all $V V$ modes); data: $C P=$ even dominates Isospin analysis applies for each L, or in transversity basis for each $\sigma(=0, \|, \perp)$
- Small rate: $\mathcal{B}\left(B \rightarrow \rho^{0} \rho^{0}\right)=(0.73 \pm 0.28) \times 10^{-6} \Rightarrow$ small penguin pollution $\frac{\mathcal{B}\left(B \rightarrow \pi^{0} \pi^{0}\right)}{\mathcal{B}\left(B \rightarrow \pi^{+} \pi^{0}\right)} \approx 0.35$ vs. $\frac{\mathcal{B}\left(B \rightarrow \rho^{0} \rho^{0}\right)}{\mathcal{B}\left(B \rightarrow \rho^{+} \rho^{0}\right)} \approx 0.03$
- Ultimately, more complicated than $\pi \pi$, $I=1$ possible due to finite Γ_{ρ}, giving $\mathcal{O}\left(\Gamma_{\rho}^{2} / m_{\rho}^{2}\right)$ effects [can be constrained] $B \rightarrow \rho \rho$ isospin analysis: $\alpha=(90 \pm 5)^{\circ}$
- Also $B \rightarrow \rho \pi$ Dalitz plot analysis
- $\rho \rho$ mode dominates α determination for now, may change at a super B factory

Recall: the $B \rightarrow K \pi$ puzzle

- Have we seen new physics in CPV?
$A_{K^{+} \pi^{-}}=-0.098 \pm 0.012 \quad(P+T)$
$A_{K^{+} \pi^{0}}=0.050 \pm 0.025{ }_{\left(P+T+C+A+P_{e w}\right)}$
What's the reason for large difference?
$A_{K^{+} \pi^{0}}-A_{K^{+} \pi^{-}}=0.148 \pm 0.028$

(Annihilation not shown)

[Belle, Nature 452, 332 (2008)]
- SCET / factorization predicts: $\arg (C / T)=\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ and $A+P_{e w}$ small This makes it hard to understand above data:
- P and T : nonzero relative strong and weak phases to give $A_{K^{+} \pi^{-}}$
- T and C : same weak phase and predicted to have small relative strong phase
- Huge fluctuations? Breakdown of $1 / m$ exp.? Missing something subtle? BSM?

Flavor $S U(3)$ - a timely example

- First observation of $B_{s} \mathrm{CPV}: A_{C P}\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)=0.27 \pm 0.04 \quad$ [LHCb, arxiv:1304.6173]
- Compare: $B_{d}^{0} \rightarrow K^{+} \pi^{-} \quad(\bar{b} \rightarrow \bar{s} q \bar{q}) \quad$ vs. $\quad B_{s}^{0} \rightarrow K^{-} \pi^{+} \quad(\bar{b} \rightarrow \bar{d} q \bar{q})$

Can use U-spin $(d \leftrightarrow s)$ subgroup of $S U(3):\left(B_{d}, B_{s}\right), \mathcal{H},\left(\pi^{+}, K^{+}\right),\left(\pi^{-}, K^{-}\right)$ final state $U=0,1 \Rightarrow$ two reduced matrix elements

$$
\begin{aligned}
& A\left(B_{d}^{0} \rightarrow K^{+} \pi^{-}\right)=V_{c b}^{*} V_{c s}\left(P_{c}-P_{t}+T_{c \bar{c} s}\right)+V_{u b}^{*} V_{u s}\left(T_{u \bar{u} s}+P_{u}-P_{t}\right) \equiv P+T \\
& A\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)=V_{c b}^{*} V_{c d}\left(P_{c}-P_{t}+T_{c \bar{c} s}\right)+V_{u b}^{*} V_{u d}\left(T_{u \bar{u} s}+P_{u}-P_{t}\right)=-\lambda P+\lambda^{-1} T
\end{aligned}
$$

- LHCb quotes the $S U(3)$ relation:

$$
\Delta \equiv \frac{\mathcal{A}_{\mathrm{CP}}\left(B_{d} \rightarrow K^{+} \pi^{-}\right)}{\mathcal{A}_{\mathrm{CP}}\left(B_{s} \rightarrow K^{-} \pi^{+}\right)}+\frac{\mathcal{B}\left(B_{s} \rightarrow K^{-} \pi^{+}\right)}{\mathcal{B}\left(B_{d} \rightarrow K^{+} \pi^{-}\right)} \frac{\tau_{d}}{\tau_{s}}=-0.02 \pm 0.05 \pm 0.04
$$

- Looks obscure - where does this come from?

Flavor $S U(3)$ vs factorization at $\mu \sim m_{b}$

- Saw yesterday: $\Gamma_{\mathrm{CP}}(i \rightarrow f) \equiv \Gamma(i \rightarrow f)-\Gamma(\bar{i} \rightarrow \bar{f})=4 A_{1} A_{2} \sin \left(\phi_{1}-\phi_{2}\right) \sin \left(\delta_{1}-\delta_{2}\right)$

Define:

$$
\widetilde{\Delta} \equiv \frac{\Gamma_{\mathrm{CP}}\left(B_{d} \rightarrow K^{+} \pi^{-}\right)+\Gamma_{\mathrm{CP}}\left(B_{s} \rightarrow K^{-} \pi^{+}\right)}{\Gamma_{\mathrm{CP}}\left(B_{d} \rightarrow K^{+} \pi^{-}\right)-\Gamma_{\mathrm{CP}}\left(B_{s} \rightarrow K^{-} \pi^{+}\right)}=0.01 \pm 0.11
$$

In fact $\widetilde{\Delta}=0+$ typical size of $S U(3)$ breaking, whereas Δ depends also on $|P / T|$

- Using factorization $\widetilde{\Delta} \ll 1 \mathrm{iff}: F_{B \rightarrow \pi} f_{K} \approx F_{B_{s} \rightarrow K} f_{\pi}$

Need $B_{s} \rightarrow K$ form factor from LQCD (extract $\left|V_{u b}\right|$ at LHCb from $B_{s} \rightarrow K^{+} \mu^{-} \nu$?)
Similar $S U(3)$ relations: $B_{s}^{0} \rightarrow K^{+} K^{-} \longleftrightarrow B_{d}^{0} \rightarrow \pi^{+} \pi^{-}$

$$
B_{s}^{0} \rightarrow \pi^{+} \pi^{-} \longleftrightarrow B_{d}^{0} \rightarrow K^{+} K^{-}
$$

- Which relation works well will help answer what's at play

Heavy quark symmetry

Heavy quark symmetry

- $Q \bar{Q}$: positronium-type bound state, perturbative in the $m_{Q} \gg \Lambda_{\mathrm{QCD}}$ limit
- $Q \bar{q}$: wave function of the light degrees of freedom ("brown muck") insensitive to spin and flavor of Q B meson is a lot more complicated than just a $b \bar{q}$ pair In the $m_{Q} \gg \Lambda_{\mathrm{QCD}}$ limit, the heavy quark acts as a static color source with fixed four-velocity v^{μ}
$\Rightarrow S U(2 n)$ heavy quark spin-flavor symmetry at fixed v^{μ}

- Similar to atomic physics: $\left(m_{e} \ll m_{N}\right)$

1. Flavor symmetry \sim isotopes have similar chemistry [Ψ_{e} independent of m_{N}]
2. Spin symmetry \sim hyperfine levels almost degenerate $\left[\vec{s}_{e}-\vec{s}_{N}\right.$ interaction $\left.\rightarrow 0\right]$

Spectroscopy of heavy-light mesons

- In $m_{Q} \gg \Lambda_{\mathrm{QCD}}$ limit, spin of the heavy quark is a good quantum number, and so is the spin of the light d.o.f., since $\vec{J}=\vec{s}_{Q}+\vec{s}_{l}$ and $\left.\begin{array}{r}\text { angular momentum conservation: }[\vec{J}, \mathcal{H}]=0 \\ \text { heavy quark symmetry: }\left[\vec{s}_{Q}, \mathcal{H}\right]=0\end{array}\right\} \Rightarrow\left[\vec{s}_{l}, \mathcal{H}\right]=0$
- For a given s_{l}, two degenerate states:

$$
J_{ \pm}=s_{l} \pm \frac{1}{2}
$$

$\Rightarrow \Delta_{i}=\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$ - same in B and D sector
Doublets are split by order $\Lambda_{Q C D}^{2} / m_{Q}$, e.g.:
$m_{D^{*}}-m_{D} \simeq 140 \mathrm{MeV}$
$m_{B^{*}}-m_{B} \simeq 45 \mathrm{MeV}$

$\frac{1}{y} \Delta_{3}$
$\frac{\Delta_{2}}{}{ }^{+}\left(B_{1}, B_{2}^{*}\right)$
Δ_{1}
$\frac{1}{2}^{+}\left(B_{1}^{*}, B_{0}^{*}\right)$

Aside: a puzzle

- Vector-pseudoscalar mass splitting is $\propto 1 / m_{Q} \Rightarrow m_{V}^{2}-m_{P}^{2}=$ const.

Experimentally:

$$
\begin{array}{ll}
m_{B^{*}}^{2}-m_{B}^{2}=0.49 \mathrm{GeV}^{2} & m_{B_{s}^{*}}^{2}-m_{B_{s}}^{2}=0.50 \mathrm{GeV}^{2} \\
m_{D^{*}}^{2}-m_{D}^{2}=0.54 \mathrm{GeV}^{2} & m_{D_{s}^{*}}^{2}-m_{D_{s}}^{2}=0.58 \mathrm{GeV}^{2}
\end{array}
$$

Aside: a puzzle

- Vector-pseudoscalar mass splitting is $\propto 1 / m_{Q} \Rightarrow m_{V}^{2}-m_{P}^{2}=$ const.

Experimentally:

$$
\begin{aligned}
m_{B^{*}}^{2}-m_{B}^{2} & =0.49 \mathrm{GeV}^{2} & m_{B_{s}^{*}}^{2}-m_{B_{s}}^{2}=0.50 \mathrm{GeV}^{2} \\
m_{D^{*}}^{2}-m_{D}^{2} & =0.54 \mathrm{GeV}^{2} & m_{D_{s}^{*}}^{2}-m_{D_{s}}^{2}=0.58 \mathrm{GeV}^{2} \\
m_{K^{*}}^{2}-m_{K}^{2} & =0.55 \mathrm{GeV}^{2} & \\
m_{\rho}^{2}-m_{\pi}^{2} & =0.57 \mathrm{GeV}^{2} &
\end{aligned}
$$

- The HQS argument relies on $m_{Q} \gg \Lambda_{\mathrm{QCD}}$, so something more has to go on...
- It is not only important to test how a theory works, but also how it breaks down!
[An approximation should work when it the expansion parameter is small, and fail when it's $\mathcal{O}(1)$]

Successes in charm spectrum

- D_{1} narrow width:
S-wave $D_{1} \rightarrow D^{*} \pi$ allowed by angular momentum conservation, but forbidden in the $m_{Q} \rightarrow \infty$ limit by heavy quark spin symmetry
- Mass splittings of orbitally excited states is small:
$m_{D_{2}^{*}}-m_{D_{1}}=37 \mathrm{MeV} \ll m_{D^{*}}-m_{D}$ vanishes in the quark model, since it arise from $\left\langle\vec{s}_{Q} \cdot \vec{s}_{\vec{q}} \delta^{3}(\vec{r})\right\rangle$

Spectroscopy of D mesons

$$
Z L-p .2 / 16
$$

Semileptonic and rare B decays

- $\left|V_{u b}\right|$ is the dominant uncertainty of the side of the UT opposite to β
$\left|V_{u b}\right|$ is crucial for comparing treedominated and loop-mediated pro- $=$ cesses
- Error of $\left|V_{c b}\right|$ is a large part of the uncertainty in the ϵ_{K} constraint, and
 in $K \rightarrow \pi \nu \bar{\nu}$ when it's measured

Rare $b \rightarrow s \gamma, s \ell^{+} \ell^{-}$, and $s \nu \bar{\nu}$ decays are sensitive probes of the Standard Model

Exclusive $B \rightarrow D^{(*)} \ell \bar{\nu}$ decay

- In the $m_{b, c} \gg \Lambda_{\mathrm{QCD}}$ limit, configuration of brown muck only depends on the fourvelocity of the heavy quark, but not on its mass and spin
- On a time scale $\ll \Lambda_{Q C D}^{-1}$ weak current changes $b \rightarrow c$ i.e.: $\vec{p}_{b} \rightarrow \vec{p}_{c}$ and possibly \vec{s}_{Q} flips

In $m_{b, c} \gg \Lambda_{\mathrm{QCD}}$ limit brown muck only feels $v_{b} \rightarrow v_{c}$
Form factors independent of Dirac structure of weak current \Rightarrow all form factors related to a single function of $w=v \cdot v^{\prime}$, the Isgur-Wise function, $\xi(w)$

Contains all nonperturbative low-energy hadronic physics

- $\xi(1)=1$, because at "zero recoil" configuration of brown muck not changed at all

$B \rightarrow D^{(*)} \ell \bar{\nu}$ form factors

- Lorentz invariance $\Rightarrow 6$ form factors

$$
\begin{aligned}
& \left\langle D\left(v^{\prime}\right)\right| V_{\nu}|B(v)\rangle=\sqrt{m_{B} m_{D}}\left[h_{+}\left(v+v^{\prime}\right)_{\nu}+h_{-}\left(v-v^{\prime}\right)_{\nu}\right] \\
& \left\langle D^{*}\left(v^{\prime}\right)\right| V_{\nu}|B(v)\rangle=i \sqrt{m_{B} m_{D^{*}}} h_{V} \epsilon_{\nu \alpha \beta \gamma} \epsilon^{* \alpha} v^{\prime \beta} v^{\gamma} \\
& \left\langle D\left(v^{\prime}\right)\right| A_{\nu}|B(v)\rangle=0 \\
& \left\langle D^{*}\left(v^{\prime}\right)\right| A_{\nu}|B(v)\rangle=\sqrt{m_{B} m_{D^{*}}}\left[h_{A_{1}}(w+1) \epsilon_{\nu}^{*}-h_{A_{2}}\left(\epsilon^{*} \cdot v\right) v_{\nu}-h_{A_{3}}\left(\epsilon^{*} \cdot v\right) v_{\nu}^{\prime}\right] \\
& V_{\nu}=\bar{c} \gamma_{\nu} b, \quad A_{\nu}=\bar{c} \gamma_{\nu} \gamma_{5} b, \quad w \equiv v \cdot v^{\prime}=\frac{m_{B}^{2}+m_{D}^{2}-q^{2}}{2 m_{B} m_{D}}, \quad \text { and } h_{i}=h_{i}(w, \mu)
\end{aligned}
$$

- In $m_{Q} \gg \Lambda_{\mathrm{QCD}}$ limit, up to corrections suppressed by α_{s} and $\Lambda_{\mathrm{QCD}} / m_{c, b}$

$$
h_{-}=h_{A_{2}}=0, \quad h_{+}=h_{V}=h_{A_{1}}=h_{A_{3}}=\xi(w)
$$

The α_{s} corrections are calculable
\uparrow Isgur-Wise function
$\Lambda_{\mathrm{QCD}} / m_{c, b}$ corrections is where model dependence enters

$\left|V_{c b}\right|$ from $B \rightarrow D^{(*)} \ell \bar{\nu}$

- Extract $\left|V_{c b}\right|$ from $w \equiv v \cdot v^{\prime}=\left(m_{B}^{2}+m_{D}^{2}-q^{2}\right) /\left(2 m_{B} m_{D}\right) \rightarrow 1$ limit of the rate

$$
\begin{aligned}
& \frac{\mathrm{d} \Gamma\left(B \rightarrow D^{(*)} \ell \bar{\nu}\right)}{\mathrm{d} w}=(\ldots)\left(w^{2}-1\right)^{3 / 2(1 / 2)}\left|V_{c b}\right|^{2} \mathcal{F}_{(*)}^{2}(w) \\
& \nwarrow_{w \equiv v \cdot v^{\prime} \quad \text { Isgur-Wise function }+\ldots}^{B} \quad \\
& \mathcal{F}(1)=1_{\text {Isgur-Wise }}+0.02_{\alpha_{s, \alpha_{s}^{2}}}+\frac{(\text { (lattice or models })}{m_{c, b}}+\ldots \\
& \mathcal{F}_{*}(1)=1_{\text {Isgur-Wise }}-0.04_{\alpha_{s, \alpha_{s}^{2}}}+\frac{0_{\text {Luke }}}{m_{c, b}}+\frac{\text { (lattice or models) }}{m_{c, b}^{2}}+\ldots
\end{aligned}
$$

- Lattice QCD: $\mathcal{F}_{*}(1)=0.921 \pm 0.024, \mathcal{F}(1)=1.074 \pm 0.024$ [arxiv:0808.2519, hep-lat0409116]
- Need constraints on shape to fit
[Boyd, Grinstein, Lebed; Caprini, Lellouch, Neubert]
- Need some understanding of decays to higher mass X_{c} states (backgrounds)
- Data: $\left|V_{c b} \mathcal{F}_{*}(1)\right|=(35.75 \pm 0.42) \times 10^{-3},\left|V_{c b} \mathcal{F}(1)\right|=(42.3 \pm 1.5) \times 10^{-3} \quad$ [HFAG] [note: $\chi^{2} /$ dof $=39.6 / 21(56.9 / 21), C L=0.8 \%(4 \mathrm{E}-5)$]

$$
Z L-p .2 / 19
$$

Heavy quark expansion

The multipole expansion

Physics at $r \sim L$ is complicated
Depends on the details of the charge distribution

The multipole expansion

Physics at $r \gg L$ is much simpler
Charge distribution characterized by total charge, q

Details suppressed by powers of L / r, and can be parameterized in terms of $p_{i}, Q_{i j}, \ldots$

Simplifications occur due to separating physics at different distance scales

- Complicated charge distribution can be replaced by a point source with additional interactions (multipoles) - underlying idea of effective theories

The multipole expansion (cont.)

- Potential:

$$
V(x)=q \frac{1}{r}+p_{i} \frac{x_{i}}{r^{3}}+\frac{1}{2} Q_{i j} \frac{x_{i} x_{j}}{r^{5}}+\ldots
$$

Short distance quantities: $q=\int \rho(x) \mathrm{d}^{3} x, \quad p_{i}=\int x_{i} \rho(x) \mathrm{d}^{3} x, \quad$ etc.
Long distance quantities: $\left\langle\frac{1}{r}\right\rangle,\left\langle\frac{x_{i}}{r^{3}}\right\rangle,\left\langle\frac{x_{i} x_{j}}{r^{5}}\right\rangle, \quad$ etc.

- Higher multipoles: new interactions from "integrating out" short distance physics
- Useful tool independent of the fact whether we know the underlying theory or not
- Any theory at momentum $p \ll M$ can be described by an effective Hamiltonian $H_{\text {eff }}=H_{0}+\sum_{i} \frac{C_{i}}{M^{n_{i}}} O_{i} \quad \begin{array}{r}M \rightarrow \infty \text { limit }+ \text { corrections with well-defined power counting } \\ H_{0} \text { may have more symmetries than full theory at nonzero } p / M \\ \text { Can work to higher orders in } p / M \text {; can sum logs of } p / M\end{array}$

$$
Z L-p .2 / 21
$$

Inclusive heavy hadron decays

- Sum over hadronic final states, subject to constraints determined by short distance physics

Decay: short distance (calculable)
Hadronization: long distance (nonperturbative), but probability to hadronize is unity; sum over details

- Optical theorem + operator product expansion (OPE) + heavy quark symmetry

Can think of the OPE as expansion of forward scattering amplitude in $k \sim \Lambda_{\mathrm{QCD}}$

Operator product expansion

- Consider semileptonic $b \rightarrow u$ decay: $O_{b u}=-\frac{4 G_{F}}{\sqrt{2}} V_{u b} \underbrace{\left(\bar{u} \gamma^{\mu} P_{L} b\right)}_{J_{b u}^{\mu}} \underbrace{\left(\bar{\ell} \gamma_{\mu} P_{L} \nu\right)}_{J_{\ell \nu}}$

Decay rate: $\left.\quad \Gamma\left(B \rightarrow X_{u} \ell \bar{\nu}\right) \sim \sum_{X_{c}} \int \mathrm{~d}[\mathrm{PS}]\left|\left\langle X_{u} \ell \bar{\nu}\right| O_{b u}\right| B\right\rangle\left.\right|^{2}$
Factor to: $B \rightarrow X_{u} W^{*}$ and $W^{*} \rightarrow \ell \bar{\nu}$, concentrate on hadronic part

$$
\left.W^{\mu \nu} \sim \sum_{X_{c}} \delta^{4}\left(p_{B}-q-p_{X}\right)\left|\langle B| J_{b u}^{\mu \dagger}\right| X_{u}\right\rangle\left.\left\langle X_{u}\right| J_{b u}^{\nu}|B\rangle\right|^{2}=\operatorname{Im} T^{\mu \nu}
$$

(optical theorem) $\quad T^{\mu \nu}=i \int \mathrm{~d} x e^{-i q \cdot x}\langle B| T\left\{J_{b u}^{\mu \dagger}(x) J_{b u}^{\nu}(0)\right\}|B\rangle$

- Operators: $\bar{b} b \rightarrow$ free quark decay, $\left\langle\bar{b} D^{2} b\right\rangle,\left\langle\bar{b} \sigma_{\mu \nu} G^{\mu \nu} b\right\rangle \sim m_{B^{*}}^{2}-m_{B}^{2}$, etc.

$$
\mathrm{d} \Gamma=\binom{b \text { quark }}{\text { decay }} \times\left\{1+\frac{0}{m_{b}}+\frac{f\left(\lambda_{1}, \lambda_{2}\right)}{m_{b}^{2}}+\ldots+\alpha_{s}(\ldots)+\alpha_{s}^{2}(\ldots)+\ldots\right\}
$$

- As for $e^{+} e^{-} \rightarrow$ hadrons, question is when perturbative calculation can be trusted

Classic application: inclusive $\left|V_{c b}\right|$

- Want to determine $\left|V_{c b}\right|$ from $B \rightarrow X_{c} \ell \bar{\nu}$:

$$
\begin{aligned}
\Gamma(B & \left.\rightarrow X_{c} \ell \bar{\nu}\right)=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{192 \pi^{3}}(4.7 \mathrm{GeV})^{5}(0.534) \times \\
{[1} & -0.22\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)-0.011\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)^{2}-0.052\left(\frac{\lambda_{1}}{(500 \mathrm{MeV})^{2}}\right)-0.071\left(\frac{\lambda_{2}}{(500 \mathrm{MeV})^{2}}\right) \\
& -0.006\left(\frac{\lambda_{1} \Lambda_{1 S}}{(500 \mathrm{MeV})^{3}}\right)+0.011\left(\frac{\lambda_{2} \Lambda_{1 S}}{(500 \mathrm{MeV})^{3}}\right)-0.006\left(\frac{\rho_{1}}{(500 \mathrm{MeV})^{3}}\right)+0.008\left(\frac{\rho_{2}}{(500 \mathrm{MeV})^{3}}\right) \\
& +0.011\left(\frac{T_{1}}{(500 \mathrm{MeV})^{3}}\right)+0.002\left(\frac{T_{2}}{(500 \mathrm{MeV})^{3}}\right)-0.017\left(\frac{T_{3}}{(500 \mathrm{MeV})^{3}}\right)-0.008\left(\frac{T_{4}}{(500 \mathrm{MeV})^{3}}\right) \\
& \left.+0.096 \epsilon-0.030 \epsilon_{\mathrm{BLM}}^{2}+0.015 \epsilon\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)+\ldots\right]
\end{aligned}
$$

Corrections: $\mathcal{O}(\Lambda / m): \sim 20 \%, \quad \mathcal{O}\left(\Lambda^{2} / m^{2}\right): \sim 5 \%, \quad \mathcal{O}\left(\Lambda^{3} / m^{3}\right): \sim 1-2 \%$,

$$
\mathcal{O}\left(\alpha_{s}\right): \sim 10 \%, \quad \text { Unknown terms: }<1-2 \%
$$

Matrix elements extracted from shape variables - good fit to lots of data

- Error of $\left|V_{c b}\right| \sim 2 \%$ - a precision field; uncomfortable $\sim 2 \sigma$ tension with exclusive

$$
Z L-p .2 / 24
$$

The data...

Reasonably good fits

No evidence for deviations from quark-hadron duality
[BaBar, arXiv:0908.0415, similar results from Belle]

ZL-p.2/25

The challenge of $\left|V_{u b}\right|$ measurements

- Side opposite to β; precision crucial to be sensitive to NP in $\sin 2 \beta$ via mixing
- Inclusive: rate known to $\sim 5 \%$; cuts to remove $B \rightarrow X_{c} \ell \bar{\nu}$ introduce small parameters that complicate expansions Nonperturbative b distribution function ("shape function") determines tails (e.g., shifts endpoint $\frac{1}{2} m_{b} \rightarrow \frac{1}{2} m_{B}$) \Rightarrow related to $B \rightarrow X_{s} \gamma$ photon spectrum
- Exclusive:

$$
\frac{\mathrm{d} \Gamma\left(\bar{B}^{0} \rightarrow \pi^{+} \ell \bar{\nu}\right)}{\mathrm{d} q^{2}}=\frac{G_{F}^{2}\left|\vec{p}_{\pi}\right|^{3}}{24 \pi^{3}}\left|V_{u b}\right|^{2}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

Tools: Lattice QCD, under control at large q^{2} (small $\left|\vec{p}_{\pi}\right|$)
Dispersion rel: constrain shape using few $f_{+}\left(q^{2}\right)$ values

- Many challenging open questions, active areas to date

Shape function: lepton endpoint vs. $B \rightarrow X_{s} \gamma$

b quark decay spectrum
with a model for b quark PDF

Shape function: lepton endpoint vs. $B \rightarrow X_{s} \gamma$

b quark decay spectrum
with a model for b quark PDF

Shape function: lepton endpoint vs. $B \rightarrow X_{s} \gamma$

b quark decay spectrum
with a model for b quark PDF

difference:

Shape function: lepton endpoint vs. $B \rightarrow X_{s} \gamma$

b quark decay spectrum
with a model for b quark PDF

difference:

Shape function: lepton endpoint vs. $B \rightarrow X_{s} \gamma$

b quark decay spectrum
with a model for b quark PDF

difference:

- Both of these spectra determined at lowest order by the b quark PDF in B meson
- Lots of work toward extending beyond leading order; some open issues remain

Inclusive $B \rightarrow X_{s} \gamma$ calculations

- Two-body decay at lowest order: $O_{7}=\bar{m}_{b} \bar{s} \sigma_{\mu \nu} e F^{\mu \nu} P_{R} b$ One of the (if not "the") most elaborate SM calculations (constrains many models)

- NNLO practically completed [Misiak etal., hep-ph/0609232]
$\mathcal{O}\left(10^{4}\right)$ diagrams, 4-loop running, 3-loop matching and matrix elements

- SM prediction: $\left.\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)\right|_{E_{\gamma}>1.6 \mathrm{GeV}}=(3.15 \pm 0.23) \times 10^{-4}$

Measurement: $(3.43 \pm 0.22) \times 10^{-4}$

Regions of $B \rightarrow X_{s} \gamma$ phase space

- Important both for $\left|V_{u b}\right|$ and constraining NP
- $m_{B}-2 E_{\gamma} \lesssim 2 \mathrm{GeV}$, and $<1 \mathrm{GeV}$ at the peak

Three cases: 1) $\Lambda_{\mathrm{QCD}} \sim m_{B}-2 E_{\gamma} \ll m_{B}$
2) $\Lambda_{\mathrm{QCD}} \ll m_{B}-2 E_{\gamma} \ll m_{B}$
3) $\Lambda_{\mathrm{QCD}} \ll m_{B}-2 E_{\gamma} \sim m_{B}$

Neither 1) nor 2) is fully appropriate [Sometimes called: 1) SCET and 2) MSOPE regions]
 $E_{i}^{\text {c.m.s. }}[\mathrm{GeV}]$

- Reducing $E_{\gamma}^{\text {cut }}$ to $\sim 1.7 \mathrm{GeV}$ is probably not optimal / practical
- $B \rightarrow X_{u} \ell \bar{\nu}$ is more complicated: hadronic physics depends not on one $\left(E_{\gamma}\right)$ but two variables (best choice: $p_{X}^{ \pm}=E_{X} \mp\left|\vec{p}_{X}\right|$ - "jettyness" of hadronic final state)
- Existing approaches based on theory in one region, expect future improvements

$$
Z L-p .2 / 29
$$

$B \rightarrow X_{s} \gamma$ and the 2HDM

- In Type-II 2HDM (as in the MSSM) the $H^{ \pm}$ contribution always enhances the rate

In SUSY cancellations can occur, strong bounds remain, depend on many param's

- Curves show $\pm 1 \sigma$ bands

Solid: $\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)$ for $\tan \beta=2$ in Type-II 2HDM

Dashed: SM prediction
Dotted: experimental data

If all else fails: "Grinstein-type double ratios"

- Continuum theory may be competitive using HQS + chiral symmetry suppression
- $\frac{f_{B}}{f_{B_{s}}} \times \frac{f_{D_{s}}}{f_{D}}$ - lattice: double ratio $=1$ within few $\%$
[Grinstein '93]
$\frac{f^{(B \rightarrow \rho \ell \bar{\nu})}}{f^{\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)}} \times \frac{f^{\left(D \rightarrow K^{*} \ell \bar{\nu}\right)}}{f^{(D \rightarrow \rho \ell \bar{\nu})}}$ or q^{2} spectra - accessible soon?
Numerous variations in the literature
- $\frac{\mathcal{B}(B \rightarrow \ell \bar{\nu})}{\mathcal{B}\left(B_{s} \rightarrow \ell^{+} \ell^{-}\right)} \times \frac{\mathcal{B}\left(D_{s} \rightarrow \ell \bar{\nu}\right)}{\mathcal{B}(D \rightarrow \ell \bar{\nu})}$ - very clean... by ~ 2020 ?
- $\frac{\mathcal{B}\left(B_{u} \rightarrow \ell \bar{\nu}\right)}{\mathcal{B}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)}$- uses only isospin... around 2025 ?

The theoretically cleanest $\left|V_{u b}\right|$ | know... Need lots of LHCb and Belle II data...
[A high precision $\mathcal{B}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)$measurement - run/upgrade LHCb forever...]

$$
Z L-p .2 / 31
$$

New physics in $V_{u b}$?

- Inclusive \& exclusive $V_{u b}$ determinations in tension: [(4.4 $\left.\pm 0.3\right)$ vs. (3.4 40.3$\left.)\right] \times 10^{-3}$ CKM fit in the SM favors smaller values from exclusive decays
- A right-handed current

$$
\epsilon_{R}\left(\bar{u} \gamma^{\mu} P_{R} b\right)\left(\bar{\ell} \gamma_{\mu} P_{L} \nu\right)
$$

affects inclusive $B \rightarrow X_{u} \ell \bar{\nu}$ rate $\propto \epsilon_{R}^{2}$ It affects the exclusive rates $\propto \epsilon_{R}$

- NP at $10-20 \%$ of the SM may still contribute to semileptonic decays as well!

[F. Bernlochner, CKM 2012]
- Need much larger Belle II data sets to probe this conclusively

Also related to $B \rightarrow X_{s} \ell^{+} \ell^{-}$

- Complementary to $B \rightarrow X_{s} \gamma$, depends on:

$$
\begin{aligned}
O_{7} & =\bar{m}_{b} \bar{s} \sigma_{\mu \nu} e F^{\mu \nu} P_{R} b, \\
O_{9} & =e^{2}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), \\
O_{10} & =e^{2}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
\end{aligned}
$$

Theory most precise for $1 \mathrm{GeV}^{2}<q^{2}<6 \mathrm{GeV}^{2}$

- NNLL perturbative calculations
- Nonperturbative corrections to q^{2} spectrum

- In small q^{2} region experiments require additional $m_{X_{s}} \lesssim 2 \mathrm{GeV}$ cut to suppress $b \rightarrow c\left(\rightarrow s \ell^{+} \nu\right) \ell^{-} \bar{\nu} \Rightarrow$ nonperturbative effects
- Theory same as for in inclusive $\left|V_{u b}\right|$ measurements (similar phase space cuts)

A_{FB} in $B \rightarrow K^{*} \ell^{+} \ell^{-}$

- Noticed that zero of $A_{\text {FB }}$ was insensitive to form factor models

Decay rate depends on several form factors, were assumed to be independent functions of $q^{2}=m_{\ell^{+} \ell^{-}}^{2}$

Despite the spectrum being model dependent, zerocrossing looked insensitive to model used

- For $q^{2} \ll m_{B}^{2}$, the K^{*} is highly boosted; can use softcollinear effective theory (SCET) to write form factors as sum of two terms: soft form factor \& hard scattering

First term obeys symmetry relations, unclear to what extent it dominates over 2nd

- If it does, then $A_{\text {FB }}$ changes sign: $C_{9}^{\mathrm{eff}}\left(s_{0}\right)=-\frac{2 m_{B} m_{b}}{s_{0}} C_{7}^{\mathrm{eff}} \times\left[1+O\left(\alpha_{s}, \Lambda_{\mathrm{QCD}} / m_{b}\right)\right]$

Substantial discovery potential in many modes

- Some of the theoretically cleanest modes (ν, τ, inclusive) only possible at $e^{+} e^{-}$

Many modes first seen at Belle II or LHCb

- In some decay modes, even in 2025:
(Exp. bound) $/ \mathrm{SM} \gtrsim 10^{3}$ (E.g.: $B_{(s)} \rightarrow \tau^{+} \tau^{-}, e^{+} e^{-}$ lots of model building...)
[Grossman, ZL, Nir, 0904.4262, Prog. Theor. Phys. special issue commemorating the KM Nobel Prize]

Observable	Approximate SM prediction	Present status	Uncertainty / number of events	
Super- $B\left(50 \mathrm{ab}^{-1}\right)$	LHCb $\left(10 \mathrm{fb}^{-1}\right)$			
$S_{\psi K}$	input	0.671 ± 0.024	0.005	0.01
$S_{\phi K}$	$S_{\psi K}$	0.44 ± 0.18	0.03	0.1
$S_{\eta^{\prime} K}$	$S_{\psi K}$	0.59 ± 0.07	0.02	not studied
$\alpha(\pi \pi, \rho \rho, \rho \pi)$	α	$(89 \pm 4)^{\circ}$	2°	2°
$\gamma(D K)$	γ	$\left(70_{-30}^{+27}\right)^{\circ}$	2°	3°
$S_{K^{*} \gamma}$	few $\times 0.01$	-0.16 ± 0.22	0.03	-
$S_{B_{s} \rightarrow \phi \gamma}$	few $\times 0.01$	-	-	0.05
$\beta_{s}\left(B_{s} \rightarrow \psi \phi\right)$	1°	$\left(22_{-8}^{+10}\right)^{\circ}$	-	0.3°
$\beta_{s}\left(B_{s} \rightarrow \phi \phi\right)$	1°	-	-	1.5°
$A_{\text {dL }}^{d}$	-5×10^{-4}	$-(5.8 \pm 3.4) \times 10^{-3}$	10^{-3}	10^{-3}
$A_{\text {SL }}^{s}$	2×10^{-5}	$(1.6 \pm 8.5) \times 10^{-3}$	$\Upsilon(5 S) \mathrm{run} ?$	10^{-3}
$A_{C P}(b \rightarrow s \gamma)$	<0.01	-0.012 ± 0.028	0.005	-
$\left\|V_{c b}\right\|$	input	$(41.2 \pm 1.1) \times 10^{-3}$	1%	-
$\left\|V_{u b}\right\|$	input	$(3.93 \pm 0.36) \times 10^{-3}$	4%	-
$B \rightarrow X_{s} \gamma$	3.2×10^{-4}	$(3.52 \pm 0.25) \times 10^{-4}$	4%	-
$B \rightarrow \tau \nu$	1×10^{-4}	$(1.73 \pm 0.35) \times 10^{-4}$	5%	-
$B \rightarrow X_{s} \nu \bar{\nu}$	3×10^{-5}	$<6.4 \times 10^{-4}$	only $K \nu \bar{\nu} ?$	6%
$B \rightarrow X_{s} \ell^{+} \ell^{-}$	6×10^{-6}	$(4.5 \pm 1.0) \times 10^{-6}$	6%	not studied
$B_{s} \rightarrow \tau^{+} \tau^{-}$	1×10^{-6}	$<$ few $\%$	$\Upsilon(5 S)$ run?	-
$B \rightarrow X_{s} \tau^{+} \tau^{-}$	5×10^{-7}	$<$ few $\%$	not studied	-
$B \rightarrow \mu \nu$	4×10^{-7}	$<1.3 \times 10^{-6}$	6%	-
$B \rightarrow \tau^{+} \tau^{-}$	5×10^{-8}	$<4.1 \times 10^{-3}$	$\mathcal{O}\left(10^{-4}\right)$	-
$B \rightarrow \mu^{+} \mu^{-}$	3×10^{-9}	$<5 \times 10^{-8}$	-	$>5 \sigma$ in SM
$B \rightarrow \mu^{+} \mu^{-}$	1×10^{-10}	$<1.5 \times 10^{-8}$	$<7 \times 10^{-9}$	not studied
$B \rightarrow K^{*} \ell^{+} \ell^{-}$	1×10^{-6}	$(1 \pm 0.1) \times 10^{-6}$	15 k	36 k
$B \rightarrow K \nu \bar{\nu}$	4×10^{-6}	$<1.4 \times 10^{-5}$	20%	-

Look for "odd" things

- Cast a wide net - broad program is critical:
$B \rightarrow(\gamma+)$ invisible
[Belle, 1206.5948; BaBar, 1206.2543]
$B \rightarrow X_{s}+$ invisible
$\Upsilon(1 S) \rightarrow$ invisible
[Belle, hep-ex/0611041; BaBar, 0908.2840]
$\Upsilon(n S) \rightarrow \gamma+$ invisible
[e.g., for $1 S$ and $3 S$: BaBar, 0808.0017, 1007.4646]
$e^{+} e^{-} \rightarrow(\gamma+)$ invisible
- Also include "invisible" replaced by a new resonance; may decay to $\ell^{+} \ell^{-}$, etc.
- τ and μ lepton flavor violation
- Searches for violations of conservation laws
- Obvious! most cited Belle paper: $X(3872)$, most cited BaBar paper: $D_{s 0}^{*}(2317)$

Example: bump searches in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$

- Can probe certain DM models with B decays
E.g., "axion portal": light ($\lesssim 1 \mathrm{GeV}$) scalar particle coupling as $\left(m_{\psi} / f_{a}\right) \bar{\psi} \gamma_{5} \psi a$

[Freytsis, ZL, Thaler, arXiv:0911.5355]
- In most of parameter space best bound is from $B \rightarrow K \ell^{+} \ell^{-}$

My Belle II "best buy" list

- Key observables: (i) sensitive to different NP, (ii) measurements can improve by order of magnitude, (iii) not limited by hadronic uncertainties
- Difference of $C P$ asymmetries, $S_{\psi K_{S}}-S_{\phi K_{S}}, S_{\psi K_{S}}-S_{\eta^{\prime} K_{S}}$, etc.
- γ from $C P$ asymmetries in tree-level decays vs. γ from $S_{\psi K_{S}}$ and $\Delta m_{d} / \Delta m_{s}$
- Search for charged lepton flavor violation, $\tau \rightarrow \mu \gamma, \tau \rightarrow 3 \mu$, and similar modes
- Search for $C P$ violation in $D^{0}-\bar{D}^{0}$ mixing
- $C P$ asymmetry in semileptonic decay (dilepton asymmetry), A_{SL}
- $C P$ asymmetry in the radiative decay, $S_{K_{S} \pi^{0} \gamma}$
- Rare decay searches and refinements: $b \rightarrow s \nu \bar{\nu}, B \rightarrow \tau \bar{\nu}$, etc.
- Improve magnitudes of CKM elements
- Complementary to LHCb
- Any one of these measurements has the potential to establish new physics

My LHCb "best buy" list

- LHCb will probe B_{s} sector at a level comparable to B_{d}
- The $C P$ asymmetry, $S_{B_{s} \rightarrow \psi \phi}$
- Difference of $C P$ asymmetries, $S_{B_{s} \rightarrow \psi \phi}-S_{B_{s} \rightarrow \phi \phi}$
- $B_{s} \rightarrow \mu^{+} \mu^{-}$, search for $B_{d} \rightarrow \mu^{+} \mu^{-}$, other rare / forbidden decays
- 10^{4-5} events in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}, B_{s} \rightarrow \phi \gamma, \ldots$ - test Dirac structure, BSM op's
- γ from $B \rightarrow D K$ and $B_{s} \rightarrow D_{s} K$
- Search for charged lepton flavor violation, $\tau \rightarrow 3 \mu$ and other modes if possible
- Search for $C P$ violation in $D^{0}-\bar{D}^{0}$ mixing
- Very broad program, complementary to Belle II
- With large BSM discovery potential

Summary

- Lots of progress for $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$, determinations from exclusive decays largely in the hands of lattice QCD, room for progress in continuum - tension is troubling
- Theoretical tools for rare decays are similar, so developments often simultaneous
- Theory progress in understanding nonleptonic decays; unfortunately the best understood cases are not the most interesting to learn about weak scale physics
- More work and data needed to understand the expansions Why some predictions work at $\lesssim 10 \%$ level, while others receive $\sim 30 \%$ corrections Clarify role of charming penguins, chirally enhanced terms, annihilation, etc.
- Active field, experimental data stimulated lots of theory developments, expect more work \& progress as LHCb and Belle II provide challenges and opportunities

Read at your own risk...

