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Definition: 
 A method is Bayesian if  
1.  it is based on the degree of belief interpretation of 

probability and if 
2.  it uses Bayes’ theorem 

for all inferences. 
 D  observed data    
 θ  parameter of interest 
 ω  nuisance parameters  
 π  prior density 

   

  
p(θ ,ω | D) = p(D |θ ,ω )π (θ ,ω )

p(D)
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Nuisance parameters are removed by marginalization: 

in contrast to profiling, which can be viewed as marginalization 
with the (data-dependent) prior 
         

  

p(θ | D) = p(θ ,ω | D)∫ dω

= p(D |θ ,ω )π (θ ,ω ) dω∫ / p(D)
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p(θ | D) = p(D |θ ,ω )π (θ ,ω ) dω∫ / p(D)

= p(D |θ ,ω )δ (ω − ω̂ ) dω∫ / p(D)

 p(D |θ , ω̂ ) / p(D)

  π (θ ,ω ) = δ[ω − ω̂ (θ , D)]
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Bayes’ theorem can be used to compute the probability of a 
model. First compute the posterior density: 

 D  observed data    
 θH  parameters of model, or hypothesis, H 
 H  model or hypothesis   
 ω  nuisance parameters  
 π  prior density 

   

  
p(θH ,ω , H | D) =

p(D |θH ,ω , H )π (θH ,ω , H )
p(D)

ESHEP2013 Practical Statistics                                                Harrison B. Prosper 6 



ESHEP2013 Practical Statistics                                                Harrison B. Prosper 7 

1.  Factorize the priors: π (θH , ω, H) = π (θH, ω | H) π (H) 

2.  Then, for each model, H, compute the function 

3.  Then, compute the probability of each model, H 

  
p(D | H ) = p(D |θH ,ω , H )π (θH ,ω | H ) dθH dω∫∫

  

p(H | D) = p(D | H ) π (H )
p(D | H ) π (H )

H
∑
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In order to compute p(H |D), however, two things are needed: 
1.  Proper priors over the parameter spaces 

2.  The priors π  (H).  

In practice, we compute the Bayes factor: 

which is the ratio in the first bracket, B10.  
  

p(H1 | D)
p(H0 | D)

=
p(D | H1)
p(D | H0 )

⎡

⎣
⎢

⎤

⎦
⎥

π (H1)
π (H0 )
⎡

⎣
⎢

⎤

⎦
⎥

  
π (θH ,ω | H ) dθH dω∫∫ = 1
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D0 1995 Top Discovery  
Data 

 D  = 17 events 
 B  = 3.8 ± 0.6 events 
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00.10.20.3    Data105 pb-1          MCtt-7 fb-100.10.20.30100200300400    Multijet700 pb-1H(GeV)Aplanarity0100200300400        +4jets MCW385 pb-1T



Step 1: Construct a probability model for the observations 

then put in the data 
   D = 17 events 
   B = 3.8 ± 0.6 background events 

           B = Q / k
      δB = √Q / k 

to arrive at the likelihood. 
   

p(D | s, b) = e−(s+b) (s + b)D

D!
e−kb (kb)Q

Γ(Q +1)
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Q = (B /δB)2 = 40.1
k = B /δB2 = 10.6



Step 2: Write down Bayes’ theorem: 

and specify the prior: 
        

It is useful to compute the following marginal likelihood: 

sometimes referred to as the evidence for s. 

p(s, b | D) = p(D, s, b)
p(D)

=
p(D | s, b)π (s, b)

p(D)
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π (s, b) = π (b | s) π (s)

p(D | s) = p(D | s,b) π (b | s)db∫



The Prior: What do 

and 
represent? 

They encode what we know, or assume, about the mean 
background and signal in the absence of new observations. 

We shall assume that s and b are  non-negative. 

After a century of argument, the consensus today is that there 
is no unique way to represent such vague information. 
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π (b | s)
π (s)
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For simplicity, we take π(b | s) = 1.  

We may now eliminate b from the problem: 

where, 

and where we have introduced the symbol H1 to denote the 
background + signal hypothesis.  

  

p(D | s, H1) = p(
0

∞

∫ D | s,b) π (b | s) d(kb)

= 1
Q

(1− x)2 Beta(x, r +1, Q)
r=0

D

∑ Poisson(D − r | s)

Exercise 10: Show this  

  
x = 1

1+ k
, Beta(x, n, m) = Γ(n + m)

Γ(n)Γ(m)
xn−1(1− x)m−1



p(17|s, H1) as a function of the expected signal s.  
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Given the marginal likelihood 

we can compute the the posterior density  

and the evidence for hypothesis H1 

  
p(D | s, H

1
)

  

p(s | D, H
1
) =

p(D | s, H
1
)! (s | H

1
)

p(D | H
1
)

  

p(D | H
1
) = p(D | s, H

1
)! (s | H

1
) ds

0

"

#



Assuming a flat prior for the signal π (s | H1) = 1,  the 
posterior density is given by 

The posterior density of the parameter (or parameters) of 
interest is the complete answer to the inference problem 
and should be made 
 available. Better still, 
 publish the likelihood 
 and the prior 
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p(s | D, H
1
) =

Beta(x, r +1,Q)
r=0

D

! Poisson(D " r | s)

Beta(x, r +1,Q)
r=0

D

!

Exercise 11: Derive an expression 
for p(s | D, H1) assuming a gamma 
prior Gamma(qs, U +1) for π(s | H1) 



s

0 10 20 30 40 50

) 1
p
(s

|1
7
, 
H

0

0.002

0.004

0.006

0.008
The current practice is to 
report summaries of the  
posterior density, such as 

Note, since this is a  
Bayesian calculation, this 
statement means:  
the probability (that is, the 
degree of belief) that s lies in 
[9.9, 19.8] is 0.95 
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s ∈[9.9, 19.8]
@ 95% C.L.



As noted, the number 

can be used to perform a hypothesis test. But, to do so, we 
need to specify a proper prior for the signal, that is, a prior 
π(s| H1) that integrates to one.  

The simplest such prior is a δ-function, e.g.:  
 π (s | H1) = δ(s – 14), which yields 

 p(D | H1 ) = p(D |14, H1 )  = 9.28 x 10-2 
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p(D | H1) = p(D | s, H1)π (s | H1) ds

0

∞

∫



Since, 
 p(D | H1 )  = 9.28 x 10-2 and 
 p(D | H0 )  = 3.86 x 10-6 

we conclude that the hypothesis s = 14 events is favored over 
the hypothesis s = 0 by 24,000 to 1.  

To avoid big numbers, the Bayes factor can be mapped to a 
(signed) measure akin to “n-sigma” (Sezen Sekmen, HBP) 
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  Z = sign(ln B10 ) 2 | ln B10 | = 4.5, B10 = p(D | H1) / p(D | H0 )

Exercise 12: Compute Z for the D0 results 
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Here is a plot of Z(mH)  
as we scan through  
different hypotheses about  
the expected signal s. 

The signal width and  
background parameters  
have been fixed to their  
maximum likelihood  
estimates 
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Background, B = 3.8 ± 0.6 events 

p-value = p(D | H0 )
D=17

∞

∑ = 5.4 ×10−6

D = 17

D is observed count 

This is equivalent to 4.4 σ 
which may be compared with  
the 4.5 σ obtained with B10 

  

p(D | H0 ) = p(D | s = 0, H1)

= 1
Q

(1− x)2 Beta(x, D +1, Q)

Exercise 13: Verify this calculation 



CMS Exotica/QCD Group 
PhD work of Jeff Haas (FSU, PhD, 2013) 



In our current theories, all interactions are said to arise 
through the exchange of bosons: 

But,… 
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… when the experimentally available energies are << than the 
mass of the exchanged particles, the interactions can be 
modeled as contact interactions (CI).  

Here is the most famous example: 
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The modern view of the Standard Model (SM) is that it is an 
effective theory: the low-energy limit of a more general 
(unknown) theory.  

For the strong interactions, we assume that the Lagrangian of 
the unknown theory can be approximated as follows 

where the Oi are  a set of dim-6 operators, λ = 1/Λ2 defines 
the scale of the new physics, and βi are coefficients defined 
by the new theory.  
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LNEW = LQCD + 2π λ βiOi
i=1

6

∑ +



The CMS contact interaction analysis, using inclusive jet 
events, that is, events of the form 

where X can be any collection of particles, was a search for 
deviations from the prediction of QCD, calculated at next-
to-leading order (NLO) accuracy 

We searched for new QCD-like physics that can be modeled 
with a set of dim-6 operators of the form* 

*Eichten, Hinchliffe, Lane, Quigg, Rev. Mod. Phys. 56, 579 (1984) 
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O1 = (qLγ
µqL )(qLγ µqL )

pp→ jet + X



At NLO* the cross section per jet pT bin can be written as 

where, c, b, a, b’, a’ are calculable and µ0 is pT–dependent scale. 
At leading order (LO) the primed terms vanish. 

The 7 TeV CMS jet data, however, were analyzed using the 
model 

with c and CI(Λ) computed at NLO at LO accuracy, respectively 
     *J. Gao, CIJET, arXiv:1301.7263 
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σ = c + λ[b − ′b (lnµ0 + ln λ )]+ λ2[a − ′a (lnµ0 + ln λ )]

σ = c + CI(Λ),  where CI(Λ) = bλ + aλ2 , λ ≡ 1 / Λ2
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destructive

interference

The CI spectra were  
calculated with  
PYTHIA 6.422 and the 
QCD spectrum with  
fastNLO 2.1.0-1062. 

This is an instructive 
example of physics in 
which the signal can be  
both positive and negative 
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Pr(KS) =   0.6617

 
/NDF = 23.5/192#

 

Data   
 M = 20 bins  
 507 ≤ pT ≤ 2116 GeV 
 D = 73,792 to 3 

The plot compares the 
observed dN/dpT spectrum 
with the NLO QCD  
prediction (using CTEQ6.6  
PDFs) convolved with the 
CMS jet response function   
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Data/QCD spectrum 
compared with 
(QCD+CI)/QCD  
spectra for several  
values of the scale Λ  

Analysis Goal: Determine  
if there is a significant  
deviation from QCD and,  
if so, measure it; if not,  
set a lower bound on the scale Λ  
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First Attempt  
Assume the following probability model for the observations 

where 

p(D | λ,α,ν) = Poisson(Ni |ασ i )
i=1

K

∏
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σ i = ci + biλ + aiλ
2

D = N1,,NK , K = 20
ν = c1,b1,a1,,cK ,bK ,aK
α = total count / total cross section



1.  Counts range from ~70,000 to 3! This causes the limits on 
Λ to be very sensitive to the normalization α. For 
example, increasing α by 1% decreases the limit by 25%! 

2.  Spectrum sensitive to the jet energy scale (JES) 

3.  And to the parton distribution functions (PDF) 

4.  Simulated CI models (using PYTHIA) were available for 
only 4 values of Λ, namely, Λ = 3, 5, 8, and 12 TeV for 
destructive interference models only 

5.  Insane deadlines and the need, occasionally, to sleep! 
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Solution: (Channel the Reverend Thomas Bayes!) 
1.  Integrate the likelihood over the scale factor α  

2.  Integrate the likelihood over the JES 

3.  Integrate the likelihood over the PDF parameters 

4.  Interpolate over the 4 PYTHIA CI models 

5.  Ignore insane deadlines and sleep as needed! 
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Step 1: Re-write 

as 

where 

p(D | λ,α,ν) = Poisson(Ni |ασ i )
i=1

K

∏

ESHEP2013 Practical Statistics                                                Harrison B. Prosper 36 

 

p(D | λ,α,ν) = Poisson(N |ασ )
×Multinomial(N1,…,NK |θ1,…,θK )

Exercise 14: Show this 

θi = σ i /σ , σ = σ i∑ ,   N = Ni∑



Step 2: Now eliminate α by integrating 

with respect to α.  

To do so, we need a prior density for α. In the absence of 
reliable information about this parameter, we use 

which is an example of a reference prior*. 
   *L. Demortier, S. Jain, HBP, arxiv:1002.1111 (2010) 
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p(D | λ,α,ν) = Poisson(N |ασ )
×Multinomial(N1,…,NK |θ1,…,θK )

π (α | λ,ν) = σ /α



Step 3: The integration with respect to α yields 

But, after more thought, we realized that almost all the 
information about the models is contained in the shapes of 
their jet pT spectra, especially given that the total jet count 
is large (~200,000). This causes the multinomial to be 
particularly sensitive to the spectral shapes 

Therefore, we could simply start with the multinomial and 
sidestep the normalization problem 
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p(D | λ,ν)∝Multinomial(N1,…,NK |θ1,…,θK )
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Step 4: Fit a 4-parameter 
interpolation function f 
to the four spectral ratios 
(QCDNLO+CILO)/QCDNLO 
simultaneously. The  
cross section (per pT bin)  
is then modeled with 
σ = f (λ, p1,…, p4) σQCD 
where   
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f = 1+ p1
pT

100
⎛
⎝⎜

⎞
⎠⎟
p2 λ

1 TeV−2
⎛
⎝⎜

⎞
⎠⎟

+ p3
pT

100
⎛
⎝⎜

⎞
⎠⎟
p4 λ

1 TeV−2
⎛
⎝⎜

⎞
⎠⎟

2



List of nuisance parameters (“systematics” in HEP jargon): 

1.  the jet energy scale (JES),  

2.  jet energy resolution (JER),  

3.  the PDF parameters (PDF),  

4.  the factorization an renormalization scales (µF, µR) 

5.  the parameters  ω = p1…p4 of the function f (λ, ω)  
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Step 5: We use Bayes’ theorem to calculate the posterior 
density of the parameter of interest λ, 

VIP (Very Important Point): whatever the nature or 
provenance of nuisance parameters, whatever words we 
use to describe them, statistical, systematic, best guess, gut 
feeling…, in a Bayesian calculation we “simply” integrate 
them out of the problem. 
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p(λ | D) = p(λ,ω | D)∫ dω

= p(D | λ,ω )∫ π (λ,ω ) dω / p(D)

= π (λ) p(D | λ,ω )∫ π (ω | λ) dω⎡
⎣

⎤
⎦ / p(D)



Bayesian Hierarchical Modeling  
The parameters ω = p1…p4 that appear in the likelihood 

depend on φ = JES, JER, PDFs, µF, and µR.  
This fact can be modeled hierarchically as follows 

and the density π(ω | λ, φ) models how ω depends on φ 
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p(λ | D) = p(D | λ)π (λ) / p(D)
where

p(D | λ) = p(D | λ,ω )∫ π (ω | λ) dω   and

π (ω | λ) = π (ω | λ,ϕ )∫ π (ϕ ) dϕ



Step 6: Simultaneously sample:  
1.  the jet energy scale,  
2.  the jet energy resolution,  
3.  the (CTEQ6.6) PDF parameters,  
4.  the factorization and renormalization scales  
and, for each set of parameters, fit the parameters ω = p1…p4  

thereby creating points {ωi} that constitute the prior π(ω | λ) 
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p(D | λ) = p(D | λ,ω )∫ π (ω | λ) dω

≈
1
T

p(D | λ,ω i )
i=1

T

∑ , T ~ 500



Ensemble of coefficients c, b, a, as a function of jet pT, 
created by simultaneous sampling of all “systematics” 

ESHEP2013 Practical Statistics                                                Harrison B. Prosper 44 

 (GeV)
T

p

1000 1500 2000

 (
p

b
/G

e
V

)
T

/d
p

!
d

-3
10

-2
10

-1
10

1

10

  c    (7 TeV, CMS)

 (GeV)
T

p

1000 1500 2000

 (
p

b
/G

e
V

)
T

/d
p

!
d

-5

-4

-3

-2

-1

0
  b    (7 TeV, CMS)

 (GeV)
T

p

1000 1500 2000

 (
p

b
/G

e
V

)
T

/d
p

!
d

0

50

100

150

200
  a    (7 TeV, CMS)

σ = c + bλ + aλ2

c b a 



Step 7: Finally, we compute a 95% Bayesian interval by 
solving 

for  λUP, from which we compute Λ = 1/√λUP.  

The published limits were calculated for π(λ) = 1 and for  
π(λ) = a reference prior* (and annoyingly, using CLs): 
  Λ > 10.1 TeV or Λ > 14.1 TeV @ 95% C.L. for models 
with destructive or constructive interference, respectively 

*L. Demortier, S. Jain, HBP, arxiv:1002.1111 (2010) 
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p(λ | D)
0

λUP

∫ dλ = 0.95
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Probability 
Two main interpretations: 
1.  Degree of belief 
2.  Relative frequency 

Likelihood Function 
Main ingredient in any non-trivial statistical analysis 

Frequentist Principle 
Construct statements such that a fraction p ≥ CL of them 

will be true over a specified ensemble of statements. 

ESHEP2013 Practical Statistics                                                Harrison B. Prosper 



Frequentist Approach 
1.  Use likelihood function only 
2.  Eliminate nuisance parameters by profiling 
3.  Fisher: Reject null if p-value is judged to be small enough 
4.  Neyman: Decide on a fixed threshold α for rejection and 

reject null if p-value < α, but do so only if  the probability 
of the alternative is judged to be high enough 

Bayesian Approach  
1.  Model all uncertainty using probabilities and use Bayes’ 

theorem to make inferences 
2.  Eliminate nuisance parameters through marginalization 
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“Have the courage to use your own understanding!” 
       
           Immanuel Kant 


