QCD for collider experiments
an introduction in four lectures

Zoltán Trócsányi
University of Debrecen
When you measure what you are speaking about and express it in numbers, you know something about it, but when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind.

Lord Kelvin
Four Lectures

☞ Thursday:
QCD as QFT of strong interactions

☞ Friday:
QCD perturbation theory at fixed order:
\(\sigma(e^+e^- \rightarrow \text{hadrons}) \)

☞ Sunday:
QCD perturbation theory at fixed order:
event shapes and jets

☞ Monday:
☞ QCD perturbation theory:
partons in the initial state,
Assumptions

☞ You are
☞ familiar with QFT & QED (previous talk)
☞ eager to understand & learn QCD
☞ thus willing to enjoy work (= compute)

☞ You accept that there are no stupid questions only stupid silence
 (and sometimes answers, but that’s our fault 😊)
Lecture 1

QCD as QFT of strong interactions

Zoltán Trócsányi
University of Debrecen
Today

🔗 Symmetries of the QCD Lagrangian
 🔗 exact
 🔗 approximate

🔗 Many amazing faces of QCD

🔗 Property worth a Nobel prize: asymptotic freedom
 🔗 renormalization group (RG) equation
 🔗 β-function
 🔗 running coupling and masses
Today we have a satisfactory quantum field theory of strong interactions based on a non-abelian gauge symmetry: QCD.

40 years of immense efforts lead to a lot of results and deep understanding, yet we are far from a complete and satisfactory solution.

indeed: Happy anniversary QCD

H. Fritzsch, M. Gell-Mann, H. Leutwyler: *Advantages of the colour octet picture* PLB 47 (1973) 365
Goals

a) ambitious: solve QCD

b) pragmatic: develop tools for modeling particle interactions in high energy collider experiments

We pursue (b) here
Understand events quantitatively from first principles
Understand events quantitatively from first principles

Photon
- $p_T = 128 \text{ GeV/c}$
- $\eta = 0.5$
- $\phi = 2.0 \text{ rad}$

Anti-k$_T$ 0.5 PFJet
- $p_T = 139 \text{ GeV/c}$
- $\eta = -0.6$
- $\phi = -1.1 \text{ rad}$
There is a long way

...to distributions, full of pitfalls & difficulties
QCD Lagrangian

- QCD is a part of the Standard Model
- SM is a gauge theory with underlying $\text{SU}_c(3) \times \text{SU}_L(2) \times \text{U}_Y(1)$

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}^0_{\text{QCD}} + \mathcal{L}_{\text{sources}}$$

$$\mathcal{L}^0_{\text{QCD}} = \mathcal{L}_{\text{classical}} + \mathcal{L}_{\text{gauge fix}} + \mathcal{L}_{\text{ghost}}$$

in physical gauges
Classical Lagrangian

\[\mathcal{L}_c = \sum_{f=1}^{6} \mathcal{L}_f(q_f, m_f) + \mathcal{L}_g(A) \]

\[\mathcal{L}_f(q_f, m_f) = \sum_{a,b=1}^{N_c} \bar{q}_f^a (i\gamma_\mu D^\mu - m_f)_{ab} q_f^b \]

\[\{\gamma_\mu, \gamma_5\} = 0 \quad \{\gamma_\mu, \gamma_\nu\} = 2g_{\mu\nu} \]

many degrees of freedom:

- flavours (f), colours (a,b)
- spin and space-time position (not shown)

QCD computations are very cumbersome
Field content

* Quark fields dictated by the electroweak sector: $q_f \ f=1,\ldots,6 \ B=1/3$

<table>
<thead>
<tr>
<th>f</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_f</td>
<td>u</td>
<td>d</td>
<td>s</td>
<td>c</td>
<td>b</td>
<td>t</td>
</tr>
<tr>
<td>m_f</td>
<td>$\sim 5\text{MeV}$</td>
<td>$\sim 7\text{MeV}$</td>
<td>$\sim 100\text{MeV}$</td>
<td>1.2GeV</td>
<td>4.2GeV</td>
<td>173GeV</td>
</tr>
</tbody>
</table>

* for heavy ones m_f running masses (see later) at $\mu = 2\text{GeV}$, approximate values

* Gluon fields prescribed by $SU_c(3)$ gauge symmetry: $A^\alpha, \ \alpha = 1,\ldots,8$
Field content

\[(D_{\mu})_{ab} = \left(\partial_{\mu} + ig_s \sum_c A_\mu^c T^c \right)_{ab} \]
\[
\mathcal{L}_g(A) = -\frac{1}{4} \sum_{a=1}^{N_c^2-1} \mathcal{F}_a^\mu \mathcal{F}_a^{\mu\nu}(A)
\]

\(T^c\) are the SU\((N_c)\) generators with algebra:

\[[T^a, T^b] = if^{abc} T^c \quad Tr(T^a T^b) = TR \delta^{ab} \quad TR = \frac{1}{2} \]

fundamental representation: \((T^a)_{ij} = \frac{1}{2} \lambda_{ij} = t_{ij}^a\)

adjoint representation: \((T^a)_{bc} = -if^{abc} = F_{ij}^a\)
Number of colours

\[\sigma(e^+ e^- \rightarrow q\bar{q}) \] is leading order approximation to \[\sigma(e^+ e^- \rightarrow \text{hadrons}) \]

\[\Rightarrow \text{hadronic } R \text{ ratio in LO perturbation theory} \]

\[R = \frac{\sigma(e^+ e^- \rightarrow q\bar{q})}{\sigma(e^+ e^- \rightarrow \mu^+ \mu^-)} = \left(\sum_{q=1}^{N_f} e_q^2 \right) \frac{N_c}{3} = \]

\[= 2\left(\frac{N_c}{3} \right), \quad N_f = 3 \]

\[= \frac{10}{3}\left(\frac{N_c}{3} \right), \quad N_f = 4 \]

\[= \frac{11}{3}\left(\frac{N_c}{3} \right), \quad N_f = 5 \]
Number of colours = 3
Colour factors

Eigenvalues of the quadratic Casimir operator (like eigenvalues of J^2)

☞ in the fundamental representation

$$\left(t^a t^a \right)_{bc} = C_F \delta_{bc} \quad C_F = T_R \frac{N_c^2 - 1}{N_c} = \frac{4}{3} \quad \text{in QCD}$$

☞ in the adjoint representation:

$$\left(F^a F^a \right)_{bc} = C_A \delta_{bc} \quad C_A = 2 T_R N_c = 3 \quad \text{in QCD}$$

⇒ measuring C_F and C_A determines N_C
Simultaneous measurement of the strong coupling and colour factors
Source of non-Abelian nature

\[F^a_{\mu \nu}(A) = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + i g_s F^a_{b\mu} A^b_\mu A^c_\nu \]

- Main difference between QCD and QED
- Makes it a ‘perfect theory’: among QFT theories in \(d = 4 \) only non-Abelian gauge theories are asymptotically free (below)
- Possible source of colour confinement (colour neutrality of hadrons)?
Feynman rules

can be read off the action

\[S = i \int d^4x (\mathcal{L}_f + \mathcal{L}_g) \equiv S_0 + S_I \]

\[S_0 = i \int d^4x \mathcal{L}_0 \quad S_I = i \int d^4x \mathcal{L}_I \]

☞ \(\mathcal{L}_0 \) contains bilinear terms of the fields

☞ \(\mathcal{L}_I \) contains the rest (called interactions)

☞ gluon propagator \(\Delta_{g,\mu\nu} \) is the inverse of the bilinear term in \(A_\mu \) – in momentum space:

\[\Delta_{g,\mu\nu}(p) i \left[p^2 g^{\nu\rho} - p^\nu p^\rho \right] = \delta^\rho_\mu \]
Feynman rules

but \[i \left[p^2 g^{\nu \rho} - p^\nu p^\rho \right] p^\rho = 0 \], hence \[\left[p^2 g^{\nu \rho} - p^\nu p^\rho \right]^{-1} \] does not exist

\[\Rightarrow \] Exploit gauge invariance to rewrite \(L \) in a physically equivalent form – gauge fixing = imposing a constraint on \(A_\mu \) by adding a term with a Lagrange multiplicator (colour implicit)

covariant: \[\partial_\mu A^\mu (x) = 0 \Rightarrow \mathcal{L}_{gf} = -\frac{1}{2\lambda} (\partial_\mu A^\mu)^2 \]

axial \(n^\mu \neq p^\mu \): \[n_\mu A^\mu (x) = 0 \Rightarrow \mathcal{L}_{gf} = -\frac{1}{2\lambda} (n_\mu A^\mu)^2 \]
Feynman rules: propagators

** gluon

in covariant gauges:

\[
\frac{i\delta^{ab}}{p^2} \left[g_{\mu\nu} - (1 - \lambda) \frac{p_\mu p_\nu}{p^2} \right]
\]

with usual choice \(\lambda = 1 \) (Feynman gauge)

in axial gauges:

\[
d_{\mu\nu}(p, n) = -g_{\mu\nu} + \frac{p_\mu n_\nu + n_\mu p_\nu}{p \cdot n}
\]

\[
\frac{i\delta^{ab}}{p^2} \left(d_{\mu\nu}(p, n) - (n^2 + \lambda p^2) \frac{p_\mu p_\nu}{(p \cdot n)^2} \right)
\]

with usual choice \(n^2 = 0, \lambda = 0 \) (light-cone gauge)

** quark

\[
i \delta_{ij} \frac{p^2 + m}{p^2 - m^2}
\]
Feynman rules: vertices

\[-ig_s t^a_{ij} \gamma^\mu \]

So far same as QED if \(g_s \to e \) and \((t^a)_{jj} \to \delta_{ij} \).

With rules for external states can compute QED cross sections:

\[\text{outgoing (anti-)fermion:} \quad (\nu(p)) \bar{u}(p) \]
\[\text{incoming (anti-)fermion:} \quad (\bar{\nu}(p)) u(p) \]
\[\text{outgoing/incoming vector boson:} \quad \sum_{\lambda=1,2} \epsilon^{(\lambda)}_\mu(p) \epsilon^{(\lambda)}_\nu(p)^* = d_{\mu\nu}(p, n) \]
Feynman rules: vertices

gluon self couplings

- **triple:**
 \[-i g_s F_{bc}^\alpha \left[+ g^{\alpha \beta} (p - q)^\gamma
 + g^{\beta \gamma} (q - r)^\alpha
 + g^{\gamma \alpha} (r - p)^\beta \right] \]

- **quartic:**
 \[-i g_s^2 \left[+ f^{x ac} f^{x bd} \left(g^{\alpha \beta} g^{\gamma \delta} - g^{\alpha \delta} g^{\beta \gamma} \right)
 + f^{x ad} f^{x bc} \left(g^{\alpha \beta} g^{\gamma \delta} - g^{\alpha \gamma} g^{\beta \delta} \right)
 + f^{x ad} f^{x bc} \left(g^{\alpha \gamma} g^{\beta \delta} - g^{\alpha \delta} g^{\beta \gamma} \right) \]
Feynman rules: vertices

Four-gluon vertex is not in a factorized form of a colour and a tensor factor

Introduce a fake field, without dynamics

Propagator:

\[\frac{i}{2} \delta^{ab} (g^{\alpha\beta} g_{\gamma\delta} - g^{\alpha\delta} g_{\beta\gamma}) \]

That couples only to gluon with vertex:

\[i \sqrt{2} g_s f^{x \alpha c} g^{\alpha\xi} g_{\gamma\zeta} \]

Helps automation
Colour algebra

Factorization of colour in Feynman rules allows for separate computation of colour sums, implemented in programs, e.g. type

\[
\text{In}[1]:= \text{Import}[^\text{http://www.feyncalc.org/install.m}^] \\
\]

in your Mathematica

but it is also easy&fun graphically

(the following graphs are meant in colour space only – try to write the corresponding algebraic expressions)
Colour algebra

- commutation relation:

\[
\begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.6\textwidth]{commutation_relation.png}
\end{array}
\end{array}
\]

- normalization:

\[
\begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.6\textwidth]{normalization.png}
\end{array}
\end{array}
\]

- Fierz-identity:

\[
\begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.6\textwidth]{fierz_identity.png}
\end{array}
\end{array}
\]
Colour algebra

 gebruik de Fierz-id. om C_F te bepaLEN

 multiply de commutatie-relatie met de quark gluon vertex (in kleur) en bewijs

 gebruik de bovenstaande oplossing om C_A te berekenen
Colour algebra

What is the value of the following numbers?

Compute the factors A, B, C
Are we done?

Seemingly yes: we can compute the cross section of any process to any accuracy in PT, like in QED

...but rather not: you will find big surprises due to gluon self coupling!

in QCD complexity becomes prohibitive at higher orders – OK, compute at one-loop

Oops! – the coupling decreases with increasing scattering energies – LO enough?
Parton-hadron duality

- Electrons and photons exist as free particles.
- Quarks and gluons have never been observed in detectors, only hadrons.
- Assumption: a low-order perturbative computation in QCD is an approximation to sufficiently inclusive hadronic cross-section if:
 - total cm energy Q of partons is much larger than the mass of quarks and hadrons, $Q \gg m$.
 - Q is far from hadronic resonances and thresholds.
Parton-hadron duality
Exact symmetries of the classical Lagrangian

Predictions should reflect the symmetries of \mathcal{L}_c, hence it is useful to study those first in space-time: against transformations of the conformal group

- translations
- Lorentz transformations (rotation and boost)
- scale if quarks are massless

$$x^\mu \rightarrow \lambda x^\mu \quad A_\mu(x) \rightarrow \lambda^{-1} A_\mu(\lambda x) \quad q(x) \rightarrow \lambda^{-3/2} q(\lambda x)$$

conformal transformations
Exact symmetries of the classical Lagrangian

- **in colour space**: local gauge invariance

\[U : q_i(x) \rightarrow q'_i(x) = U(x)_{ij} q_j(x), \quad U(x) = \exp\left(i \sum_{a=1}^{N_c^2-1} \alpha^a(x) T^a \right) \in SU(N_c) \]

- **the covariant derivative transforms as the field itself** (prove if you have not yet done):

\[U : \left(D_\mu q(x) \right)_i \rightarrow \left(D'_\mu q'(x) \right)_i = U(x)_{ij} \left(D_\mu q(x) \right)_j \]

- **quark mass term** SU\(_c(3)\) gauge invariant
Exact symmetries of the classical Lagrangian

- discrete: C, P and T in agreement with observed properties of strong interactions (C, P and T violating strong decays are not observed)

- there exists additional gauge invariant dimension-four operator, the Θ–term:

\[
L_\Theta = \frac{\Theta g_s}{32\pi^2} F_{\mu\nu} \cdot \tilde{F}^{\mu\nu}, \quad \tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} F_{\alpha\beta}
\]

violates P and T, Θ is small ($<10^{-9}$ experimentally), set $\Theta=0$ in perturbative QCD
almost supersymmetric

Massless QCD for $N_f = 1$

$$
\mathcal{L}^{QCD}_C = -\frac{1}{4} F_{\mu\nu}^a F^{a\mu\nu} + \overline{q} \, i\gamma_\mu D^\mu \, q
$$

SUSY Yang-Mills:

$$
\mathcal{L}^{SYM}_C = -\frac{1}{4} F_{\mu\nu}^a F^{a\mu\nu} + \overline{\lambda} \, i\gamma_\mu D^\mu \, \lambda
$$

quarks transform under fundamental, gluinos under adjoint representation of SU(N)
Approximate symmetries of the classical Lagrangian

Related to the quark mass matrix

introduce

\[\psi = \begin{pmatrix} u \\ d \\ s \end{pmatrix} = \begin{pmatrix} q_1 \\ q_2 \\ q_3 \end{pmatrix} \]

\[P_{\pm} = \frac{1}{2} (1 \pm \gamma_5) \]

\(P_{\pm} \) are projections

\[P_+ P_- = P_- P_+ = 0, \quad P_{\pm}^2 = P_{\pm}, \quad P_+ + P_- = 1 \]

from Dirac algebra:

\[\gamma_\mu P_{\pm} = P_\mp \gamma_\mu \]

let

\[\psi_{\pm} = P_{\pm} \psi, \quad \overline{\psi} = \psi^\dagger \gamma_0 \Rightarrow \overline{\psi}_{\pm} = \overline{\psi} P_\mp \]

\[\gamma_5^2 = 1 \Rightarrow \gamma_5 \psi_{\pm} = \pm \psi_{\pm} \]
Approximate symmetries of the classical Lagrangian

books the quark sector of the Lagrangian can be rewritten:

\[
\mathcal{L}_{\text{Chir}} = \overline{\psi} i\gamma_\mu D^\mu \psi = \overline{\psi} \left(P_+ + P_- \right) i\gamma_\mu D^\mu \left(P_+ + P_- \right) \psi
= \overline{\psi} P_+ i\gamma_\mu D^\mu P_- \psi + \overline{\psi} P_- i\gamma_\mu D^\mu P_+ \psi
= \overline{\psi}_- i\gamma_\mu D^\mu \psi_- + \overline{\psi}_+ i\gamma_\mu D^\mu \psi_+ \equiv \mathcal{L}_- + \mathcal{L}_+ \equiv \mathcal{L}_L + \mathcal{L}_R
\]

_books would not work if gluons were not vectors (in \(D^\mu\))

_books the left- and right-handed fields are not coupled

\(
\mathcal{L}_{\text{Chir}} \) is invariant under \(U_L(N_f) \times U_R(N_f)\)

This symmetry acts separately on left- and right-handed fields: chiral symmetry
Approximate symmetries of the classical Lagrangian

the group elements can be parametrised in terms of $2 N_f^2$ real numbers:

$$\left(g_L, g_R\right) = \left(e^{i\alpha_a T^a} e^{i\beta_a T^a}, e^{i\alpha_a T^a} e^{-i\beta_a T^a}\right)$$

$$\in U_V(1) \otimes U_A(1) \otimes SU_L(N_f) \otimes SU_R(N_f)$$

has vector subgroups $SU_V(N_f) \times U_V(1)$

$$\left(g, g\right) = \left(e^{i\alpha_a T^a}, e^{i\alpha_a T^a}\right) = e^{i\alpha_a T^a I} \in SU_V(N_f)$$

axial transformations do not form a subgroup

$$\left(h, h^+\right) = \left(e^{i\beta_a T^a}, e^{-i\beta_a T^a}\right) = e^{i\beta_a T^a \gamma_5} \quad \left[T^a \gamma_5, T^b \gamma_5\right] = i f^{abc} T^c I$$
Chiral perturbation theory

- Chiral symmetry is not observed in the hadron spectrum.

- In QCD it is believed that the vacuum has a non-zero VEV of the light-quark operator:

\[
\langle 0 | \bar{q} q | 0 \rangle = \langle 0 | \bar{u}u + \bar{d}d | 0 \rangle \approx (250 \text{ MeV})^3
\]

This quark condensate breaks chiral symmetry spontaneously to \(SU_V(N_f) \times U_V(1) \) \(\Rightarrow \) isospin & conserved baryon number, „massless“ mesons.

- Because it connects left- and right-handed fields:

\[
\langle 0 | \bar{q} q | 0 \rangle = \langle 0 | \bar{q}_L q_R + \bar{q}_R q_L | 0 \rangle
\]
Chiral perturbation theory

- SSB of chiral symmetry implies the existence of $N_f^2 - 1$ massless Goldstone bosons,

- but light quarks are not exactly massless
 - chiral symmetry is not exact, the Goldstone bosons are not massless
 - pseudoscalar meson octet!

- m_f are treated as perturbation
 - χPT
 - masses of light quarks, scattering properties of pions!
QCD topics (at T=0)

Low-energy properties (<GeV)

High energy collisions (>GeV)

Perturbative

Non-perturbative

χPT (light quark masses)

Jet physics

Sum rules, lattice QCD

Our focus
Approximate symmetries of the classical Lagrangian

Choose Weyl representation:

$$
\gamma_0 = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \quad \gamma_i = \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix}, \quad \gamma_5 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$

$$
\psi_+ = \begin{pmatrix} \tilde{\psi}_+ \\ 0 \end{pmatrix}, \quad \psi_- = \begin{pmatrix} 0 \\ \tilde{\psi}_- \end{pmatrix}, \quad \tilde{\psi}_\pm (x) = e^{-i p \cdot x} \tilde{\psi}_\pm (p)
$$

two-component Weyl spinors, satisfying

$$
i \gamma \cdot \partial \tilde{\psi}_\pm (x) = 0 \implies \gamma \cdot p \tilde{\psi}_\pm (p) = 0 \quad \text{if } m=0$$

$$
- E \tilde{\psi}_\pm (p) \pm \sigma_i p_i \tilde{\psi}_\pm (p) = 0
$$

Helicity eigenstates:

$$
\sigma \cdot \hat{p} \tilde{\psi}_\pm (p) = \pm \tilde{\psi}_\pm (p)
$$
Symmetries of the classical Lagrangian

- Some are useful for:
 - easing computations
 - checking computations
 - hinting on solving QCD

- Some are violated by quantum corrections with important physical consequences:
 - scaling violations
 - axial anomaly (not discussed here)
What is scaling?

Consider a dimensionless physical observable \(R = R(Q^2) \), with \(Q \) being a large energy scale,

\[Q \gg \text{any other dimensionful parameter (e.g. } m_f) \]

\[\Rightarrow \text{set } m_f = 0 \text{ (check later if } R(m_f = 0) \text{ is OK)} \]

Classically \(\text{dim} R = 0 \) & \(\text{dim} Q = 1 \), so

\[\frac{dR}{dQ} = 0 \Rightarrow \lim_{Q^2 \to \infty} R = R_0 \text{ constant} \]
What is scaling violation?

- We’ll see in a renormalized QFT we need an additional scale: μ renormalization scale, thus $R = R(Q^2/\mu^2)$ is not a constant: scaling violation.
- The “small” parameter in the perturbative expansion of R, $\alpha_s(\mu)$ also depends on the scale choice.
- But μ is an arbitrary, non-physical parameter (\mathcal{L}_C does not depend on it) \Rightarrow physical quantities cannot depend on μ.
Renormalization group equation

\[0 = \mu^2 \frac{d}{d\mu^2} R \left(\frac{Q^2}{\mu^2}, \alpha_s(\mu^2) \right) = \left(\mu^2 \frac{\partial}{\partial \mu^2} + \mu^2 \frac{\partial \alpha_s}{\partial \mu^2} \frac{\partial}{\partial \alpha_s} \right) R \]

let \(t = \ln(\frac{Q^2}{\mu^2}) \), \(\beta(\alpha_s) = \mu^2 \left. \frac{\partial \alpha_s}{\partial \mu^2} \right|_{\alpha_s^{(0)} \text{ fixed}} \)

\[\left(-\frac{\partial}{\partial t} + \beta(\alpha_s) \frac{\partial}{\partial \alpha_s} \right) R(e^t, \alpha_s) = 0 \]

How can we solve this?
Established Feynman rules of pQCD
- similar to QED with some complications
- those of colour algebra can be factorized
- those of gluon self coupling are tremendous (you have not yet seen it)

Understood the origin of the RGE

Let us try to solve it