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☛  Solution of the RGE  
☞  running coupling 
☞  running masses 

☛  Consequences of renormalization of QCD 
☛  Electron-positron annihilation to hadrons  
☞  LO 
☞  NLO 
☞  choosing the scale 
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☛  we introduce the running coupling αs(Q2) 
implicitly: 

☛  d/dt : 

☛  d/dα : 

 è 
Same equation for αs(Q2) as RGE for R(et, αs)  
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☛  if µ2 = Q2 è et = 1, R(1, αs(Q2)) is a 
solution of the RGE 

è the scale-dependence in R enters only 
through αs(Q2), and we can predict the scale 
dependence of R by solving 
 
                               or 
 

Let’s solve it perturbatively!  
(we analyse the validity of PT later) 
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☛  in PT 

☛  known coefficients (hard computations!): 

☛  another convention: 
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☛  if αs(Q2) is small, we can truncate the 
series, at leading order (LO): 

 
è 

 

Solution if both αs(Q2) and αs(µ2) are small: 
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Most important property of QCD è 
 Nobel prize 2004 

 
 
 
 
 

  David J. Gross, David H. Politzer, Frank Wilczek 
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☛  justifies the use of PT  
☛  sign of b0 is crucial 
☛  in background field gauge 2 graphs 

contribute: 

☞  quark loop negative: -4TRNf/3 
☞  gluon loop positive: 11CA/3 
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☛  Gluon self interaction 
makes QCD perfect in 
PT 
☛  in QED b0 < 0, hence 

coupling increases at 
high energies, but 
remains perturbative 
up to the Planck scale  
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☛  gives rationale to pQCD,  
 but we shall see that LO is not enough 
☛  can compute also at NLO: 

 
αs(Q2) is given implicitly by 

 

can be solved numerically 
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☛  if R=R0+R1αs+O(αs
2), use (1+x)-1 = Σj(-x)j: 

☛  R2αs
2 gives logs with one power less in each 

term 
☛  for αs(Q2) we need to measure αs(µ2) at 

some scale  
☛ different choices for µ give (in PT) subleading 

differences in αs(Q2) that can be significant 
numericallyè choose the reference carefully 
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☛  Another approach to solving the RGE 
by introducing a Λ reference scale: 

☛  Λ indicates the scale at which αs(Q2) gets 
strong 
☛  LO: 

☛  NLO: 
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Measurements at different 
scales lead to consistent 
values when evolved to  
the same reference scale 

PDG 

PDG 



☛  one flavour with renormalized mass 
m: yet another mass scale 

γm is the mass anomalous dimension, PT: 

☛  R is dimensionless  
 è  
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☛  to solve the RGE, introduce the running 
quark mass m(Q2) 

☛  expand around m(Q2) = 0: 

☛  derivative terms are suppressed by Q-n at 
high Q2 

☞  dropping the quark masses is justified 
☞  only IR-safe observables (?) can be computed 
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☛  all non-trivial scale dependence of R can 
be included in the running of mass and 
coupling, for mass: 

 
☛  solution (check): 

☛  change dQ2 to dαs 
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☛  at LO  

  
☛  running quark mass vanishes at high 

Q2 with running coupling 
☛  effect of mass in R is suppressed by  
☞  its physical dimension 
☞  and anomalous dimension 
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So far we have computed almost everything 
explicitly. This luxury is mostly over. 
(I’ll try, but the journey will be ‘tour de Mont Blanc’.) 
I’ll have to present results without justification, but 
you can check those using freely available 
computer programs. Some useful links: (FeynCalc) 
Tracer.m 
http://library.wolfram.com/infocenter/MathSource/2987/ 
MadGraph http://madgraph.phys.ucl.ac.be/ 
Calchep 
http://theory.sinp.msu.ru/~pukhov/calchep.html 
Comphep http://comphep.sinp.msu.ru/ 
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☛  we collect collision events with something 
interesting in the final state 
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event with four hard muons 
in the CMS detector 

☛  counting event rates 
we measure xsections 
☛  we compare measured 

xsections to predictions 
☛  parton-hadron duality 
è need predictions at 
parton level 



☛  the formula: 

☞  N contains non-QCD factors, e.g. flux = 1/2s 
☞  dΦm is phase space of m particles 
☞  S{m} is symmetry factor 
☞  |Mm|2 is squared matrix element − the hard 

part 
☞  O is the observable 
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☛  basis in colour and helicity space of m 
partons: 
☛           is a state vector in this space 
☛  scattering amplitude for producing m 

partons of colour (c1,…,cm), spin (s1,…,sm) 
and momentum (p1,…,pm): 

è 
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☛  PT expansion of          in space-time with 
                     dimensions 
 
 
☛  µ is dimensional regularization scale to 

keep coupling dimensionless in d dim 
☛            is divergent in d = 4,  

 the singularities appear as          poles 
 with both UV and IR origin 
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☛  UV poles can be removed by multiplicative 
redefinition of the fields and parameters in the 
Lagrangian, systematically order by order in PT 
− a hard task even at one loop, known up to four 
loops: A.Chetyrkin, hep-ph/0405193 
☛  for scattering amplitudes renormalization at 

one-loop can be achieved by the substitution  
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è 

☛               and              are renormalized, 
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☛  the renormalized amplitude up to one-loop 
accuracy, 
 finite in the UV, but still contains IR poles 
☛  use dimensional regularization to regulate IR 

poles: d > 4, epsilon negative 
☛  for IR safe observables these IR poles 

vanish and we can set d = 4, so 

☛  with UV finite, IR regularized |Mm|2 → σ 
2013.06.09. Zoltán Trócsányi: QCD@CERN School 

of Physics 2013 25 

|Ami

"✓
↵sµ2✏

R

4⇡
S�1
✏

◆ q
2 ⇣↵s

4⇡
S�1
✏

⌘i
#
!

⇣↵s

4⇡

⌘i+ q
2

��Mm

↵
=

��M(0)
m

↵
+

��M(1)
m

↵



☛  consider our old friend the hadronic R 
ratio: 

 
☛  2 → 2 scattering has one free kinematical 

parameter, the θ scattering angle  
☛  the differential cross section for 

     + terms that vanish at s=MZ, or after integration       2    
☛  below the Z pole 
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☛  consider our old friend the hadronic R 
ratio: 

 
☛  2 → 2 scattering has one free kinematical 

parameter, the θ scattering angle  
☛  the differential cross section for 

+ terms that vanish at s=MZ, or after integration  
☛  on the Z pole 
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☛  LO: the hadronic cross section is 
obtained by counting the possible 
final states: 

☛  with q = u,d,s,c,b  R =11/3 & RZ =20.09  
☛  measured value at LEP: RZ =20.79±0.04 
☛  the 3.5% difference is mainly due to QCD 

radiation effects: NLO corrections 
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☛  NLO: two kind of corrections 
☞  real: 
                                                  2 
                           + 
 
☞  virtual: 
(loop) 
    2 Re  
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☛  three-body phase space has 5 independent 
variables: 2 energies and 3 angles 
☛  integrate over the angles & use yij = 2pi·pj/s 

scaled two-particle invariants, y12+y13+y23=1 
☛  real contribution to the total xsection:   

☛  Divergent along the boundaries at yi3 = 0: 

☛ Divergent when E3→0 (soft gluon), or θi3 →0 
(collinear gluon) 
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☛  make sense of the real contribution use 
dimensional regularization 

 

☛  to be combined with virtual correction 

☛  sum of real and virtual contributions is finite 
in d = 4: (same for RZ) 
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☛  total xsection is computed more easily 
using the optical theorem 

☛  Satisfies the renormalization-group 
equation to order αs

4  
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(non-singlet contribution) 

What should be the scale µ? 

NLO band 



☛  There is no theorem that gives the proper 
scale choice and scale-interval to estimate 
the theoretical uncertainty at 95% confidence 
level 
☛  There are several recommendations 

 based on educated guesses, such as  
☞  principle of minimal sensitivity 
☞  BLM, choices 

☛  At hadron colliders the case is worse as 
there is a second (factorization) scale and 
often several physical scales (e.g. particle 
masses)  
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☛  Solved the RGE and found asymptotic freedom 
☛  Set our playground: pQCD with massless light 

quarks 
☛  Showed that PT can only be fully consistent in an 

asymptotically free theory, like QCD 
☛  Computed the QCD corrections to the total 

hadronic xsection in electron positron annihilation 

How about more exclusive observables? 
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