#### Programme of Lectures

- Motivations and introduction
- What we know now
- The future?
  - -Supersymmetric Higgses
  - Higgs factories

#### The Particle Higgsaw Puzzle



Is LHC finding the missing piece?

Is it the right shape?

Is it the right size?

#### From Discovery to Measurement

- Mass measurements:  $125.6 \pm 0.3 \text{ GeV}$
- Signal strengths ~ SM in many channels



- Frontiers:
  - VBF significance  $2\sigma$  in several channels,  $3\sigma$  combined
  - Decay to  $\tau\tau$  emerging, limits on  $\tau\tau$  ( $\mu\tau$ ,  $e\tau$ )
  - Decay to bbbar emerging (CMS, Tevatron)
  - Indirect evidence for ttbar coupling (search for ttbar + H/W, Zγ)

#### Couplings resemble Higgs of Standard Model





• No indication of any significant deviation from the Standard Model predictions

[B. & Tevons You, arXiv:1303.3879]

## Some Questions

- What is it?
  - -Higgs or ...?
- What else is there?
  - -Supersymmetry ...?
- What next?





#### Elementary Higgs or Composite?

Higgs field:

$$<0|H|0>\neq 0$$

Quantum loop problems



Cut-off  $\Lambda \sim 1$  TeV with Supersymmetry?

- Fermion-antifermion condensate
- Just like QCD, BCS superconductivity
- Top-antitop condensate? needed m<sub>t</sub> > 200 GeV

#### New technicolour force?

- Heavy scalar resonance?
- Inconsistent with precision electroweak data?

# Higgs as a Pseudo-Goldstone Boson

'Little Higgs' models (breakdown of larger symmetry) 10 TeV - UV completion?
sigma model cut-off

1 TeV - colored fermion related to top quark new gauge bosons related to SU(2) new scalars related to Higgs

200 GeV - 1 or 2 Higgs doublets, possibly more scalars

Loop cancellation mechanism



stop

Little Higgs

#### What is it?

- Does it have spin 0 or 2?
- Is it scalar or pseudoscalar?
- Is it elementary or composite?
- Does it couple to particle masses?
- Quantum (loop) corrections?
- What are its self-couplings?

#### What is the Spin of the 'Higgs'?

- Decays into  $\gamma\gamma$ , so cannot have spin 1
- Spin 0 or 2?
- Selections of WW and ZZ events are based on spin 0 hypothesis
- Can diagnose spin via
  - production in association with W or Z
  - angular distribution of  $\gamma\gamma$
  - angular correlations of leptons in WW, ZZ decays

#### Does the 'Higgs' have Spin Two?

- Would have graviton-like couplings:  $\mathcal{L}_{int} = -\frac{c_i}{M_{eff}}G^{\mu\nu}T^i_{\mu\nu}$
- Coefficients somewhat model-dependent
- Warped compactification:  $ds^2 = w^2(z) (\eta_{\mu\nu} dx^{\mu} dx^{\nu} dz^2)$
- Expect equal couplings for photons, gluons

$$\Gamma(X \to gg) = 8\Gamma(X \to \gamma\gamma) c_{g,\gamma} \simeq 1/\int_{z_{UV}}^{z_{IR}} w(z)dz$$

• Larger coefficients for W, Z, b, t

$$c_b \simeq c_t \gtrsim c_W \simeq c_Z = \mathcal{O}(35) \times (c_g = c_{\gamma} > c_u, c_d)$$

• Smaller coefficients for u, d, s, c

(Also expect vector mass < tensor mass X LHC)

#### Does the 'Higgs' have Spin Two?

• Fit of vector-boson couplings to spin-two model



 Prediction of AdS-type graviton-like model disfavoured by > 3 σ

#### Does the 'Higgs' have Spin Zero?



Vector boson + 'Higgs' combined invariant mass very different for spins 0 and 2

#### Spin Discriminating Power



Available TeVatron data, 2012 LHC data should be able to distinguish spins 0 and 2

### The 'Higgs' probably a Scalar



• Pseudoscalar, graviton-like spin-2 disfavoured

#### The 'Higgs' probably a Scalar

JE. Sanz & You: arXiv:1303.0208

• Associated production cross section increases more rapidly with energy for 0-, spin 2



• Pseudoscalar, graviton-like spin-2 disfavoured

#### Does the 'Higgs' have Spin Zero?

- Polar angle distribution:  $X_2 \rightarrow \gamma \gamma$ (flat for  $X_0$ )
- Azimuthal angle distribution:  $X_0 \rightarrow WW$  (flat for  $X_2$ )



#### Does the 'Higgs' have Spin Two?

• Discriminate spin 2 vs spin 0 via angular distribution of decays into γγ



#### Does the 'Higgs' have Spin Zero?

- Polar angle distribution for  $X_2 \rightarrow W^+W^-$
- Polar angle distribution for  $X_0 \rightarrow W^+W^-$ (for  $\varphi = \pi$ )



JE, Hwang: arXiv:1202.6660

## The 'Higgs' Spin is probably 0



#### What is it?

- Does it have spin 0 or 2?
  - Spin 2 very unlikely
- Is it scalar or pseudoscalar?
- Is it elementary or composite?
- Does it couple to particle masses?
- Quantum (loop) corrections?
- What are its self-couplings?

#### The 'Higgs' is probably a scalar



• Pseudoscalar 0<sup>-</sup> disfavoured at > 99% CL

#### What is it?

- Does it have spin 0 or 2?
  - Spin 2 seems unlikely, but needs experimental checks
- Is it scalar or pseudoscalar?
  - Pseudoscalar disfavoured by experiment
- Is it elementary or composite?
- Does it couple to particle masses?
- Quantum (loop) corrections?
- What are its self-couplings?

#### Phenomenological Framework

Assume custodial symmetry:

$$SU(2) \times SU(2) \rightarrow SU(2)_V \qquad (\rho \equiv M_W/M_Z \cos \theta_w \sim 1)$$

• Parameterize gauge bosons by  $2 \times 2$  matrix  $\Sigma$ :

$$\mathcal{L} = \frac{v^2}{4} \text{Tr} D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \left( 1 + 2 \frac{\mathbf{a}}{v} + \frac{\mathbf{b}}{v^2} + \dots \right) - m_i \bar{\psi}_L^i \Sigma \left( 1 + \frac{\mathbf{c}}{v} + \dots \right) \psi_R^i + \text{h.c.}$$

$$+ \frac{1}{2} (\partial_{\mu} h)^2 + \frac{1}{2} m_h^2 h^2 + \frac{\mathbf{d}_3}{6} \left( \frac{3 m_h^2}{v} \right) h^3 + \frac{\mathbf{d}_4}{24} \left( \frac{3 m_h^2}{v^2} \right) h^4 + \dots ,$$

$$\Sigma = \exp\left(irac{\sigma^a\pi^a}{v}
ight) \ \mathcal{L}_{\Delta} \ = \ -\left[rac{lpha_s}{8\pi}b_sG_{a\mu
u}G_a^{\mu
u} + rac{lpha_{em}}{8\pi}b_{em}F_{\mu
u}F^{\mu
u}
ight]\left(rac{h}{V}
ight)$$

• Coefficients a = c = 1 in Standard Model

#### Phenomenological Framework

- a parametrizes couplings of h to massive gauge bosons
- c parametrizes couplings of h to fermions:
  - Standard Model:

$$a = c = 1$$

- Composite Higgs MCHM4:  $a = c = \sqrt{1 \xi}$   $\xi \equiv (v/f)^2$
- Composite Higgs MCHM5:  $a = \sqrt{1-\xi}, \quad c = \frac{1-2\xi}{\sqrt{1-\xi}}$
- Pseudo-Dilaton:

$$a = c = \frac{v}{V}$$

#### Re-interpreting SM Higgs Searches









$$R_{gg} = rac{(-rac{v}{V}b_s + cF_t)^2}{F_t^2} \quad , \quad R_{
m VBF} = a^2 \quad , \quad R_{
m ap} = a^2 \quad , \quad R_{
m hs} = c^2$$

$$R_{\mathrm{VBF}} = a^2$$

$$R_{
m ap}=a^2$$

$$R_{\rm hs} = c^2$$









$$R_{VV}=a^2$$
 ,  $R_{ar{f}f}=c^2$  ,

$$R_{\gamma\gamma} = \frac{(-\frac{v}{V}b_{em} - \frac{8}{3}cF_t + aF_w)^2}{(-\frac{8}{3}F_t + F_w)^2}$$

• Only  $R_{yy}$  is sensitive to relative sign of a, c

#### Re-Interpreting SM Higgs Searches

• Sensitivities of different experimental search (sub)channels:

|                          | Production sensitive to |   | Decay sensitive to |          |
|--------------------------|-------------------------|---|--------------------|----------|
| channel                  | $\boldsymbol{a}$        | c | $\boldsymbol{a}$   | c        |
| $\gamma\gamma$           | ✓                       | ✓ | <b>✓</b>           | ✓        |
| $\gamma\gamma$ VBF       | ✓                       | × | ✓                  | ✓        |
| WW                       | ✓                       | ✓ | ✓                  | ×        |
| WW 2-jet                 | ✓                       | × | ✓                  | ×        |
| WW 0,1-jet               | ×                       | ✓ | ✓                  | ×        |
| $b\bar{b} \; 	ext{(VH)}$ | ✓                       | × | ×                  | ✓        |
| $b ar b \; (ar t t H)$   | ×                       | ✓ | ×                  | ✓        |
| ZZ                       | ✓                       | ✓ | ✓                  | ×        |
| au	au                    | ✓                       | ✓ | ×                  | ✓        |
| $\tau\tau$ (VBF, VH)     | ✓                       | × | ×                  | <b>√</b> |

#### Global Analysis of Higgs-like Models

• Rescale couplings: to bosons by a, to fermions by c



• Standard Model: a = c = 1

#### Global Analysis of Higgs-like Models

• Rescale couplings: to bosons by a, to fermions by c



• 'Wrong' sign of c disfavoured

#### Single Higgs + Top Production

Sensitive to sign of H-t coupling



Sign fixed by renormalizability







#### What is it?

- Does it have spin 0 or 2?
  - Spin 2 seems unlikely, but needs experimental checks
- Is it scalar or pseudoscalar?
  - Pseudoscalar disfavoured by experiment
- Is it elementary or composite?
  - No significant deviations from Standard Model
- Does it couple to particle masses?
- Quantum (loop) corrections?
- What are its self-couplings?

#### It Walks and Quacks like a Higgs

• Do couplings scale ~ mass? With scale = v?



• Red line = SM, dashed line = best fit

#### It Walks and Quacks like a Higgs

• Do couplings scale  $\sim$  mass? With scale = v?

Global fit 
$$\lambda_f = \sqrt{2} \left( \frac{m_f}{M} \right)^{1+\epsilon}, \ g_V = 2 \left( \frac{m_V^{2(1+\epsilon)}}{M^{1+2\epsilon}} \right)$$

• Standard Model Higgs:  $\varepsilon = 0$ , M = v

#### It Walks and Quacks like a Higgs

• Do couplings scale ~ mass? With scale = v?



 $\varepsilon = -0.022^{+0.042}_{-0.021} \, M = 244^{+20}_{-10} \, GeV$ 

#### What is it?

- Does it have spin 0 or 2?
  - Spin 2 seems unlikely, but needs experimental checks
- Is it scalar or pseudoscalar?
  - Pseudoscalar disfavoured by experiment
- Is it elementary or composite?
  - No significant deviations from Standard Model
- Does it couple to particle masses?
  - Some *prima facie* evidence that it does
- Quantum (loop) corrections?
- What are its self-couplings?

#### Loop Corrections?

• ATLAS sees excess in γγ, CMS sees deficit



Loop diagrams ~ Standard Model?

#### Loop Corrections?

• Gluon-gluon coupling  $\sim 1 \sigma$  low?



•  $\gamma\gamma$  coupling ~ 1  $\sigma$  high?

#### Beyond any Reasonable Doubt

- Does it have spin 0 or 2?
  - Simple spin 2 couplings excluded
- Is it scalar or pseudoscalar?
  - Pseudoscalar strongly disfavoured
- Is it elementary or composite?
  - No significant deviations from Standard Model
- Does it couple to particle masses?
  - Prima facie evidence that it does
- Quantum (loop) corrections?
  - γγ coupling >~ Standard Model?
- What are its self-couplings? **Hi-lumi LHC or ...?**

## What is its Decay Rate?

Compared with the Standard Model prediction



Assuming no non-Standard Model modes

## What is its Decay Rate?

Compared with the Standard Model prediction



Assuming no non-Standard Model modes

### Mass Shift sensitive to $\Gamma_{\rm H}$

• Apparent  $m_{\gamma\gamma} \neq m_{ZZ^*}$  due to interference with QCD



- Depends on kinematics
- Sensitive to sign and magnitude of Higgs couplings



## The Story so Far

- A new chapter in particle physics is open
- The new particle is a scalar
- Couplings ~ Standard Model Higgs
- Severe constraint on composite models
- Elementary scalar a challenge for theorists
- Fits naturally within supersymmetry
  - Mass, couplings
- But no sign of supersymmetric particles
- On to HE, HL-LHC and beyond

#### Conversation with Mrs Thatcher: 1982

