Programme of Lectures

- Motivations and introduction
- What we know now
- The future?
 - Supersymmetric Higgses
 - Higgs factories

Interference in H $\rightarrow \gamma \gamma$

Elementary Higgs or Composite?

- Higgs field:
 - $<0|H|0>\neq 0$
- Ouantum loop problems
- Fermion-antifermion condensate
- Just like OCD RCS

No visible hint of anything beyond the Standard Model

top gauge higgs

Cut-off $\Lambda \sim 1$ TeV with Supersymmetry?

- Heavy scalar resonance?
- Inconsistent with precision electroweak data?

Theoretical Confusion

- High mortality rate among theories
- (M_H, M_t) close to stability bound
- Λ close to Weinberg upper bound
- Split SUSY? High-scale SUSY?
- Modify/abandon naturalness? Does Nature care?
- String landscape?
- SUSY anywhere better than nowhere
- SUSY could not explain the hierarchy
- New ideas needed!

No BSM? Beware Historical Hubris

- "So many centuries after the Creation, it is unlikely that anyone could find hitherto unknown lands of any value" Spanish Royal Commission, rejecting Christopher Columbus proposal to sail west, < 1492
- "The more important fundamental laws and facts of physical science have all been discovered" Albert Michelson, 1894
- "There is nothing new to be discovered in physics now. All that remains is more and more precise measurement" Lord Kelvin, 1900
- "Is the End in Sight for Theoretical Physics?" Stephen Hawking, 1980

The Dog(s) that did not Bark

To Sherlock Holmes:

"Is there any other point to which you would wish to draw my attention?"

• Holmes:

"To the curious incident of the dog in the night-time."

• To Holmes:

"The dog did nothing in the night-time."

Holmes:

"That was the curious incident."

• We have many clues:

Waiting for our Holmes: maybe a string player?

Why is there Nothing rather than Something?

- Higher-dimensional operators as relics of higherenergy physics: $\mathcal{L}_{\text{eff}} = \sum \frac{f_n}{\Lambda^2} \mathcal{O}_n$
- Operators constrained by $SU(2) \times U(1)$ symmetry:

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu} \ , \qquad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ , \qquad \mathcal{O}_{BW} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \Phi \ ,$$

$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi) \ , \qquad \mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi) \ , \qquad \mathcal{O}_{\Phi,1} = (D_{\mu} \Phi)^{\dagger} \Phi \ \Phi^{\dagger} (D^{\mu} \Phi)$$

$$\mathcal{L}_{eff} = -\frac{\alpha_{s} v}{8\pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{GG} + \frac{f_{WW}}{\Lambda^{2}} \mathcal{O}_{WW} + \frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W} + \frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B} + \frac{f_{\text{bot}}}{\Lambda^{2}} \mathcal{O}_{d\Phi,33} + \frac{f_{\tau}}{\Lambda^{2}} \mathcal{O}_{e\Phi,33}$$

Corbett, Eboli & Gonzalez²

 Constrain using LHC +
 Tevatron Higgs
 measurements

Why is there Nothing rather than Something?

Combine with constraints on anomalous triple-gauge boson couplings

Corbett, Eboli & Gonzale:

A or The?

- Others?
 - Upper limits on couplings of massive H'
 - Extra singlet? 2HDM? Fermiophobic MSSM?
- Non-SM decays?
 - Invisible decays? SM4? μμί μτ? eτ? aa? H±±?
- VV scattering?
 - Closure test (does Higgs cure high-energy behaviour)
- Another way? Other scenarios?
 - Precision of BSM predictions?
- Will the HL-LHC be enough?

Flavour-Changing Couplings?

• Upper limits from FCNC, EDMs, ...

- Quark FCNC bounds exclude observability of quark-flavour-violating *h* decays
- Lepton-flavour-violating h decays could be large:

BR(τμ) or BR(τe) could be O(10)%

BR(μ e) must be $< 2 \times 10^{-5}$

Flavour-Changing Couplings?

 Constraints on quarkflavour-changing couplings from FCNC

•	Constraints on lepton-
	flavour-changing
	couplings

Operator	Eff. couplings	95% C.L. Bound		Observables
		$ c_{ m eff} $ $ { m Im}(c_{ m eff}) $		-
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$c_{sd} c_{ds}^*$	1.1×10^{-10}	4.1×10^{-13}	Δm_K ; ϵ_K
$(\bar{s}_R d_L)^2, \ (\bar{s}_L d_R)^2$	c_{ds}^2, c_{sd}^2	2.2×10^{-10}	0.8×10^{-12}	
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	$c_{cu} c_{uc}^*$	0.9×10^{-9}	1.7×10^{-10}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)^2, (\bar{c}_L u_R)^2$	c_{uc}^2 , c_{cu}^2	1.4×10^{-9}	2.5×10^{-10}	
$(\bar{b}_Rd_L)(\bar{b}_Ld_R)$	$c_{bd} c_{db}^*$	0.9×10^{-8}	2.7×10^{-9}	$\Delta m_{B_d}; S_{B_d \to \psi K}$
$(\bar{b}_R d_L)^2, (\bar{b}_L d_R)^2$	c_{db}^2 , c_{bd}^2	1.0×10^{-8}	3.0×10^{-9}	
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	$c_{bs} c_{sb}^*$	2.0×10^{-7}	2.0×10^{-7}	Δm_{B_s}
$(\bar{b}_R s_L)^2, (\bar{b}_L s_R)^2$	c_{sb}^2 , c_{bs}^2	2.2×10^{-7}	2.2×10^{-7}	<u>-</u>

Eff. couplings	Bound	Constraint
$ c_{sb} ^2, c_{bs} ^2$	2.9×10^{-5}	$\mathcal{B}(B_s \to \mu^+ \mu^-) < 1.4 \times 10^{-8}$
$ c_{db} ^2$, $ c_{bd} ^2$	1.3×10^{-5}	$\mathcal{B}(B_d \to \mu^+ \mu^-) < 3.2 \times 10^{-9}$

Operator	Eff. couplings	Bound	Constraint
$(\bar{\mu}_R e_L)(\bar{q}_L q_R), \ (\bar{\mu}_L e_R)(\bar{q}_L q_R)$	$ c_{\mu e} ^2$, $ c_{e\mu} ^2$	3.0×10^{-8}	$\mathcal{B}_{\mu \to e}(\mathrm{Ti}) < 4.3 \times 10^{-12}$
$(\bar{\tau}_R \mu_L)(\bar{\mu}_L \mu_R), \ (\bar{\tau}_L \mu_R)(\bar{\mu}_L \mu_R)$	$ c_{\tau\mu} ^2$, $ c_{\mu\tau} ^2$		$\Gamma(\tau \to \mu \bar{\mu} \mu) < 2.1 \times 10^{-8}$
$(\bar{\tau}_R e_L)(\bar{\mu}_L \mu_R), \ (\bar{\tau}_L e_R)(\bar{\mu}_L \mu_R)$	$ c_{\tau e} ^2$, $ c_{e\tau} ^2$	4.8×10^{-1}	$\Gamma(\tau \to e\bar{\mu}\mu) < 2.7 \times 10^{-8}$
$(\bar{\tau}_R e_L)(\bar{\mu}_L e_R), \ (\bar{\tau}_L e_R)(\bar{\mu}_L e_R)$	$ c_{\mu e}c_{e\tau}^* , c_{\mu e}c_{\tau e} $	0.9×10^{-4}	$\Gamma(\tau \to \bar{\mu}ee) < 1.5 \times 10^{-8}$
$(\bar{\tau}_R e_L)(\bar{\mu}_R e_L), \ (\bar{\tau}_L e_R)(\bar{\mu}_R e_L)$	$ c_{e\mu}^* c_{e\tau}^* , c_{e\mu}^* c_{\tau e} $		
$(\bar{\tau}_R \mu_L)(\bar{e}_L \mu_R), \ (\bar{\tau}_L \mu_R)(\bar{e}_L \mu_R)$	$ c_{e\mu}c_{\mu\tau}^* , c_{e\mu}c_{\tau\mu} $	1.0×10^{-4}	$\Gamma(\tau \to \bar{e}\mu\mu) < 1.7 \times 10^{-8}$
$(\bar{\tau}_R \mu_L)(\bar{e}_R \mu_L), \ (\bar{\tau}_L \mu_R)(\bar{e}_R \mu_L)$	$ c_{\mu e}^* c_{\mu \tau}^* , c_{\mu e}^* c_{\tau \mu} $		

Eff. couplings			Во	ound	Constraint		
	$ c_{e\tau}c_{\tau e} (c_{e\mu}c_{\mu e})$		$1.1 \times 10^{-2} (1.8 \times 10^{-1})$		$ \delta m_e < m_e$		
-	$ \text{Re}(c_{e\tau}c_{\tau e}) $	$\operatorname{Re}(c_{e\tau}c_{\tau e}) (\operatorname{Re}(c_{e\mu}c_{\mu e}))$		(1.4×10^{-1})	$ \delta a_e < 6 \times 10^{-12}$		
	$ \mathrm{Im}(c_{e\tau}c_{\tau e}) $	$(\mathrm{Im}(c_{e\mu}c_{\mu e}))$	1.1×10^{-7}	(1.9×10^{-6})	$ d_e < 1.6 \times 10^{-27} ecm$		
_	$ c_{\mu au}c_{ au\mu} $			2	$ \delta m_{\mu} < m_{\mu}$		
	$ \operatorname{Re}(c_{\mu\tau}c_{\tau\mu}) $		2×10^{-2}		$ \delta a_{\mu} < 4 \times 10^{-9}$		
1	$ \operatorname{Im}(c_{\mu\tau}c_{\tau\mu}) $		8		$ d_{\mu} < 1.2 \times 10^{-19} ecm$		
1	$ c_{e\tau}c_{\tau\mu} , c_{\tau e}c_{\mu\tau} $		2.4×10^{-6}		$\mathcal{B}(\mu \to e\gamma) < 2.4 \times 10^{-12}$		
	$ c_{\mu\tau} ^2, c_{\tau\mu} ^2$		6.6×10^{-1}		$\mathcal{B}(\tau \to \mu \gamma) < 4.4 \times 10^{-8}$		
	$ c_{e\tau} ^2, c_{\tau e}^* ^2$		4.7×10^{-1}		$\mathcal{B}(\tau \to e\gamma) < 3.3 \times 10^{-8}$		

Blankenburg, JE, Isidori: arXiv:1202.5704

Measuring the Triple-Higgs Coupling?

- What gives the Higgs mass? $V(H^{\dagger}H) = \mu^2 H^{\dagger}H + \eta (H^{\dagger}H)^2$
- The Higgs itself!
- Measure via HH production
- May be possible @ LHC with accuracy ~ 30%:

What else is there?

Supersymmetry

- Successful prediction for Higgs mass
 - Should be < 130 GeV in simple models
- Successful predictions for Higgs couplings
 - Should be within few % of SM values
- Could explain the dark matter
- Naturalness, GUTs, string, ... (???)

Loop Corrections to Higgs Mass²

Consider generic fermion and boson loops:

• Each is quadratically divergent: $\int^{\Lambda} d^4k/k^2$

$$\Delta m_H^2 = -\frac{y_f^2}{16\pi^2} [2\Lambda^2 + 6m_f^2 \ln(\Lambda/m_f) + \dots]$$

$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} [\Lambda^2 - 2m_S^2 \ln(\Lambda/m_S) + \dots]$$

• Leading divergence cancelled if

$$\lambda_S = y_f^2 \times 2$$
 Supersymmetry!

Theoretical Constraints on Higgs Mass

$$\lambda(Q) = \lambda(v) - \frac{3m_t^4}{2\pi^2 v^4} \log \frac{Q}{v}$$

 Small: renormalization due to t quark drives quartic coupling < 0 at some scale Λ
 → vacuum unstable

Vacuum could be stabilized by Supersymmetry

How to Stabilize a Light Higgs Boson?

• Top quark destabilizes potential: introduce stop-like scalar:

$$\mathcal{L} \supset M^2 |\phi|^2 + \frac{M_0}{v^2} |H|^2 |\phi|^2$$

- Can delay collapse of potential:
- But new coupling must be fine-tuned to avoid blow-up:
- Stabilize with new fermions:
 - just like Higgsinos
- Very like Supersymmetry!

Electroweak Symmetry Breaking

Could be driven by radiative corrections due to top

A bonus:
supersymmetry
may explain
why $\mu^2 < 0$

Higgs Bosons in Supersymmetry

- Need 2 complex Higgs doublets (cancel anomalies, form of SUSY couplings)
- 8-3=5 physical Higgs bosons Scalars h, H; pseudoscalar A; charged H[±]
- Lightest Higgs < MZ at tree level:

$$M_{\rm H,h}^2 = \frac{1}{2} \left[M_{\rm A}^2 + M_{\rm Z}^2 \pm \sqrt{(M_{\rm A}^2 + M_{\rm Z}^2)^2 - 4M_{\rm Z}^2 M_{\rm A}^2 \cos^2 2\beta} \right]$$

• Important radiative corrections to mass:

$$G_{\mu} m_{\mathrm{t}}^{4} \ln \left(\frac{m_{\tilde{\mathrm{t}}_{1}} m_{\tilde{\mathrm{t}}_{2}}}{m_{\mathrm{t}}^{2}} \right)_{\mathrm{TH}} \sim 1.5 \; \mathrm{GeV}$$

MSSM Higgs Masses & Couplings

Lightest Higgs mass
up to ~ 130 GeV
Heavy Higgs masses
quite close

Consistent With LHC

MSSM Higgs Couplings

$$g_{hVV} = \sin(\beta - \alpha) g_{HVV}^{\text{SM}},$$

$$g_{HVV} = \cos(\beta - \alpha) g_{HVV}^{\text{SM}},$$

$$g_{hAZ} = \cos(\beta - \alpha) \frac{g'}{2\cos\theta_W},$$

$$g_{hb\bar{b}}, g_{h\tau^+\tau^-} = -\frac{\sin\alpha}{\cos\beta} g_{Hb\bar{b},H\tau^+\tau^-}^{\text{SM}}$$

Limits on Heavy MSSM Higgses

Maybe it is a Supersymmetric Duck?

• Fits with lighter/heavier scalar Higgs at 125 GeV

Maybe it is a Supersymmetric Duck?

• Fits with lighter/heavier scalar Higgs at 125 GeV

Data

- Electroweak precision observables
- Flavour physics observables

eviation	from	Stand	lord	Mad	1.1	
tviauon	$\mathbf{H}\mathbf{O}\mathbf{H}$	Stanu	iaiu.	INIOC	$1 \subset 1$	

Supersymmetry at low scale, or .

Higgs mass

- Dark matter
- LHC

Observable		Source	Constraint		
		Th./Ex.			
	m_t [GeV] [39]		173.2 ± 0.90		
	$\Delta \alpha_{ m had}^{(5)}(m_{ m Z})$	[38]	0.02749 ± 0.00010		
	M_Z [GeV]	[40]	91.1875 ± 0.0021		
	Γ_Z [GeV]	[24] / [40]	$2.4952 \pm 0.0023 \pm 0.001_{\mathrm{SUSY}}$		
	$\sigma_{\rm had}^0$ [nb]	[24] / [40]	41.540 ± 0.037		
	R_l	[24] / [40]	20.767 ± 0.025		
	$A_{\mathrm{fb}}(\ell)$	[24] / [40]	0.01714 ± 0.00095		
	$A_{\ell}(P_{\tau})$	[24] / [40]	0.1465 ± 0.0032		
	$R_{ m b}$	[24] / [40]	0.21629 ± 0.00066		
	$R_{ m c}$	[24] / [40]	0.1721 ± 0.0030		
	$A_{\mathrm{fb}}(b)$	[24] / [40]	0.0992 ± 0.0016		
	$A_{\mathrm{fb}}(c)$	[24] / [40]	0.0707 ± 0.0035		
	A_b	[24] / [40]	0.923 ± 0.020		
	A_c	[24] / [40]	0.670 ± 0.027		
	$A_{\ell}(\mathrm{SLD})$	[24] / [40]	0.1513 ± 0.0021		
	$\sin^2 \theta_{\mathrm{w}}^{\ell}(Q_{\mathrm{fb}})$	[24] / [40]	0.2324 ± 0.0012		
	M_W [GeV]	[24] / [40]	$80.399 \pm 0.023 \pm 0.010_{\mathrm{SUSY}}$		
BI	$R_{b\to s\gamma}^{EXP}/BR_{b\to s\gamma}^{SM}$	[41] / [42]	$1.117 \pm 0.076_{\mathrm{EXP}}$		
			$\pm 0.082_{\rm SM} \pm 0.050_{\rm SUSY}$		
ard Model:					
ard	Model·	[27] / [37]	$(< 1.08 \pm 0.02_{SUSY}) \times 10^{-8}$		
ard	Model:	[27] / [37] [27] / [42]	$1.43 \pm 0.43_{\rm EXP+TH}$		
		[27] / [42]	$1.43 \pm 0.43_{\rm EXP+TH}$ < $(4.6 \pm 0.01_{\rm SUSY}) \times 10^{-9}$		
	Model: le, or	[27] / [42]	$1.43 \pm 0.43_{\rm EXP+TH}$ < $(4.6 \pm 0.01_{\rm SUSY}) \times 10^{-9}$ 0.99 ± 0.32		
sca	le, or	[27] / [42]	$1.43 \pm 0.43_{\mathrm{EXP+TH}}$ < $(4.6 \pm 0.01_{\mathrm{SUSY}}) \times 10^{-9}$ 0.99 ± 0.32 $1.008 \pm 0.014_{\mathrm{EXP+TH}}$		
SCA BR	1e, or $ \lim_{K \to \mu\nu/BR_{K \to \mu\nu}^{XP}} BR_{K \to \pi\nu\bar{\nu}}^{SM} $	[27] / [42] [27] / [42] [27] / [42] [43] / [42] [27] / [44] [45] / [46]	$1.43 \pm 0.43_{\rm EXP+TH}$ $< (4.6 \pm 0.01_{\rm SUSY}) \times 10^{-9}$ 0.99 ± 0.32 $1.008 \pm 0.014_{\rm EXP+TH}$ < 4.5		
SCA BREA	1e, or $ \frac{XP}{K \to \mu\nu}/BR_{K \to \mu\nu}^{SM} / BR_{K \to \pi\nu\bar{\nu}}^{SM} / \Delta M_{B_s}^{SM} $? [27] / [42] [27] / [42] [43] / [42] [27] / [44]	$1.43 \pm 0.43_{\mathrm{EXP+TH}}$ < $(4.6 \pm 0.01_{\mathrm{SUSY}}) \times 10^{-9}$ 0.99 ± 0.32 $1.008 \pm 0.014_{\mathrm{EXP+TH}}$		
	1e, or $ \frac{XP}{(-\pi\nu\bar{\nu})}/BR_{K\to\pi\nu\bar{\nu}}^{SM} $ $ \frac{M_{B_s}^{EXP}}{(-\pi\nu\bar{\nu})}/\Delta M_{B_s}^{SM} $ $ \frac{\Delta M_{B_s}^{EXP}}{(-\pi\nu\bar{\nu})}/\Delta M_{B_s}^{SM} $ $ \frac{\Delta M_{B_s}^{EXP}}{(-\pi\nu\bar{\nu})}/\Delta M_{B_s}^{SM} $ $ \frac{\Delta M_{B_s}^{EXP}}{(-\pi\nu\bar{\nu})}/\Delta M_{B_s}^{SM} $	[27] / [42] [27] / [42] [27] / [42] [43] / [42] [27] / [44] [45] / [46] [45] / [47,48] [27] / [42,47,48]	$\begin{array}{c} 1.43 \pm 0.43_{\rm EXP+TH} \\ < (4.6 \pm 0.01_{\rm SUSY}) \times 10^{-9} \\ 0.99 \pm 0.32 \\ 1.008 \pm 0.014_{\rm EXP+TH} \\ < 4.5 \\ 0.97 \pm 0.01_{\rm EXP} \pm 0.27_{\rm SM} \\ 1.00 \pm 0.01_{\rm EXP} \pm 0.13_{\rm SM} \end{array}$		
	1e, or $ \frac{XP}{(-\pi\nu\bar{\nu})}/BR_{K\to\pi\nu\bar{\nu}}^{SM} $ $ \frac{M_{B_s}^{EXP}}{(-\pi\nu\bar{\nu})}/\Delta M_{B_s}^{SM} $ $ \frac{\Delta M_{B_s}^{EXP}}{(-\pi\nu\bar{\nu})}/\Delta M_{B_s}^{SM} $ $ \frac{\Delta M_{B_s}^{EXP}}{(-\pi\nu\bar{\nu})}/\Delta M_{B_s}^{SM} $ $ \frac{\Delta M_{B_s}^{EXP}}{(-\pi\nu\bar{\nu})}/\Delta M_{B_s}^{SM} $	[27] / [42] [27] / [42] [27] / [42] [43] / [42] [27] / [44] [45] / [46] [45] / [47,48]	$1.43 \pm 0.43_{\rm EXP+TH}$ $< (4.6 \pm 0.01_{\rm SUSY}) \times 10^{-9}$ 0.99 ± 0.32 $1.008 \pm 0.014_{\rm EXP+TH}$ < 4.5 $0.97 \pm 0.01_{\rm EXP} \pm 0.27_{\rm SM}$ $1.00 \pm 0.01_{\rm EXP} \pm 0.13_{\rm SM}$ $1.08 \pm 0.14_{\rm EXP+TH}$		
	1e, or $K \to \mu\nu/B + K \to \mu\nu$ $K \to \mu\nu/B + K \to \mu\nu$ $K \to \mu\nu/B + K \to \mu\nu$ $M_{B_s}^{XP} / \Delta M_{B_s}^{SM}$ $\Delta M_{B_s}^{EXP} / \Delta M_{B_d}^{SM}$ $\Delta M_{B_d}^{EXP} / \Delta M_{B_d}^{SM}$	[27] / [42] [27] / [42] [27] / [42] [43] / [42] [27] / [44] [45] / [46] [45] / [47,48] [27] / [42,47,48]	$1.43 \pm 0.43_{\rm EXP+TH}$ $< (4.6 \pm 0.01_{\rm SUSY}) \times 10^{-9}$ 0.99 ± 0.32 $1.008 \pm 0.014_{\rm EXP+TH}$ < 4.5 $0.97 \pm 0.01_{\rm EXP} \pm 0.27_{\rm SM}$ $1.00 \pm 0.01_{\rm EXP} \pm 0.13_{\rm SM}$ $1.08 \pm 0.14_{\rm EXP+TH}$		
	C, OT $K \rightarrow \mu \nu / D \cap K \rightarrow \mu \nu$ $XP \rightarrow \pi \nu \bar{\nu} / BR_{K} \rightarrow \pi \nu \bar{\nu}$ $M_{B_{s}}^{EXP} / \Delta M_{B_{s}}^{SM}$ $\Delta M_{B_{s}}^{EXP} / \Delta M_{B_{s}}^{SM}$ $\Delta M_{B_{s}}^{EXP} / \Delta M_{B_{s}}^{SM}$ $\Delta \epsilon_{K}^{EXP} / \Delta \epsilon_{K}^{SM}$ $Q^{EXP} = a^{SM}$	[27] / [42] [27] / [42] [27] / [42] [43] / [42] [27] / [44] [45] / [46] [45] / [47,48] [27] / [42,47,48] [45] / [47,48]	$1.43 \pm 0.43_{\rm EXP+TH}$ $< (4.6 \pm 0.01_{\rm SUSY}) \times 10^{-9}$ 0.99 ± 0.32 $1.008 \pm 0.014_{\rm EXP+TH}$ < 4.5 $0.97 \pm 0.01_{\rm EXP} \pm 0.27_{\rm SM}$ $1.00 \pm 0.01_{\rm EXP} \pm 0.13_{\rm SM}$ $1.08 \pm 0.14_{\rm EXP+TH}$ $(30.2 \pm 8.8 \pm 2.0_{\rm SUS, L}) \times 10^{-10}$		
	C, OT $K \rightarrow \mu \nu / D \cap K \rightarrow \mu \nu$ $XP \rightarrow \pi \nu \bar{\nu} / BR_{K} \rightarrow \pi \nu \bar{\nu}$ $M_{B_{s}}^{EXP} / \Delta M_{B_{s}}^{SM}$ $\Delta M_{B_{s}}^{EXP} / \Delta M_{B_{s}}^{SM}$ $\Delta M_{B_{s}}^{EXP} / \Delta M_{B_{s}}^{SM}$ $\Delta \epsilon_{K}^{EXP} / \Delta \epsilon_{K}^{SM}$ $Q^{EXP} = a^{SM}$	[27] / [42] [27] / [42] [27] / [42] [43] / [42] [27] / [44] [45] / [46] [45] / [47,48] [27] / [42,47,48] [45] / [47,48]	$1.43 \pm 0.43_{\rm EXP+TH}$ $< (4.6 \pm 0.01_{\rm SUSY}) \times 10^{-9}$ 0.99 ± 0.32 $1.008 \pm 0.014_{\rm EXP+TH}$ < 4.5 $0.97 \pm 0.01_{\rm EXP} \pm 0.27_{\rm SM}$ $1.00 \pm 0.01_{\rm EXP} \pm 0.13_{\rm SM}$ $1.08 \pm 0.14_{\rm EXP+TH}$		
	C, OT $K \rightarrow \mu \nu / D \cap K \rightarrow \mu \nu$ $XP \rightarrow \pi \nu \bar{\nu} / BR_{K} \rightarrow \pi \nu \bar{\nu}$ $M_{B_{s}}^{EXP} / \Delta M_{B_{s}}^{SM}$ $\Delta M_{B_{s}}^{EXP} / \Delta M_{B_{s}}^{SM}$ $\Delta M_{B_{s}}^{EXP} / \Delta M_{B_{s}}^{SM}$ $\Delta \epsilon_{K}^{EXP} / \Delta \epsilon_{K}^{SM}$ $Q^{EXP} = a^{SM}$	[27] / [42] [27] / [42] [27] / [42] [43] / [42] [27] / [44] [45] / [46] [45] / [47,48] [27] / [42,47,48] [45] / [47,48]	$1.43 \pm 0.43_{\rm EXP+TH}$ $< (4.6 \pm 0.01_{\rm SUSY}) \times 10^{-9}$ 0.99 ± 0.32 $1.008 \pm 0.014_{\rm EXP+TH}$ < 4.5 $0.97 \pm 0.01_{\rm EXP} \pm 0.27_{\rm SM}$ $1.00 \pm 0.01_{\rm EXP} \pm 0.13_{\rm SM}$ $1.08 \pm 0.14_{\rm EXP+TH}$ $(30.2 \pm 8.8 \pm 2.0_{\rm SUS, 1}) \times 10^{-10}$ $1.5 \text{ GeV} \pm 1.5_{\rm SUSY}$		
	le, or $\frac{K \rightarrow \mu \nu / \text{BR}_{K} \rightarrow \mu \nu}{\Delta m_{x} \rightarrow \pi \nu \bar{\nu}} / \text{BR}_{K}^{\text{SM}} \rightarrow \pi \nu \bar{\nu}}$ $\frac{M_{B_{s}}^{\text{EXP}} / \Delta M_{B_{s}}^{\text{SM}}}{M_{B_{s}}^{\text{EXP}} / \Delta M_{B_{s}}^{\text{SM}}}$ $\frac{\Delta M_{B_{s}}^{\text{EXP}} / \Delta M_{B_{s}}^{\text{SM}}}{M_{B_{d}}^{\text{EXP}} / \Delta \kappa_{K}^{\text{SM}}}$ $\frac{\Delta \epsilon_{K}^{\text{EXP}} / \Delta \epsilon_{K}^{\text{SM}}}{M_{H}} = 125$	[27] / [42] [27] / [42] [27] / [42] [43] / [42] [27] / [44] [45] / [46] [45] / [47,48] [27] / [42,47,48] [45] / [47,49] [49] / [38,50] [49] / [38,50] [49] / [38,50]	$1.43 \pm 0.43_{\rm EXP+TH}$ $< (4.6 \pm 0.01_{\rm SUSY}) \times 10^{-9}$ 0.99 ± 0.32 $1.008 \pm 0.014_{\rm EXP+TH}$ < 4.5 $0.97 \pm 0.01_{\rm EXP} \pm 0.27_{\rm SM}$ $1.00 \pm 0.01_{\rm EXP} \pm 0.13_{\rm SM}$ $1.08 \pm 0.14_{\rm EXP+TH}$ $(30.2 \pm 8.8 \pm 2.0_{\rm SUS}) \times 10^{-10}$ $1.5 \text{ GeV} \pm 1.5_{\rm SUSY}$ $56 \pm 0.017_{\rm USY}$ $(m.s$		
	1e, or $ \frac{XP}{K \to \mu\nu}/BR_{K \to \mu\nu} $ $ \frac{XP}{M_{B_s}}/\Delta M_{B_s}^{SM} $ $ \frac{M_{B_s}^{EXP}/\Delta M_{B_s}^{SM}}{\Delta M_{B_d}^{EXP}/\Delta M_{B_d}^{SM}} $ $ \frac{M_{B_d}^{EXP}/\Delta M_{B_d}^{SM}}{\Delta \epsilon_K} $ $ \frac{M_{B_d}^{EXP}/\Delta \epsilon_K}{\Delta \epsilon_K} $ $ \frac{M_{B_d}^{EXP}/\Delta \epsilon_K}{\Delta \epsilon_K} $ $ \frac{M_{B_d}^{EXP}/\Delta \epsilon_K}{\Delta \epsilon_K} $	[27] / [42] [27] / [42] [27] / [42] [43] / [42] [27] / [44] [45] / [46] [45] / [47,48] [27] / [42,47,48] [45] / [45,49] [49] / [38,50] [49] / [38,50]	$1.43 \pm 0.43_{\rm EXP+TH}$ $< (4.6 \pm 0.01_{\rm SUSY}) \times 10^{-9}$ 0.99 ± 0.32 $1.008 \pm 0.014_{\rm EXP+TH}$ < 4.5 $0.97 \pm 0.01_{\rm EXP} \pm 0.27_{\rm SM}$ $1.00 \pm 0.01_{\rm EXP} \pm 0.13_{\rm SM}$ $1.08 \pm 0.14_{\rm EXP+TH}$ $(30.2 \pm 8.8 \pm 2.0_{\rm SUS, 1}) \times 10^{-10}$ $1.5 \text{ GeV} \pm 1.5_{\rm SUSY}$		

Search with ~ 5/fb @ 8 TeV

MasterCode

- Combines diverse set of tools
 - different codes : all state-of-the-art
 - Electroweak Precision (FeynWZ)
 - Flavour (SuFla, micrOMEGAs)
 - Cold Dark Matter (DarkSUSY, micrOMEGAs)
 - Other low energy (FeynHiggs)
 - Higgs (FeynHiggs)
 - different precisions (one-loop, two-loop, etc)
 - different languages (Fortran, C++, English, German, Italian, etc)
 - different people (theorists, experimentalists)
- Compatibility is crucial! Ensured by
 - close collaboration of tools authors
 - standard interfaces

201 ATLAS + CMS with 5 fb-1 of LHC Data

Red and blue curves represent $\Delta \chi^2$ from global minimum, located at \bigstar

201 1ATLAS + CMS with 5 fb⁻¹ of LHC Data

Gluino mass

Update of Buchmueller, JE et al: arXiv:1207.3715

Favoured values of gluino mass significantly above pre-LHC, > 1.5 TeV

201 1ATLAS + CMS with 5 fb⁻¹ of LHC Data

Update of Buchmueller, JE et al: arXiv:1207.3715

Favoured values of squark mass also significantly above pre-LHC, > 1.5 TeV

201 1ATLAS + CMS with 5 fb⁻¹ of LHC Data

Favoured values of stop mass significantly below gluino, other squarks

201 1ATLAS + CMS with 5 fb⁻¹ of LHC Data

Favoured values of stau mass: Several hundred GeV

Some Questions

- What is it?
 - -Higgs or ...?
- What else is there?
 - -Supersymmetry or ...?
- What next?
 - -A Higgs factory or ...?

What Next: A Higgs Factory?

To study the 'Higgs' in detail:

- •The LHC
 - Rethink LHC upgrades in this perspective?
- •A linear collider?
 - ILC up to 500 GeV
 - CLIC up to 3 TeV(Larger cross section at higher energies)
- •A circular e⁺e⁻ collider: LEP3, TLEP
 - A photon-photon collider: SAPPHiRE
- •A muon collider

Possible High-Luminosity LHC Measurements

Possible ILC Measurements

Coupling Measurements @ ILC

What Higgs Factory?

Circular e⁺e⁻ colliders

E.g., LEP3:

- Vs = 240 GeV in the LHC tunnel produce e⁺e⁻→ZH events
- Short beam lifetime (To mins) requires two ring scheme
 - Top up injection from 240 GeV "accelerator ring"
 - "Collider ring" supplying 2-4 interaction points L = 10³⁴ cm⁻²s⁻¹ per IP
 - Re-use ATLAS and CMS and/or install two dedicated LC-type detectors
- Current design uses arc optics from LHeC ring
 - Dipole fill factor 0.75 (smaller than for LEP)
 - increased synchrotron energy loss (7 GeV per turn)
 - redesign possible?
- e[±] polarization probably not possible at vs = 240 GeV
- In principle space is available to install compact e⁺e⁻ facility on top of LHC ring
 - Is this really feasible?
 - Alternatively wait until completion of LHC physics programme and removal of LHC ring?
- SuperTRISTAN is a proposal for a similar machine in Japan

E.g., TLEP:

Vs = 350 GeV in 80 km LHC cannel to reach thresholds for top pair and e⁺e⁻→VVWW→VVH

New large tunnel could also be used for VHE pp collisions

Possible Luminosities of e⁺e⁻Colliders

Possible LEP3 Measurements

Simulations based on CMS detector

Comparison of Possible Higgs Factory Measurements

Higgs Factory Summary

precision

Best

			·			
Accelerator	LHC	HL-LHC	ILC (250)	ILC	EP3	TLEP
→ Physical	300fb ⁻¹ /exp	3000fb ⁻¹	250 fb ⁻¹	(250+350+1000)	240	240 +35)
quantity ↓		/exp			4 IP	4 IP
Approx. date	2021	2030	2035	2045	2035	2035
N _H	1.7 x 10 ⁷	1.7 x 10 ⁸	5 10⁴ZH	(10 ⁵ ZH)	4 10 ⁵ ZH	2 10 ⁶ ZH
			L	(1.4 10 ⁵ Hvv)		
m _H (MeV)	100	50	35	35	26	7
$\Delta\Gamma_{\text{H/}}\Gamma_{\text{H}}$			10%	3%	4%	1.3%
$\Delta\Gamma_{\text{inv}}/\Gamma_{\text{H}}$	Indirect	Indirect	1.5%	1.0%	0.35%	0.15%
,	(30%?)	(10% ?)				
$\Delta g_{H\gamma\gamma}/g_{H\gamma\gamma}$	6.5 - 5.1%	5.4 – 1.5%		5%	3.4%	1.4%
$\Delta g_{Hgg}/g_{Hgg}$	11 - 5.7%	7.5 - 2.7%	4.5%	2.5%	2.2%	0.7%
$\Delta g_{Hww}/g_{Hww}$	5.7 – 2.7%	4.5 – 1.0%	4.3%	1%	1.5%	0.25%
$\Delta g_{HZZ}/g_{HZZ}$	5.7 – 2.7%	4.5 – 1.0%	1.3%	1.5%	0.65%	0.2%
Δg _{ннн} /g _{ннн}	+	< 30%	+	~30%		
		(2 exp.)				
$\Delta g_{H\mu\mu}/g_{H\mu\mu}$	<30	<10			14%	7%

ICFA Higgs Factory West nop Fermilab, Nov. 2012

What Higgs Factory?

Photon-photon colliders

 γ γ luminosity as function of \forall s for different polarization of laser photons (λ) and electrons (P_a)

- Photon-photon collisions at $\sqrt{s} = 125$ GeV for $\gamma \gamma \rightarrow H$ (s-channel)
- E.g., SAPPHiRE:
- Pair of recirculating linacs similar in design to those proposed for the LHeC
 - E_{beam} = 80 GeV
- Laser back-scatter system peak power 6 x 10²¹ Wm⁻²
 - Needs R&D!
- γ γ Luminosity ~0.3 x 10³⁴ cm⁻²s⁻¹ for √s ≈ 125 GeV
- Some advantages over e⁺e⁻ for Higgs
 - Lower beam energy
 - Do not need positron source

What Higgs Factory?

Muon collider

- Potential advantages wrt. e⁺e⁻
- Smaller facility size
 - Synchrotron radiation losses ~ E⁴/m⁴r
- Smaller energy spread
 - Beamsstrahlung ~ E4/m4
- s-channel Higgs production ~m²

- Target L = 10^{34} cm⁻²s⁻¹ per IP
- Many technical challenges to be faced
 - Intense proton source
 - Muon cooling
 - Can detectors survive muon decay rate and still do the physics?
- Could be a follow-on from (or precursor to) a v-factory

Future Accelerators

- (What) precision, (how) high energy, neutrinos?
- Which is THE top priority accelerator?
 - Precision: HL-LHC, ILC/CLIC, TLEP, MC, γγ
 - Energy: HE-LHC, VHE-LHC, CLIC, MC
 - Neutrinos: from superbeam to ν factory
- HL-LHC is not a done deal, needs high-tech:
 - 11T dipoles, 13T quads, 500m HTS link, crab cavities
- Worldwide collaborative R&D needed

Impact of Higgs Factory?

- Predictions of current best fits in simple SUSY models
- Current uncertainties in SM calculations [LHC Higgs WG]
- Comparisons with
 - LHC
 - HL-LHC
 - ILC
 - TLEP
- Don't decide before LHC 13/4

Summary

- Beyond any reasonable doubt, the LHC has discovered a (the) Higgs boson
- A big challenge for theoretical physics!
- The LHC may discover physics beyond the SM when it restarts at ~ 13 TeV
- If it does, priority will be to study it
- If it does not, natural to focus on the Higgs
- In this case, TLEP offers the best prospects
 - and also other high-precision physics

The Standard Model

= Cosmic DNA

The matter particles

