Introduction to Mathematica

Thomas Hahn

Max-Planck-Institut für Physik München

The Case for Mathematica

Several packages make it a selling point that they are "100% free of Mathematica."

- Use of Mathematica is a feature, not a bug.
- Mathematica's language makes it easy for the user to examine and modify results, without having to contact the package authors.
- Functions (e.g. diagram filters) can be changed/extended with a moderate effort and without even changing the package code.
- Mathematica is known and available to most physicists.
- Mathematica is far more powerful than Python or other free symbolic languages.

Expert Systems

In technical terms, Mathematica is an Expert System. Knowledge is added in form of Transformation Rules. An expression is transformed until no more rules apply.

Example:

```
myAbs[x_] := x /; NonNegative[x]
myAbs[x_] := -x /; Negative[x]
```

We get:

```
myAbs[3]  3

myAbs[-5]  5

myAbs[2 + 3 I]  myAbs[2 + 3 I]

— no rule for complex arguments so far

myAbs[x]  myAbs[x]

— no match either
```

Immediate and Delayed Assignment

Transformations can either be

added "permanently" in form of Definitions,

• applied once using Rules:

$$a + b + c /. a -> 2 c \otimes b + 3 c$$

Transformations can be Immediate or Delayed. Consider:

```
\{r, r\} /. r \rightarrow Random[] \bowtie \{0.823919, 0.823919\} 
\{r, r\} /. r :> Random[] \bowtie \{0.356028, 0.100983\}
```

Mathematica is one of those programs, like TeX, where you wish you'd gotten a US keyboard for all those braces and brackets.

Almost everything is a List

All Mathematica objects are either Atomic, e.g.

```
Head[133] ☞ Integer
Head[a] ☞ Symbol
```

or (generalized) Lists with a Head and Elements:

List-oriented Programming

Using Mathematica's list-oriented commands is almost always of advantage in both speed and elegance.

Consider:

```
array = Table[Random[], {10^7}];
test1 := Block[ {sum = 0},
   Do[ sum += array[[i]], {i, Length[array]} ];
   sum ]
test2 := Apply[Plus, array]
```

Here are the timings:

```
Timing[test1][[1]]  31.63 Second Timing[test2][[1]]  3.04 Second
```

Map, Apply, and Pure Functions

Map applies a function to all elements of a list:

```
Map[f, {a, b, c}] 🕸 {f[a], f[b], f[c]}

f /0 {a, b, c} 🕸 {f[a], f[b], f[c]} — short form
```

Apply exchanges the head of a list:

Pure Functions are a concept from formal logic. A pure function is defined 'on the fly':

```
(# + 1) \& /0 \{4, 8\} \bowtie \{5, 9\}
```

The # (same as #1) represents the first argument, and the & defines everything to its left as the pure function.

List Operations

Flatten removes all sub-lists:

```
Flatten[f[x, f[y], f[f[z]]]] \bowtie f[x, y, z]
```

Sort and Union sort a list. Union also removes duplicates:

```
Sort[{3, 10, 1, 8}] 🖙 {1, 3, 8, 10}
Union[{c, c, a, b, a}] 🖙 {a, b, c}
```

Prepend and Append add elements at the front or back:

```
Prepend[r[a, b], c] r[c, a, b]
Append[r[a, b], c] r[a, b, c]
```

Insert and **Delete** insert and delete elements:

```
Insert[h[a, b, c], x, \{2\}] \bowtie h[a, x, b, c]
Delete[h[a, b, c], \{2\}] \bowtie h[a, c]
```

Patterns

One of the most useful features is Pattern Matching:

```
matches one object
matches one or more objects
matches zero or more objects
matches zero or more objects
named pattern (for use on the r.h.s.)
named pattern with head h
pattern with head h
default value
conditional pattern
x /; x > 0
conditional pattern
```

Patterns take function overloading to the limit, i.e. functions behave differently depending on *details* of their arguments:

```
Attributes[Pair] = {Orderless}
Pair[p_Plus, j_] := Pair[#, j]& /@ p
Pair[n_?NumberQ i_, j_] := n Pair[i, j]
```

Attributes

Attributes characterize a function's behaviour before and while it is subjected to pattern matching. For example,

```
Attributes[f] = {Listable}

f[l_List] := g[l]

f[{1, 2}] 

{f[1], f[2]} — definition is never seen
```

The Hold... attributes are needed to pass variables by reference:

```
Attributes[listadd] = {HoldFirst}
listadd[x_, other_] := x = Flatten[{x, other}]
```

This would not work if x were expanded before invoking listadd, i.e. passed by value.

Memorizing Values

For longer computations, it may be desirable to 'remember' values once computed. For example:

Note that Mathematica places more specific definitions before more generic ones.

Decisions

Mathematica's If Statement has three entries: for True, for False, but also for Undecidable. For example:

Property-testing Functions end in Q: EvenQ, PrimeQ, NumberQ, MatchQ, OrderedQ, ... These functions have no undecided state: in case of doubt they return False.

Conditional Patterns are usually faster:

Equality

Just as with decisions, there are several types of equality, decidable and undecidable:

```
a === b R a === b
a ==== b R False
a === a R True
a === a R True
```

The full name of '===' is SameQ and works as the Q indicates: in case of doubt, it gives False. It tests for Structural Equality.

Of course, equations to be solved are stated with '==':

Solve[
$$x^2 == 1, x$$
] $\bowtie \{\{x -> -1\}, \{x -> 1\}\}$

Needless to add, '=' is a definition and quite different:

$$x = 3$$
 — assign 3 to x

Selecting Elements

Select selects elements fulfilling a criterium:

```
Select[\{1, 2, 3, 4, 5\}, \# > 3 \& ] \bowtie \{4, 5\}
```

Cases selects elements matching a pattern:

```
Cases[\{1, a, f[x]\}, \_Symbol] \bowtie \{a\}
```

Using Levels is generally a very fast way to extract parts:

Mathematical Functions

Mathematica is equipped with a large set of mathematical functions, both for symbolic and numeric operations.

Some examples:

```
Sum[i, {i,50}]
Series [Sin[x], \{x,1,5\}]
Simplify [(x^2 - x y)/x]
Together [1/x + 1/y]
Inverse[mat]
Eigenvalues[mat]
PolyLog[2, 1/3]
LegendreP[11, x]
Gamma [.567]
```

- integral
- derivative
- sum
- series expansion
- simplify
- put on common denominator
- matrix inverse
- eigenvalues
- polylogarithm
- Legendre polynomial
- Gamma function

Graphics

Mathematica has formidable graphics capabilities:

```
Plot[ArcTan[x], {x, 0, 2.5}]

ParametricPlot[{Sin[x], 2 Cos[x]}, {x, 0, 2 Pi}]

Plot3D[1/(x^2 + y^2), {x, -1, 1}, {y, -1, 1}]

ContourPlot[x y, {x, 0, 10}, {y, 0, 10}]
```

Output can be saved to a file with Export:

```
plot = Plot[Abs[Zeta[1/2 + x I]], {x, 0, 50}]
Export["zeta.eps", plot, "EPS"]
```

Hint: To get a high-quality plot with proper LATEX labels, don't waste your time fiddling with the Plot options. Use the psfrag LATEX package.

Numerics

Mathematica can express Exact Numbers, e.g.

Sqrt[2], Pi,
$$\frac{27}{4}$$

It can also do Arbitrary-precision Arithmetic, e.g.

```
N[Erf[28/33], 25] © 0.7698368826185349656257148
```

But: Exact or arbitrary-precision arithmetic is fairly slow!

Mathematica uses Machine-precision Reals for fast arithmetic.

```
N[Erf[28/33]] © 0.769836882618535
```

Arrays of machine-precision reals are internally stored as Packed Arrays (this is invisible to the user) and in this form attain speeds close to compiled languages on certain operations, e.g. eigenvalues of a large matrix.

Compiled Functions

Mathematica can 'compile' certain functions for efficiency.

This is not compilation into assembler language, but rather a strong typing of an expression such that intermediate data types do not have to be determined dynamically.

```
fun[x_] := Exp[-((x - 3)^2/5)]

cfun = Compile[{x}, Exp[-((x - 3)^2/5)]]

time[f_] := Timing[Table[f[1.2], {10^5}]][[1]]

time[fun] \bowtie 2.4 Second

time[cfun] \bowtie 0.43 Second
```

Compile is implicit in many numerical functions, e.g. in Plot.

In a similar manner, Dispatch hashes long lists of rules beforehand, to make the actual substitution faster.

Blocks and Modules

Block implements Dynamical Scoping

A local variable is known everywhere, but only for as long as the block executes ("temporal localization").

Module implements Lexical Scoping

A local variable is known only in the block it is defined in ("spatial localization"). This is how scoping works in most high-level languages.

```
printa := Print[a]
a = 7
btest := Block[{a = 5}, printa]
mtest := Module[{a = 5}, printa]
btest $\tilde{\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$$\sint$$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\exitt{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\exit{$\text{$\text{$\text{$\}$}\exitt{$\text{$\text{$\text{$\text{$\tex{
```

DownValues and UpValues

Definitions are usually assigned to the symbol being defined: this is called DownValue.

For seldomly used definitions, it is better to assign the definition to the next lower level: this is an UpValue.

This is better than assigning to Plus directly, because Plus is a very common operation.

In other words, Mathematica "looks" one level inside each object when working off transformations.

Output Forms

Mathematica knows some functions to be Output Forms. These are used to format output, but don't "stick" to the result:

Some important output forms:

InputForm, FullForm, Shallow, MatrixForm, TableForm, TeXForm, CForm, FortranForm.

MathLink

The MathLink API connects Mathematica with external C/C++ programs (and vice versa). J/Link does the same for Java.

```
:Begin:
:Function:
               copysign
               CopySign[x_?NumberQ, s_?NumberQ]
:Pattern:
:Arguments: {N[x], N[s]}
:ArgumentTypes: {Real, Real}
:ReturnType: Real
:End:
#include "mathlink.h"
double copysign(double x, double s) {
 return (s < 0) ? -fabs(x) : fabs(x);
int main(int argc, char **argv) {
  return MLMain(argc, argv);
```

For more details see arXiv:1107.4379.

Scripting Mathematica

Efficient batch processing with Mathematica:

Put everything into a script, using sh's Here documents:

```
#! /bin/sh ...... Shell Magic
math << \_EOF_ .... start Here document (note the \)
      << FeynArts'
      << FormCalc'
      top = CreateTopologies[...];
      ...
_EOF_ .... end Here document</pre>
```

Everything between "<< \tag" and "tag" goes to Mathematica as if it were typed from the keyboard.

Note the "\" before tag, it makes the shell pass everything literally to Mathematica, without shell substitutions.

Scripting Mathematica

- Everything contained in one compact shell script, even if it involves several Mathematica sessions.
- Can combine with arbitrary shell programming, e.g. can use command-line arguments efficiently:

 Can easily be run in the background, or combined with utilities such as make.

Debugging hint: -x flag makes shell echo every statement,

```
#! /bin/sh -x
```

Mathematica Summary

- Mathematica makes it wonderfully easy, even for fairly unskilled users, to manipulate expressions.
- Most functions you will ever need are already built in.
 Many third-party packages are available at MathSource, http://library.wolfram.com/infocenter/MathSource.
- When using its capabilities (in particular list-oriented programming and pattern matching) right, Mathematica can be very efficient.
 - Wrong: FullSimplify[veryLongExpression].
- Mathematica is a general-purpose system, i.e. convenient to use, but not ideal for everything.
 For example, in numerical functions, Mathematica usually selects the algorithm automatically, which may or may not be a good thing.