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Definitions

What is “a collider study” and how do you

“perform” one?

◮ For my purposes, a “collider study” is

generating an appropriate simulation of a

particle collider and analyzing the

generated events, using appropriate tools.

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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You need a plan

Performing a collider study starts long before

installing WHIZARD/CalcHEP/... - you need to
plan!

(1) Why are you generating a Monte Carlo (MC)
simulation?

(2) What exactly are you going to simulate?

(3) How will you create the simulation?

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Motivation

Why are you generating an MC simulation?
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Motivation for collider studies

◮ Compare theory to experiment

◮ Compare predicted particle properties to
measured properties:

◮ mass mX

◮ charge qX
◮ spin sX
◮ lifetime τX / decay width ΓX = ~/τX
◮ branching ratios BR(X → ...)
◮ production cross-sections σ(X, ...)

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Motivation for collider studies

◮ τX long enough →

◮ mX , qX , sX , τX , BRs already measured
◮ calculate directly, compare to observed

value, no need to simulate
◮ e.g. define model, input (maybe via RGEs)

→ prediction for BR(Bs → µµ̄), compare to
1.1× 109 <BR(Bs → µµ̄) < 6.4× 109

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Motivation for collider studies

◮ τX too short →

◮ (binned) σi(various signals, cuts) as

functions of mX , qX , sX , ΓX , various

couplings, ...
◮ generally need to simulate

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Motivation for collider studies

Typical aims of collider studies:

◮ Is this model compatible with observed

excesses or non-observations?

◮ What cuts maximize observability of this

signal?

◮ What is the distribution of cross-section

against this kinematic variable?

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Motivation for collider studies

Is this model compatible with observed

excesses or non-observations?

◮ Often not obvious if a model or parameter

space region of a model can explain an
observed excess.

◮ Also not obvious if model is incompatible with

exclusions.

◮ Usually sufficient to simulate model’s excess

compared to SM contribution and compare to
experiment’s excess compared to SM.

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Motivation for collider studies

What cuts maximize observability of this

signal?

◮ Minimizing backgrounds while cutting as little

signal as possible is very important.

◮ Background needs to be simulated as well as
signal, obviously.
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B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Motivation for collider studies

What is the distribution of cross-section against this kinematic
variable?

◮ Classic bump-hunting, e.g. dσ/dmγγ
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B. O’Leary Zewail City of Science and Technology,

25/02/2013
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Motivation for collider studies

◮ Other cuts to reduce background can affect

distribution (from work with Jonas Lindert):
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B. O’Leary Zewail City of Science and Technology,
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Complications

Why do we need MC rather than

grad students + pencils + paper?
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◮ We need to compare model’s

σtheo({mi}, {gj}, {Yk}, ...) to measured

σexp.

◮ Theory should be predictive and map to

physical observables.

◮ Observables from parameters often not

easy, even at lowest orders - e.g. 4× 4

mass matrix (MSSM neutralinos).

◮ Colliders bring their own complications...

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Complication 1

Complication 1: multiparticle phase spaces

◮ 1 → n decays and 2 → n scatterings

require integrations over n-body phase

spaces

◮ Γ(a → n) =
∫

dPn
|M|2

2ma

◮ σ(a, b → n) =
∫

dPn
|M|2

4|Eapzb−Ebp
z
a|

◮ dPn = (2π)4δ4(
∑

pin−
∑

pout)Πi
dp

(2π)3(2Ei)

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Two-body phase space

n = 2, center-of-momentum frame:

dP2 =
(2π)4δ3(p1+p2)δ(

∑

Ein−E1−E2)
dp1

(2π)3(2E1)
dp2

(2π)3(2E2)

∫

|M(p1, p2)|
2dP2 =

∫ |M(p1,p2)|
2

(2π)2(2E2)
δ(
∑

Ein − E1 − E2)
dp1

(2E1)

where
p2 = −p1, E2 =

√

|p1|2 +m2
2, E1 =

√

|p1|2 +m2
1

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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dp1 = |p1|
2d|p1|dΩ1 = |p1|E1dE1dΩ1

where |p1| =
√

E2
1 −m2

1

δ(
∑

Ein − E1 − E2) =
δ(E1−Esol.

1 )
|1+(dE2/dE1)|

E2 =
√

|p1|2 +m2
2 =

√

E2
1 −m2

1 +m2
2

δ(
∑

Ein − E1 − E2) =
E2δ(E1−Esol.

1
)

∑

Ein

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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∫

|M(p1, p2)|
2dP2 =

∫ |M(p1,p2)|
2

(2π)2(2E2)
δ(
∑

Ein − E1 − E2)
dp1

(2E1)

=
∫ |M(p1,p2)|

2

16π2 δ(E1 − Esol.
1 ) |p1|

∑

Ein

dE1dΩ1

=
∫ |M(p1,p2)|

2

16π2

|p1|
∑

Ein

dΩ1

with all energies and momenta fixed by
4-momentum conservation.

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Three-body phase space

n = 3, center-of-momentum frame:

∫

|M(p1, p2, p3)|
2dP3 =

∫ |M|2

28π5E1E2E3

δ(
∑

Ein − E1 − E2 − E3)

δ3(p1 + p2 + p3)dp1dp2dp3

=
∫ |M|2

28π5E1E2E3

δ(
∑

Ein − E1 − E2 − E3)

|p1|
2d|p1|dΩ1|p2|

2d|p2|dΩ2

where E3 is a function of p1 and p2, and
p3 = −p1 − p2

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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E2
3 −m2

3 = |p1 + p2|
2 =

|p1|
2 + |p2|

2 + |p1||p2| cos(θ12)

E3dE3 = |p1||p2|d[cos(θ12)]
E2dE2 = |p2|d|p2|

E1dE1 = |p1|d|p1|
dΩ2 = dφ12d[cos(θ12)]

B. O’Leary Zewail City of Science and Technology,
25/02/2013

16 / 53



Motivation
Complications

On-shell intermediate particles
Planning

Multiparticle phase spaces
Kinematic cuts
Invisible particles
Bound states and showering

∫

|M(p1, p2, p3)|
2dP3 =

∫ |M|2

28π5 δ(
∑

Ein−E1−E2−E3)dΩ1dφ12dE1dE2dE3

= 2−8π−5
∫

|M(p1, p2, p3)|
2dΩ1dφ12dE1dE2

where p1, p2, p3 are functions of E1, E2, angles.

Decay into massless particles:
p1 · p2 = m(E1 + E2 − (m/2))

p2 · p3 = m((m/2)− E1)
p3 · p1 = m((m/2)− E2)

E2 range: (m/2)− E1 to (m/2)
E1 range: 0 to (m/2)

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Four-body phase space

◮ n = 4? Too much work for n = 3 already!

◮ Massive decay products already make

n = 3 integral limits very complicated.

◮ We could build 1 → 4 out of 1 → 2

followed by subsequent 1 → 2 decays –

assuming that interference is negligible!

(NWA: later.)

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Complication 2

Complication 2: kinematic cuts

◮ Real detectors do not cover full solid

angle (e.g. beam pipes).

◮ Real detectors do not trigger on

arbitrarily soft particles.

◮ Often want to remove backgrounds with

typical kinematic configuration.

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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∫

|M(p1, p2)|
2dP2 ⇒

∫

|M(p1, p2)|
2Θ(θmax − θ)Θ(θ − θmin)dP2

=
∫ |M(p1,p2)|

2

16π2

|p1|
∑

Ein

Θ(θmax − θ)Θ(θ − θmin)dΩ1

=
∫ cos(θmax)

cos(θmin)
d[cos(θ)] |M(p1,p2)|

2

8π
|p1|

∑

Ein

assuming azimuthal symmetry.

B. O’Leary Zewail City of Science and Technology,
25/02/2013

20 / 53



Motivation
Complications

On-shell intermediate particles
Planning

Multiparticle phase spaces
Kinematic cuts
Invisible particles
Bound states and showering

◮ More than 2 final-state particles →

intractible phase-space integrals, even

approximating with 1 → 2 multistage

decays

◮ Limiting phase space to region where e.g.

|me+e− −mZ| > 2ΓZ, integrating over

other particles is hopeless. (Even writing

me+e− in terms of pi is often a

non-starter.)

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Complication 3

Complication 3: invisible particles

◮ Neutrinos escape detection at colliders.
◮ Dark matter candidates also escape

detection.
◮ Sometimes we can reconstruct one

invisible particle.
◮ Lack of reconstruction ⇒ difficulty in

measuring things even independent of σ

complications.
B. O’Leary Zewail City of Science and Technology,

25/02/2013
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Sometimes we can deal with invisible

particles:

e.g. can we measure mh from h → τ+τ−?

◮ m2
h = (pτ+ + pτ−)

2

◮ Unfortunately, τ leptons always decay to

a final state with at least 1 neutrino...

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Visible mττ

Consider h → τ+τ− → π+ν̄π−ν

◮ |pπ| < |pτ |

◮ m2
h = (pτ+ + pτ−)

2 ≥ (pπ+ + pπ−)
2 = m2

ππ

◮ mh given by endpoint of dΓ/dmππ!

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Simple τ decay

Assume massless π, ν:

sτ

pν

pπ

sν

In τ rest frame,

|pπ| = mτ/2

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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In h rest frame, pπ very parallel to pτ

sτ

pν

pπ

sν

h

τ

τ̄

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Assume massless π, ν:

pπ = (mτ/2)(γ(1 + βz), γ(β + z), ..., ...)

=

((1 + z)mh/4)(1, 1,O(mτ/mh),O(mτ/mh))

for mh ≫ mτ [γ = mh/(2mτ ), β → 1]

z is cosine of angle of pπ to pτ in τ rest

frame.

m2
ππ = (m2

h/4)(1 + z+)(1 + z−)

B. O’Leary Zewail City of Science and Technology,
25/02/2013

27 / 53



Motivation
Complications

On-shell intermediate particles
Planning

Multiparticle phase spaces
Kinematic cuts
Invisible particles
Bound states and showering

sτ

pν

pπ

sν

Left-handed τ± →
probability of
z± = (1∓ z±)/2

Right-handed τ± →
probability of

z± = (1± z±)/2
Spin-0 h → both τ+, τ−

same helicity.

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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dΓ(m2
ππ = rm2

h) =

N
∫ +1

−1dz
−
∫ +1

−1dz
+

δ((1 + z+)(1 + z−)− (4/r))

(1− z−)(1 + z+)/4 + opposite helicities

dΓ(m2
ππ =

2Nr
∫ +1

−1dz
(

1−
(

4r
1+z − 1

))

Θ
(

1−
(

4r
1+z − 1

))

[remembering δ(f(x)) = δ(x− xsol)/f ′(x)

and
∫ b

adxδ(x− c) = Θ(c− a)Θ(b− c)]

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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dΓ(m2
ππ)/dr = (4/9)r(1− r + r ln r)

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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◮ That was a lot of work!

◮ Needed collinear approximation.

◮ In general, invisible particles make

analytic work impossible.

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Complication 4

Complication 4: bound states and showering

a.k.a.: QCD hates you!

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Complication 4a

Complication 4a: bound states

◮ Field operator on bra or ket:

e−|e−(p)〉 → u(p)

◮ Free colored particles are not valid final

states.

◮ What field operator do we match to an

initial-state proton?

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Sometimes we can work with mesons!

π+ e+

ν

d̄

u

◮ d̄γµγ5u|π+(p)〉 → iFπp
µ

◮ Measure Fπ from π+ → e+ν: predict

π+ → µ+ν!

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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ν

π−

τ−

ū

d

◮ Predict τ− → π−ν!

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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◮ ... But that is about it, apart from

variations on meson decay constants.

◮ Protons are complicated...

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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◮ q|p+(p)〉 → f(x)× u(x× p) (similar for

gluons).

◮ f(x) is parton distribution function (PDF).

◮ PDF measured from deep inelastic scattering.

◮ Color field not balanced, beam remnant still
there!

◮ Center of momentum of partons unknown!
Only transverse momentum can be balanced.

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Colored objects do not exist as free final states.

e−

e+

d̄

d

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Hadronization: color-singlet objects need to form

e−

e+

e−

e+

e−

e+

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Hadronization is not even dominated by minimal amount of
bound states!

ν

π−

τ−

ū

d

BR(τ− → π−ν) = 10.8%

ν

π−

τ−

ū

d

π−

π+

BR(τ− → π−π+π−ν) = 9.0%

Huge number of final-state particles + hadronization not being
easy ⇒ MC.

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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Complication 4b

Complication 4b: showering
◮ Free colored particles are still not valid final

states.

◮ Timescales for hadronization
∼ 1/ΛQCD ∼ 10−23s ≫ 1/TeV .

◮ Color field has to react to violently-accelerated

color-charged particles.

◮ High-energy q, g radiate energy and color until
hadrons form.

◮ Such parton showering is well-suited to MC.
B. O’Leary Zewail City of Science and Technology,

25/02/2013
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Complication 4c

Complication 4c: jets

◮ Most parton showering is very collinear to
radiating parton.

◮ Disentangling individual hadrons from spray

hitting detector is generally impossible.

◮ Resolving individual hadrons is not usually

particularly desired anyway – reconstructing
initiating parton usually more important.

◮ Burst of hadrons clustered together hitting
detector is referred to as a jet.

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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◮ Unfortunately it’s almost impossible to tell if a

jet was initiated by g, u, d, s, c.

◮ Sometimes bottom quarks can be identified

(b-tagging : about 60%)

◮ Also distinguishing 2 close jets from 1 wide jet
more of an art.

◮ There are several algorithms
(Cambridge-Aachen, kT , anti-kT , ...), all with

advantages; however, probably best to stick to
default of whichever software you use unless
you have a good reason to change it.

B. O’Leary Zewail City of Science and Technology,
25/02/2013
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◮ Parton showering cannot be ignored!

◮ Many searches at the LHC involve vetoing
events with too few hard jets.

◮ Hard process might only produce 2 jets, but

veto requires 3 or 4.
◮ E.g. pp → q̃q̃ → jχ̃jχ̃ passes 4-jet cut up to 50% of the
time for very heavy squarks!

◮ In principle, one could sum up Feynman
diagrams which include parton radiation, but
that is impractical.
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Complication 4d

Complication 4d: the rest of the protons!
◮ gg → h → γγ – but g 6= p!

◮ Rest of protons (beam remnant) usually

splatters down beam pipe, but...

◮ ... another pair of gluons might interact!
(Multiple interactions.)

◮ ... the beam remnant might radiate a bit into
the forward part of the detector.

◮ Luckily all this is taken care of in Pythia,
Herwig, etc.!
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◮ In principle we need to integrate the full

|M|2 over the n-body phase space.

◮ “Off-shellness” of propagators suppresses

momentum configurations.

0 50 100 150 200

2.´ 10-13

4.´ 10-13

6.´ 10-13

8.´ 10-13

1.´ 10-12

Phase space is very

sparse and “spikey”.
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The narrow width approximation

|propagator|2 = |(p2 −m2 + iΓm)−1|2 =

((p2 −m2)2 + Γ2m2)−1
∫∞

−∞|propagator|2d[p2] = π/(Γm)

⇒ replace |propagator|2 with

πδ(p2 −m2)/(Γm)

Pretty good if Γ ≪ m – the narrow width

approximation (NWA).
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χ̃0
2

χ̃0
1

h b

b̄

h |propagator|2 → πδ(p2h −m2
h)/(Γhmh):

|this diagram|2 ⇒ Γ(χ̃0
2 → χ̃0

1h)× (Γ(h → bb̄)/Γh)

= Γ(χ̃0
2 → χ̃0

1h)×BR(h → bb̄)
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◮ NWA very useful!

◮ Can build long cascade decay chains

◮ NWA can preserve spin correlations: e.g.
ηµνη

ρσ((p2 −m2)2 + Γ2m2)−1 →

πηµνη
ρσδ(p2 −m2)/(Γm)

◮ Remember that it’s only valid for narrow

decay widths!

◮ Often a trade-off of accuracy for speed.
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◮ One consequence of NWA: can normalize cross-sections
to better calculations.

◮ Most MC is at LO, but many production σs are known
to NLO or better.

◮ Can scale complicated signal by ratio of NLO to LO for
2 → 2 process: the K factor.

◮ K factor is only an approximation, but works out well
in practice normally.

◮ e.g. can use Prospino to get K factors for processes
beginning with gluino pair production, squark pair
production, etc.; LHC-FASER has tabulated colored
sparticle production over the masses relevant to the
LHC. Can work out full NLO with FormCalc if
practical.
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Accuracy

◮ You don’t want to compare theory

predictions with large statistical

fluctuations to experiment.

◮ Ideally you simulate ab−1 of data, and

scale to the luminosity reported in the

experiment’s analysis.

◮ If you want about 1% accuracy, you need

to simulate roughly (1%)−2 = 104 events.

B. O’Leary Zewail City of Science and Technology,
25/02/2013

49 / 53



Planning
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Preparation plan

◮ I hope that now you are motivated to use Monte Carlo
methods to compare theory to experiment.

◮ I hope that you are aware of various issues caused by
QCD:

◮ Quarks and gluons are not directly detectable: only
jets. Quark flavor is not observable in general.

◮ Jets radiate more jets: a multijet veto may trigger
on hard processes with only a few final-state
partons.

◮ At the LHC, only transverse momentum can be
balanced.

◮ I hope that you understand the NWA and know when it
is appropriate.
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Simulation plan

◮ Computers are not infinitely fast: you

will need to be selective.

◮ Most generators give you the option of

choosing what processes to simulate: if

you have good reason to believe a process

is not relevant, don’t bother simulating it

(e.g. production of particles with masses

of 5 TeV.)
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Software setup

◮ Now you can decide which MC codes to install.
◮ I won’t advertize any generator in particular:
there will be enough of that soon enough.

Choose the generator(s) most suited to your
needs.

◮ You will need to decide what processes to

simulate to best approximate the model:
quicker approximations → more statistics...

◮ I now assume that you will successfully install
and run the software. After coffee we will

discuss what to do with the output!
B. O’Leary Zewail City of Science and Technology,
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Checklist

◮ Do you know all the channels leading to the

signal?
◮ If in doubt, put it in.

◮ Do you know the normalizations of the
channels, and how many events in each

channel to simulate to achieve the required
accuracy?

◮ Do you want to make any trade-offs of

accuracy for speed?

◮ Do you know the limitations of your tools?
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