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Outline

• Motivation
• General description

– Relic density
– Direct detection
– Indirect detection
– Collider observables

• Dark matter models

• Include new features of micromegas_3.0
• Download

– http:://wwwlapp.in2p3.fr/lapth/micromegas
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Motivation
• Strong evidence for DM at different 

scales, galaxies, galaxy clusters, 
• Small anisotropies in CMB provide 

accurate testing of cosmological 
models and give precise information 
on amount of dark matter

• WMAP9 (arXiv:1212.5226)
–  Ωh2=0.1147+/-0.0051

• Most attractive explanation: a new 
Weakly Interacting Massive Particle 
(WIMP)

• Cosmological observations -strong 
constraints on models of CDM

• Need precise predictions for relic 
density of DM 3
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• Many models for new physics whose main motivation is to 
solve the hierarchy problem also have a WIMP - DM  
candidate – symmetry that ensures that lightest particle is 
stable 
– MSSM, UED, Little Higgs, extended Higgs

• R-parity like symmetry introduced to avoid rapid proton 
decay or  guarantee agreement with electroweak precision

• Searches for new particles present in these models at 
colliders (LHC)

• Apart from a Higgs-like particle, nothing found in LHC7 - 
wait for start of LHC13 in 2015.
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• Direct detection are constraining 
WIMP-nucleon cross-section

• Some experiments see a signal
– DAMA, CoGeNT

• Indirect detection constraining 
DM annihilation cross-section
– FermiLAT

• + hints of signals
– anomaly in positron spectrum 

(PAMELA)
– Monochromatic gamma-ray 

line (Fermi-LAT)
• Searches are being pursued 

– e.g. Xenon, Fermi, AMS, Hess,  
IceCube ....
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considered in our analysis becomes

L(D|pW,{p}i) =
�

i

LLAT
i (D|pW,pi)

× 1

ln(10) Ji
√
2πσi

e−[log10(Ji)−log10(Ji)]
2
/2σ2

i ,

(1)

where LLAT
i denotes the binned Poisson likelihood that is

commonly used in a standard single ROI analysis of the

LAT data and takes full account of the point-spread func-

tion, including its energy dependence; i indexes the ROIs;

D represents the binned gamma-ray data; pW represents

the set of ROI-independent DM parameters (�σannv� and
mW ); and {p}i are the ROI-dependent model parame-

ters. In this analysis, {p}i includes the normalizations

of the nearby point and diffuse sources and the J factor,

Ji. log10(Ji) and σi are the mean and standard devia-

tions of the distribution of log10 (Ji), approximated to be

Gaussian, and their values are given in Columns 5 and

6, respectively, of Table I.

The fit proceeds as follows. For given fixed values of

mW and bf , we optimize − lnL, with L given in Eq. 1.

Confidence intervals or upper limits, taking into account

uncertainties in the nuisance parameters, are then com-

puted using the “profile likelihood”technique, which is

a standard method for treating nuisance parameters in

likelihood analyses (see, e.g., [32]), and consists of calcu-

lating the profile likelihood − lnLp(�σannv�) for several

fixed masses mW , where, for each �σannv�, − lnL is min-

imized with respect to all other parameters. The inter-

vals are then obtained by requiring 2∆ ln(Lp) = 2.71 for

a one-sided 95% confidence level. The MINUIT subrou-

tine MINOS [33] is used as the implementation of this

technique. Note that uncertainties in the background fit

(diffuse and nearby sources) are also treated in this way.

To summarize, the free parameters of the fit are �σannv�,
the J factors, and the Galactic diffuse and isotropic back-

ground normalizations as well as the normalizations of

near-by point sources. The coverage of this profile joint

likelihood method for calculating confidence intervals has

been verified using toy Monte Carlo calculations for a

Poisson process with known background and Fermi-LAT
simulations of Galactic and isotropic diffuse gamma-ray

emission. The parameter range for �σannv� is restricted

to have a lower bound of zero, to facilitate convergence of

the MINOS fit, resulting in slight overcoverage for small

signals, i.e., conservative limits.

RESULTS AND CONCLUSIONS

As no significant signal is found, we report upper lim-

its. Individual and combined upper limits on the anni-

hilation cross section for the bb̄ final state are shown in

Fig. 1; see also [34]. Including the J-factor uncertainties

FIG. 1. Derived 95% C.L. upper limits on a WIMP anni-
hilation cross section for all selected dSphs and for the joint
likelihood analysis for annihilation into the bb̄ final state. The
most generic cross section (∼ 3 · 10−26 cm3s−1 for a purely s-
wave cross section) is plotted as a reference. Uncertainties in
the J factor are included.

FIG. 2. Derived 95% C.L. upper limits on a WIMP annihila-
tion cross section for the bb̄ channel, the τ+τ− channel, the
µ+µ− channel, and the W+W− channel. The most generic
cross section (∼ 3 ·10−26 cm3s−1 for a purely s-wave cross sec-
tion) is plotted as a reference. Uncertainties in the J factor
are included.

in the fit results in increased upper limits compared to

using the nominal J factors. Averaged over the WIMP

masses, the upper limits increase by a factor up to 12

for Segue 1, and down to 1.2 for Draco. Combining the

dSphs yields a much milder overall increase of the upper

limit compared to using nominal J factors, a factor of

1.3.

The combined upper limit curve shown in Fig. 1 in-

cludes Segue 1 and Ursa Major II, two ultrafaint satel-

lites with small kinematic data sets and relatively large
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•Comprehensive tool for dark matter studies : precise calculation of
 relic density, direct detection, indirect  detection, cross section at 
colliders and decays in a wide variety of models: micrOMEGAs2.4... 

Other public tools for DM studies in MSSM: DarkSUSY, Isared, SuperISO 
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Guiding principles
• Human make mistakes - computer not 

– Automation 
• Several groups are developing specialized codes

– Link them 
• Users might want to improve one aspect

– Modularity
• We do not know what DM is made of

– Possibility to include different DM candidates
• Models are often complex with huge parameter space

– Speed of execution
• Ready made, stand-alone package for the non-expert 

– User friendly 7
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Relic density

8
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Relic density of wimps
• In early universe WIMPs are present in 

large number and they are in thermal 
equilibrium

• As the universe expanded and cooled 
their density is reduced through pair 
annihilation

• Eventually density is too low for 
annihilation process to keep up with 
expansion rate
– Freeze-out temperature

• LSP decouples from standard model 
particles, density depends only on 
expansion rate of the universe

Freeze-out

Depletion of χ due
to annihilation

Creation of χ from
inverse process
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• Thermally average cross-section

• Include all processes annihilation DM into SM particles

• In non-relativistic limit 

• Solving Boltzmann equation, define abundance   Y=n/s

10

Chapitre 2

Relic density of dark matter

Suppose there exists a new stable (or very lond-lived) weakly-interacting massive
particle (WIMP),χ, in addition to standard model particles. Such a particle is in
thermal equilibrium in the early Universe when the temperature of the Universe is
larger than the mass of the particle, mχ. The equilibrium abundance is maintained
by processes involving pair annihilation of the particle (and its antiparticle) into
lighter standard model particles, for example

χχ̄ → e+e−, µ+µ−, τ+τ−, qq̄, W+W−, ZZ (2.1)

as well as the reverse processes. The WIMPs have enough energy to create pairs
of SM particles and the inverse reaction proceeds with equal rate, Γann = 〈σv〉neq,
where σv is the thermally averge cross section for annihilation of χχ̄ into lighter
particles, v is the relative velocity of annihilating WIMPs, and neq is the the number
density of the χ particles in thermal equilibrium.

The number density of a dilute weakly interacting particle is given by

nχ =
g

(2π)3

∫

f(p)d3p (2.2)

Here g is the number of internal degrees of freedom of the particle and f(p) is given
by Fermi-Dirac or Bose-Einstein statistics

f(p) = exp

(

E − µ

T
± 1

)−1

(2.3)

where µ is the chemical potential. With E2 = p2 + m2, the number density can be
written as

nχ =
g

2π2

∫ ∞

m

(E2 − m2)1/2

exp ((E − µ)/T ) ± 1
EdE (2.4)
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particle densities in the rest frame of the one of the incoming particles. In terms of
the particle velocities v1 = p1/E1

v =
[

|v1 − v2|2 − |v1 × v2|2
]1/2

(2.14)

Defining the thermally averaged total annihilation cross section

〈σv〉 =

∫

d3p1d3p2f(E1)f(E2)σv
∫

d3p1d3p2f(E1)f(E2)
(2.15)

The collision term reads

g1

∫

C[f1]
d3p1

(2π)3
= −〈σv〉 (n1n2 − neq

1 neq
2 ) (2.16)

and we obtain
ṅ1 + 3Hn1 = −〈σv〉(n1n2 − neq

1 neq
2 ) (2.17)

with the same expression for n2. If the two particles are identical n = n1 = n2, and
we obtain the Boltzmann equation, Eq. 2.7.

2.2 Thermally averaged cross section

When the initial particle have an energy distribution f(E) the thermally averaged
cross section for annihilation of two particles into i final states is defined in Eq. 2.15.
Since we know that the particle density of χ particles will depart from equilibrium
only after T falls below M/20, at these temperature it is a good approximation to
take f(E) ∝ exp−E/T , the Maxwell-Boltzmann distribution, A few manipulations
allow to rewrite the thermally averaged cross section, Eq. 2.15. First write integration
variables

d3p1d
3p2 = 4πp1dE14πp2dE2

1

2
d cos θ (2.18)

where θ is the angle between p1 and p2. After a change of variable

E+ = E1 + E2 E− = E1 − E2 (2.19)

and
s = 2m2 + 2E1E2 − 2p1p2 cos θ (2.20)

d3p1d
3p2 = 2π3E1E2dE+dE−ds (2.21)

The integration regions (E1 > m, E2 > m; | cos θ| < 1) transforms to

|E1| ≤
√

1 −
4m2

s

√

E2
+ − s E+ ≥

√
s s ≥ 4m2 (2.22)
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In the relativistic limit (T ! mχ) and for T ! µ

nχ =
ζ(3)

π2
gT 3 Bose

nχ =
3

4

ζ(3)

π2
gT 3 Fermi (2.5)

This means that neq
χ ∝ T 3 and there are about as many χ particles than photons.

On the other hand at low temperatures, in the non relativistic limit m ! T and for
T ! µ

neq
χ ≈ g(mχT/2π)

3
2 exp(−mχ/T ). (2.6)

The number density is Boltzmann suppressed. this means that if the expansion of
the Universe was so slow that thermal equilibrium was always maintained then the
number of WIMPs today would be exponentially suppressed (basically there would
be no WIMPs). However equilibrium thermodynamics does not explain everything.

At T ! mχ, the particle χ are abundant and rapidly annihilating to lighter particles
and vice-versa. As the universe expands and T drops below mχ the number density
of χ drops exponentially, Eq. 2.6, and the rate of annihilation of χ, Γ = 〈σv〉 drops
below the expansion rate Γ < H . When there is not enough χ for annihilation, they
fall out of equilibrium and they freeze-out (the production of WIMPs ceases). The
number of WIMPs in a comoving volume remains constant. Typically the freeze-out
of WIMPs occurs when T ≈ mχ/20.

The Boltzmann equation describes the time evolution of the number density of
WIMPs

dnχ

dt
+ 3Hnχ = −〈σv〉

(

(nχ)2 − (neq
χ )2

)

(2.7)

The first term on the RHS describes the depletion of χ due to annihilation the
second term the creation of χ from the inverse process. Note that at equilibrium the
two rates are equal. H = Ṙ/R is the Hubble epansion rate, Eq. ?? with R the scale
factor of the Universe.

2.1 The Boltzmann equation

The Boltzmann equation for the evolution of the phase space density, f(E, t) of a
particle specie can be derived starting from

L[f ] = C[f ] (2.8)

12
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Solving numerically, get present day abundance Y(T0) and 

Weakly interacting particle gives roughly the right annihilation cross section 
to have Ωh2 ~0.1 

Typical annihilation cross-section at FO
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Coannihilation
• If M(NLSP)~M(LSP) then                                           maintains thermal 

equilibrium between NLSP-LSP even after non standard particles decouple from 
standard ones 

• Relic density depends on rate for all processes involving LSP/NLSP  SM                                                    

• All particles eventually decay into LSP,  calculation of relic density requires 
summing over all possible processes

• Important processes are those involving particles close in mass to LSP, 
for example up to  3000 processes can contribute in MSSM

• Need for automation

Exp(- ΔM)/T
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LanHEP

Model File
Particles
Vertices

 parameters

CalcHEP
Generate

Tree-level matrix 
elements

Annihilation
Coannihilation
Cross-sections

Relic density

Auxiliary routines
Improved hbb, Δmb
Other constraints

Indirect
σv

Cross sections
Decay widths

micrOMEGAs

WIMP nucleon
Direct

+ propagation
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micrOMEGAs_2.X
• A generic program to calculate  DM properties in any model
• Assume some “ R-parity “, particles  odd/even under R (odd 

particles: ~)
• Need to specify model file in CalcHEP notation : particles, variables, 

vertices, functions (do by hand or with LanHEP/SARAH/Feynrules)
• After the model is implemented and checked with CalcHEP 

– Code then automatically looks for “LSP”
– Computes all annihilation and coannihilation cross-sections
– Complete tree-level matrix elements for all subprocesses
– Automatically check for presence of resonances and improves the 

accuracy near pole
– Numerical solution of evolution equation and calculation of relic 

density with non-relativistic thermal averaging and proper treatment of 
poles and thresholds 

• Gondolo, Gelmini, NPB 360 (1991)145 
• coannihilation : Edsjo, Gondolo PRD56(1997) 1879
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• Includes and compiles relevant channels only if needed (Beps)

• Calculates the relic density for any LSP (even charged)

• Computes other DM observables in astroparticle and 
colliders

• σv, v->0 for  LSP,LSP annihilation and signatures for γ and 
positron/antiproton including propagation

• Automatically compute elastic scattering rate on nucleon/nucleus

• For new models : constraints and auxiliary routines must be provided by 
the user in  fortran or C routine 

• C code
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New features of relic density 
• Include three-body final states

– In some cases annihilation into 3-body final state can be as large as 
2-body, best example annihilation into W pairs kinematically 
suppressed (C. Yaguna, arXiv: 1003.2730)

– For mDM~MW effect easily factor 2
– Switch to include 3/4-body processes with one/two virtual W/Z
– Straigthforward to compute but slow

• Semi-annihilation
– In general, discrete symmetry  does not have to be Z2 
– processes involving different number of “odd particles”             

xx --> x* SM
• T. Hambye, 0811.0172, T. Hambye, M. Tytgat, 0907.1007

• Asymmetric dark matter
16
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• Number density    (x : dark sector   X: SM)

• Modified equation solved numerically (Y=Yeq+ΔY) with usual 
micrOMEGAs procedure   ΔY - >ΔY/(1-α/2)

invariant under e.g. the assignment of Z4 charges X1 = 0, X2 = 2, XS = 1.

The vacuum stability conditions for the potential are similar to the Z3 case:

λ1 ≥ 0, λ2 ≥ 0, λS + λ�
S ≥ 0, (14)

λ3 + λ4 − |λ5| ≥ −2

�
λ1λ2, λS1 ≥ −2

�
λ1(λS + λ�

S
), λS2 ≥ −2

�
λ2(λS + λ�

S
). (15)

When λ1, λ2, λS , and λ�
S
are small,

λS1 ≥ 0, λS2 ≥ 0, 4λS1λS2 ≥ (|λS12|+ |λS21|)2. (16)

The other four scalar potentials can formally be obtained from the Z2-invariant potential Eq. (3)

by setting all the new terms added to Vc to zero, with the exception of the 1) λ�
S
, µSH , 2) λ�

S
, µ

�
SH

, 3)

µ
�
S
, λ�

S
, λ��

S
, λ�

S1, λ
�
S2, 4) µ

�
S
, λ�

S
, λ��

S
, λ�

S1, λ
�
S2, µSH , µ

�
SH

terms.

The λ5 term in potential (13) splits the down component of H2 into two real scalar fields with

different masses,

H2 =

�
−iH

+

H
0
+ iA

0

�
. (17)

Note that the complex scalar S does not mix with H2 because these fields have different ZN charges.

As a result this model contains two dark sectors, the first one with the complex scalar S (the Z4 charge

is 1), the second one comprising the complex scalar H
+
and the real scalars H

0
and A

0
( the Z4 charge

is 2). Any of the neutral particles with a non-zero Z4 charge can be a dark matter candidate. We will

consider the masses of the neutral scalar particles, MS , MH and MA, as independent parameters, then

µ
2
S = M

2
S − λS1

v
2

2
, (18)

λ5 =
M

2
H
−M

2
A

v2
, (19)

µ
2
2 = M

2
H − (λ3 + λ4 + λ5)

v
2

2
, (20)

MH+ =

�
M

2
A
+M

2
H

2
− λ4

v2

2
. (21)

3 RELIC DENSITY IN CASE OF THE Z3 SYMMETRY

3.1 Evolution equations

Consider the Z3-symmetric theory. The imposed Z3 symmetry implies, as usual, just one dark matter

candidate. This is because the Z3 charges 1 and −1 correspond to a particle and its anti-particle. The

new feature is that processes of the type xx → x
∗
X, where X is any standard model particle, also

contribute to dark matter annihilation. The equation for the number density reads

dn

dt
= −vσxx

∗→XX
�
n
2 − n

2
�
− 1

2
vσxx→x

∗
X
�
n
2 − nn

�
− 3Hn. (22)

where we use n = neq. We define

σv ≡ vσxx
∗→XX

+
1

2
vσxx→x

∗
X

and α =
1

2

σxx→x
∗
X

v

σv
, (23)

which means that 0 ≤ α ≤ 1. Here and in the following we use the notation, σxx→x
∗
X

v ≡ vσxx→x
∗
X
.

In terms of the abundance, Y = n/s, where s is the entropy density, we obtain

dY

dt
= −sσv

�
Y

2 − αY Y − (1− α)Y
2
�

(24)
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or

3H
dY

ds
= σv

�
Y

2 − αY Y − (1− α)Y
2
�
. (25)

where Y = Yeq is the equilibrium abundance. To solve this equation we follow the usual procedure [17].
Writing Y = Y +∆Y we find the starting point for the numerical solution of this equation with the
Runge-Kutta method using

3H
dY

ds
= σvY∆Y (2− α) , (26)

where ∆Y � Y . This is similar to the standard case except that ∆Y increases by a factor 1/(1−α/2).

Furthermore, when solving numerically the evolution equation, the decoupling condition Y
2 � Y

2
is

modified to
Y

2 � αY Y + (1− α)Y
2
. (27)

This implies that the freeze-out starts at an earlier time and lasts until a later time as compared
with the standard case. This modified evolution equation is implemented in micrOMEGAs [18, 31].
Although semi-annihilation processes can play a significant role in the computation of the relic density,
the solution for the abundance depends only weakly on the parameter α, typically only by a few percent.
This means in particular that the standard freeze-out approximation works with a good precision.

3.2 Numerical results with micrOMEGAs

Using the scalar potential defined in Eq. (4) we have implemented in micrOMEGAs the scalar model
with a Z3 symmetry. The scalar sector contains an additional scalar doublet and one complex singlet.
The neutral component of the doublet mixes with the singlet, the lightest component x1 is therefore
the dark matter candidate, while the heavy component x2 can decay into x1h, where h is the standard
model-like Higgs boson. Note that the doublet component of DM has a vector interaction with the Z.
This interaction is determined by the SU(2)× U(1) gauge group and leads to a large direct detection
signal in conflict with exclusion limits, for example from Xenon100 [32]. The only way to avoid this
constraint is to consider a DM with a very small doublet component, namely we have to assume that
the mixing angle

θ ≤ 0.025. (28)

In the limit of small mixing, annihilation processes such as x1x∗1 → XX where X stands for W,Z, h, are
dominated by the λS1|S|2|H1|2 term. The semi-annihilation process x1x1 → x

∗
1h is mainly determined

by a product of µ��
S and λS1 arising from the terms µ

��
S(S

3 + S
†3)/2 and λS1|S|2|H1|2 in Eq. 2 and

Eq. 4. The µ
��
S term can not be large otherwise it would lead to spontaneous breaking for S. In the

zero mixing limit this leads to the condition

|µ��
S | < 2Mx1

�
λS . (29)

To illustrate a scenario where semi-annihilation channels contribute significantly and which predicts
reasonable values for the relic density and the direct detection rate, we choose a benchmark point with
the following parameters

λ2 0.1 λS 0.2 λS21 0.1 Mx1 150 GeV

λ3 0.1 λS1 0.05 Mh 125 GeV Mx2 400 GeV

λ4 0.1 λS2 0.1 µ
��
S 80 GeV sin θ 0.025

Table 2: Benchmark point for Z3.

For this point, the relic density is Ωh2 = 0.105. The dominant contribution to (Ωh2)−1 is from semi-
annihilation (54% for x1x1 → hx

∗
1) while the annihilation channels x1x∗1 → WW,ZZ, hh give a relative

6
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�
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where Y = Yeq is the equilibrium abundance. To solve this equation we follow the usual procedure [17].
Writing Y = Y + ∆Y we find the starting point for the numerical solution of this equation with the
Runge-Kutta method using
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Furthermore, when solving numerically the evolution equation, the decoupling condition Y

2 � Y
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modified to
Y

2 � αY Y + (1− α)Y
2
. (27)

This implies that the freeze-out starts at earlier time and lasts until later time as compared with the
standard case. This modified evolution equation is implemented in micrOMEGAs [18, 31]. Although
semi-annihilation processes can play a significant role in the computation of the relic density, the solution
for the abundance depends only weakly on the parameter α, typically only by a few percent. This means
in particular that the standard freeze-out approximation works with a good precision.

3.2 Numerical results with micrOMEGAs

Using the scalar potential defined in Eq. (4) we have implemented in micrOMEGAs the scalar model
with a Z3 symmetry. The scalar sector contains an additional scalar doublet and one complex singlet.
The neutral component of the doublet mixes with the singlet, the lightest component x1 is therefore
the dark matter candidate, while the heavy component x2 can decay into x1h, where h is the standard
model-like Higgs boson. Note that the doublet component of DM has a vector interaction with the Z.
This interaction is determined by the SU(2) × U(1) gauge group and leads to a large direct detection
signal in conflict with exclusion limits, for example from Xenon100 [32]. The only way to avoid this
constraint is to consider a DM with a very small doublet component, namely we have to assume that the
mixing angle

θ ≤ 0.025. (28)

In the limit of small mixing, annihilation processes such as x1x∗1 → XX where X stands for W,Z, h, are
dominated by the λS1|S|2|H1|2 term. The semi-annihilation process x1x1 → x

∗
1h is mainly determined

by a product of µ��
S and λS1 arising from the terms µ��

S(S
3+S

†3)/2 and λS1|S|2|H1|2 in Eq. 2 and Eq. 4.
The µ

��
S term can not be large otherwise it would lead to spontaneous breaking for S. In the zero mixing

limit this leads to the condition
|µ��

S | < 2Mx1

�
λS . (29)

To illustrate a scenario where semi-annihilation channels contribute significantly and which predicts
reasonable values for the relic density and the direct detection rate, we choose a benchmark point with
the following parameters
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• Inert doublet + complex singlet (H2, S, do not couple to quarks)
• Dark sector : complex x1,x2,H+, Z3 charge=1
• Decrease of relic density when semi-anni. contribute
• semi-annihilation enhanced when Mx1=Mx2/2

– GB, K. Kannike, A. Pukhov, M. Raidal, JCAP 1204(2012) 010

Figure 1: (Left panel) Ωh2 as a function of the dark matter mass for the benchmark point with semi-
annihilation (solid line), and without semi-annihilation (dashed). (Right panel) σSI

x1Xe (solid). The
experimental limit from XENON100 [32] is also displayed (dashed).

contribution of 22%,13% and 10% respectively. Fig. 1 illustrates the dependence of the relic density on
the DM mass as compared to the relic density when semi-annihilation is ignored, (Ωh2)ann. Here all
other parameters are fixed to their benchmark values. When Mx1 = 110 GeV, semi-annihilation with a
Higgs in the final state is kinematically forbidden at low velocities. If Mx1 increases, semi-annihilation
plays an important role and Ωh2 decreases rapidly due to the contribution of the channel x1x1 → hx∗1.
Note that (Ωh2)ann also decreases when Mx1 is such that the channel x1x∗1 → hh is allowed. When
Mx1 approaches Mx2/2, Ωh

2 falls again because the semi-annihilation channel is enhanced due to x2
exchange near resonance.

The spin independent (SI) scattering cross section on nuclei as a function of the DM mass is
illustrated in Fig. 1 (right panel). Here we average over dark matter and anti-dark matter cross section
assuming that they have the same density. The main contribution comes from the Z-exchange diagram
because there is a x1x∗1Z coupling3. Furthermore one can easily show that the scattering amplitudes
are not the same for protons and neutrons, with fp = (4 sin2 θW − 1)fn = −0.075fn. Since the current
experimental bounds on σSI

xp are extracted from experimental results assuming that the couplings to
protons (fp) and neutrons (fn) are equal and the same as the couplings of x∗1 to protons (f̄p) and
neutrons (f̄n), we define the normalised cross section on a point-like nucleus [33]:

σSI
xN =

2

π

�
MNMx1

MN +Mx1

�2� [Zfp + (A− Z)fn]2

A2
+

[Zf̄p + (A− Z)f̄n]2

A2

�
. (30)

This quantity can directly be compared with the limit on σSI
xp.

4 RELIC DENSITY IN CASE OF THE Z4 SYMMETRY

4.1 Evolution equations

In the case of a Z4 symmetry all particles can be divided into 3 classes {0,1,2} according to the value
of their Z4 charges modulo 4. We can choose SM particles to have XSM = 0. We will use the notation

3In the inert doublet model with a Z2 symmetry [19, 21], a λ5 term splits the complex doublet into a scalar and a
pseudoscalar, when the mass splitting is small such coupling leads to inelastic scattering.

7

Impact of semi-annihilation
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Asymmetric DM
• The case where DM is not self-conjugate (e.g. 

Dirac fermion, complex scalar)
• Y+(Y-): abundance of DM particle(anti-)

• ΔY=Y+-Y- is constant
• Define Y= 2(Y+Y-)1/2

• Similar to equation for self-conjugate - solve num.
19

2.1 Asymmetric dark matter

We consider a dark matter particle, χ, that is not self-conjugate. This occur for example

when the DM particle is a Dirac fermion [] or a complex scalar []. The Boltzmann

equations for the abundance of a DM particle –defined as the number density divided by

the entropy density - has to be generalised. Recall that for a self-conjugate DM particle

dYχ

ds
=

< σv >

3H

�
Y

2
χ − Y

2
eq

�
(1)

where < σv > is the relativistic thermally averaged annihilation cross-section, Yeq is the

equilibrium abundance and s the entropy. H is the Hubble constant.

We define Y
+
and Y

−
as the abundances of the DM particle/anti-particle, by conven-

tion Y
+
is associated with the (anti-)particle with the largest abundance. The evolution

equation is then

dY
±

ds
=

2 < σv >

3H

�
Y

+
Y

− − Y
+
eqY

−
eq

�
(2)

with Y
+
eq (T ) = Y

−
eq (T ) = 1/2Yeq(T ). Note that the factor of 2 appears because for each

component the relevant cross section is σv+−
where < σv >=

1
2σv

+−
. Subtracting the

two equations in Eq. 2 we obtain

dY
+

ds
− dY

−

ds
= 0 (3)

implying that the difference of abundances ∆Y = Y
+ − Y

−
is constant.

To proceed, we define the quantity Y ≡ 2
√
Y +Y − which is equivalent to the abundance

Y = Yχ for a self-conjugate DM. Using the abundance for each specie,

Y
±
=

±∆Y +
√
Y 2 +∆Y 2

2
(4)

the evolution equation for Y is derived

dY

ds
=

< σv >

3H

Y
+
+ Y

−

Y

�
Y

2 − Y
2
eq

�

=
< σv >

3H

�
Y

2 − Y
2
eq

�
�

1 +

�
∆Y

Y

�2

(5)

This equation is similar to the equation for a self-conjugate DM candidate safe for an

additional term. It can be solved numerically using the usual procedure, to obtain the

abundances today, Y0 = Y (T = T0) The relic density of the DM particle/antiparticle is

given by

Ωh2
=

8π

3H
2
100

mχ

MPlanck

�
Y

2
0 +∆Y 2

s0
(6)

where s0 is the entropy today, H100 and MPlanck is the Planck mass. The relic density of

each specie

Ωpmh
2
=

Ωh2

1 + e∓δDM
(7)
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• Relic density

• For each specie

• Note asymmetry always increase relic abundance
• Example : neutrino DM
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2.1 Asymmetric dark matter
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• deltaY global parameter - taken into 
account for DD (always compute 
DM-nucleon and antiDM-nucleon)  
and indirect detection

computation of the rate for dark matter scattering on nuclei is normally done averaging
the cross section for DM and anti-DM scattering on nucleons. When the asymmetry
parameter is non-zero, the rate will take into account the relative abundance of matter and
anti-matter. For indirect detection, the production rate of particles from DM annihilation
is also modified to take into account the density of DM and anti-DM,

Q =
1

2
�σv�ρχρχ̄

m2
χ

dNa

dE
(9)

where ρχ and ρχ̄ are respectively the DM and anti-DM density. Note that the parameter
DMasymm=δDM , which characterizes the asymmetry between the relic density of the two
components is also a global parameter. It allows the user to introduce a new source of
asymmetry between DM and anti-DM and will be taken into account for computing direct
and indirect detection rates.

In micrOMEGAs, the option to solve the Boltzmann equation using the freeze-out ap-
proximation is also provided, it is basically used only to estimate the different channels
contribution to the relic density. For this one assumes that below the freeze-out temper-
ature, Tf , one can neglect Yeq and use the equation

1

Y0
=

� sf

0

ds
�σv�
3H

= I (10)

to calculate the relative contributions of different channels to Ω−1. For asymmetric dark
matter the procedure to compute the contribution of different channels is sligthly modified
to take into account the ∆Y contribution, Eq. ?? is then replaced with

� Yf

Y0

dY

Y
√
Y 2 +∆Y 2

=

� sf

0

ds
�σv�
3H

= I (11)

Defining

φ0 =

�
Y

2
0 +∆Y 2 −∆Y�

Y
2
0 +∆Y 2 +∆Y

=

�
Y

2
f +∆Y 2 −∆Y

�
Y

2
f +∆Y 2 +∆Y

e
−2I∆Y (12)

with
1− φ0

1 + φ0
=

∆Y√
Y 2 +∆Y 2

(13)

Sasha: do we neglect Yf as before?? - to be explained better

2.2 Semi-annihilation

With discrete symmetries larger than Z2, one introduces new DM annihilation processes
as well as the possibility of having more than one DM candidate corresponding to the
lightest particle of two distinct dark sectors. Although micrOMEGAs has been modified
to include more than one DM candidate [?], this possibility has been realized only within
the context of some specific DM model and is not included in this public distribution. In
this section we therefore discuss only the impact of new processes of the type χχ → χ∗

X

where χ is any particle from the dark sector (χ∗ correspond to anti-particles) and X is
any SM particle. These processes are called semi-annihilation. The simplest example of

6
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Direct detection
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Direct detection
• Elastic scattering of WIMPs off nuclei in a large detector
• Measure nuclear recoil energy, ER

• Would give best evidence that WIMPs form DM
• Two types of scattering

– Coherent scattering on A nucleons in nucleus, for spin 
independent interactions

• Dominant for heavy nuclei

– Spin dependent interactions – only on one unpaired 
nucleon

• Dominant for light nuclei
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Direct detection

• Typical diagrams

• Higgs exchange often dominates

For Dirac fermions Z exchange contributes to SI and SD
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WIMP- Nucleon amplitude
• For any WIMP, need effective Lagrangian for WIMP-nucleon 

amplitude at small momentum ~100MeV,
• Generic form for a fermion

• For Majorana fermion only 2 operators survive at small q2

• First need to compute the WIMP quark amplitudes 
–  normally computed symbolically from Feynman diagrams+ Fierz 
–  Automatic approach (works for all models) 

• Effective Lagrangian for WIMP-quark scattering has same 
generic form as WIMP nucleon 
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WIMP quark effective Lagrangian

• Operators for WIMP quark Lagrangian, procedure to extract 
automatically the coefficients for SI and SD –
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• In micrOMEGAs: evaluate coefficients numerically using 
projection operators

• Add all projection operators as new vertices in the model
• Compute χq-χq scattering element at zero momentum transfer
• Interference between one projection operator and effective 

vertex- single out SI or SD contribution

• Use quark and anti-quark scattering elements to split even/odd 
contributions

• The projection operators are added to the model file by 
micrOMEGAs 

• Warning: in the model file must include couplings proportional 
to light quark masses (eg. Hqq coupling) 
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WIMP-quark to WIMP-nucleon

• Coefficients relate WIMP-quark operators  to WIMP nucleon 
operators
– Extracted from experiments
– Source of theoretical uncertainties

• Example , scalar coefficients, contribution of q to nucleon mass

• Can be defined by user 
• Different coefficients can lead to large corrections in cross 

section
– Bottino et al hep-ph/0010203, Ellis et al hep-ph/0502001
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• Traditionally scalar coefficients extracted from ratios 
of light quark masses, pion-nucleon sigma term and σ0    

• σπN=55-73MeV σ0=36+/-7MeV -> Large uncertainty in 
s-quark contribution

• Lattice calculations have provide new estimates of s-
quark content σs  tend towards low value
– average of lattice results
–  σs=42+/-5MeV
– fsp=0.045+/-0.005

0.1 Direct detection

The computation of the direct detection rate was presented in [1]. One important the-

oretical uncertainty in the direct detection rate comes from the quark coefficients in the

nucleon, and in particular the strange quark content. For SI interactions the operator

�N |mqψ̄qψq|N� is interpreted as the contribution of the quark q to the nucleon mss, MN

with

�N |mqψ̄qψq|N� = fN
q MN (1)

In earlier micrOMEGAs versions we defined the operators

σπN = ml�p|ūu+ d̄d|p� (2)

σ0 = ml�p|ūu+ d̄d− 2s̄s|p� (3)

where ml = (mu+md)/2 and σ0 which is related to the size of the SU(3) flavour symmetry

breaking effect is estimated from octet baryon masses, σ0 = 36± 7MeV. σπN is deduced

from pion-nucleon dispersion relations and has a large uncertainty (σπN = 55− 73MeV).

The relative importance of strange quark in nucleon is described by the ratio

y =
2�p|s̄s|p�

�p|ūu+ d̄d|p�
=

ml

ms

2σs

σπN
= 1− σ0

σπN
(4)

With the numerical values above this leads to a large value for y plagued with a large

uncertainty in turn leading to a large uncertainty in the direct detection rate [2].

Recent lattice QCD calculations have allowed a direct determination of σs (see [3])

and find rather small values for σs. A compilation of recent lattice results is presented in

Table 1. Taking the weighted mean of these values (

�
xi/σ2

i�
1/σ2

i
) we get

σs = 42± 5 MeV and σπN = 34± 2 MeV. (5)

Considering the better and more direct determination of σs it is more convenient to set the

quark from factor from σs rather than from σ0, other parameters are mu/md,ms/md, σπN .

The quark coefficients are expressed as

f p
d =

2σpiN�
1 +

mu
md

�
mp(1 + α)

f p
u =

mu

md
αf p

d f p
s =

σs

mp
(6)

where

α =
�N |ūu|N�
�N |d̄d|N�

=
2z − (z − 1)y

2 + (z − 1)y
and z =

�N |ūu|N� − �N |s̄s|N�
�N |d̄d|N� − �N |s̄s|N�

≈ 1.49 (7)

A new function to compute the quark coefficients is defined,

calcScalarQuarkFF(mu/md,ms/md,σπN ,σ0)

with σs = 42MeV, σπN = 34MeV, mu/md = 0.56,ms/md = 20.2 [?] it leads to

f p
d = 0.0191 f p

u = 0.0153 f p
s = 0.0447

fn
d = 0.0273 fn

u = 0.011 f p
s = 0.0447 (8)

1

Note that the particle data group also gives values for mass ratios as estimated from lattice
results rather than from chiral perturbation theory. Witht the lattice results mu/md =
0.46± 0.05,ms/md = 27.5± 0.3 the quark coefficients become

f p
d = 0.0203 f p

u = 0.0135 f p
s = 0.0447

fn
d = 0.0293 fn

u = 0.009 f p
s = 0.0447 (9)

Table 1: Nucleon coefficients

σs σπN Reference
8± 21 [4]
43± 10 [5]
54± 8 [6]
22± 37 [4]
31± 16 50± 10 [7]
34+31

−27 42+21
−6 [8]

70± 68 31± 5 [9]
22± 20 32± 2 [10]
21+44

−6 45± 6 [11]
125± 59 43± 6 [12]
50± 18 [13]

37± 10 [14]
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• WIMP-nucleon cross-section

• Can be directly compared with experimental limits

29
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// CODE OUTPUT

nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5); |

printf("CDM-nucleon micrOMEGAs amplitudes:\n"); |CDM-nucleon micrOMEGAs amplitudes:

printf("proton: SI=%.2E SD=%.2E\n",pA0[0],pA5[0]); |proton: SI=-1.33E-09 SD=-1.58E-08

printf("neutron:SI=%.2E SD=%.2E\n",nA0[0],nA5[0]); |neutron:SI=-1.33E-09 SD= 1.98E-08

|

coef=4/M_PI*3.8938E8*pow(Nmass*Mcdm/(Nmass+Mcdm),2);|

printf("CDM-nucleon cross sections[pb]:\n"); |CDM-nucleon cross sections[pb]:

printf(" proton SI %.3E SD%.3E\n", |

coeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]); |proton SI 7.502E-10 SD 3.223E-07

printf(" neutron SI %.3E SD %.3E\n", |

coeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]); |neutron SI 7.696E-10 SD 5.113E-07

The cross section for SI interactions on protons in this example,

σSI ≈ 7.5 · 10−10[pb] = 7.5 · 10−46[cm2]

is well below the current Xenon10015 upper limit σSI < 2 · 10−44[cm2], but
within reach of the next generation of direct detection experiments such as
Xenon1T.

8.5. Dark matter nucleus scattering.

For zero DM velocity, the cross section for DM-nucleus SI interaction reads

σSI
0 =

4µ2

π
(λpZ + λn(A− Z))2 , µ =

McdmMA

Mcdm +MA
(17)

where λp, λn are amplitudes for DM scattering on nucleons; MA, Z, A are
the nucleus mass, charge, and atomic number respectively. For a small DM
velocity, v ≈ 10−3c, we neglect the dependence on the small momentum
transfer in the cross section but include this dependence in the nucleus
form factor, the differential cross section is

dσSI

dE
=

σSI
0

Emax
F 2
A(q) , 0 < E < Emax = 2

�
v2µ2

MA

�
(18)

where E is the nucleus recoil energy and q =
√
2EMA the transfer mo-

mentum. The form factors FA(q) are well known from experiments of µ
scattering on atomic nuclei. Note that Eq. 18 predicts an A2 enhancement
of the SI cross section at large A. Such enhancement does not occur for
SD interactions due to a strong compensation of the proton/neutron spins
with the same orbital state.

For SD scattering on nucleus, three form factors are introduced

dσSD
A

dE
=

16πµ2

(2JA + 1)Emax
(S00(q)a

2
0 + S01(q)a0a1 − S11(q)a

2
1) (19)

quark-nucleon amplitudes related to  quark 
amplitudes with coefficients extracted from 
lattice

! ! "
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WIMP-nucleon to WIMP-nucleus

• Rates (SI and SD)  depends on nuclear form factors 
and velocity distribution of WIMPs + local density

• Modularity and flexibility: can change velocity 
distribution, nuclear form factors, quark coefficients in 
nucleon

Nuclear form 
factors

DM velocity 
distribution

Particle physics
+ quark content in nucleon
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• DM velocity distribution
• Maxwell isothermal, 

• truncated at vesc 
• user can implement other velocity distribution
• Global parameters

31
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default function included in micrOMEGAs is

Maxwell(v) =
cnorm
v

�

|�v|<vesc

d3�v exp

�
− (�v − VEarth)2

v2rot

�
δ(v− |�v|)

which corresponds to the velocity distribution of the isothermal model. Here
VEarth, vrot, and vesc a global parameter presented in Tab.1.

nucleusRecoil returns the total number of events per day and per
kilogram of detector material. In general the result is averaged over DM
and DM . The energy spectrum of recoil nuclei is stored in dNdE array which
contains 200 elements. The value in the ith element corresponds to

dNdE[i] =
dN

dE
|E=i∗keV

in units of (1/keV/kg/day). The recoil energy distribution can be displayed
on the screen with

displayRecoilPlot(dNdE,title,E1,E2)

where title is a character string specifying the title of the plot and E1,E2

are minimal and maximal values for the displayed energy in keV. The func-
tion

cutRecoilResult(dNdE,E1,E2) calculates the number of events in
an energy interval defined by the values E1,E2 in keV, each experiment
normally gives an energy interval for their result.

8.7. Example.

For the MSSM test point of section 4.5, to obtain the recoil energy corre-
sponding to the Xenon100 experiment, we call

double E1=8.4 /*KeV*/, E2=44.6/*KeV*/, Exposure=1471/*day*kg*/;

double nEvents, dNdE[200]; /* output */

int i;

nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,SxxXe131,FeScLoop,dNdE);

nEvent=Exposur*cutRecoilResult(dNdE,E1,E2);

printf("Expected number of events %.2E\n",nEvents);

for(i=0;i<200;i++) dNdE[i]*=Exposure;

displayRecoilPlot(dNdE,"Recoil energy distribution for Xe",E1,E2);

The number of events given in output is 0.23, this means that this point
can be tested by XENON if one increases the exposure by roughly a factor
20, in agreement with the estimate obtained in section 8.4. The resulting
distribution is displayed in Fig.7. Here we see that the number of events

May 10, 2012 21:37 WSPC - Proceedings Trim Size: 9in x 6in microLecture5c
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The Maxwell velocity distribution is truncated at vesc.

micrOMEGAs has several global parameters which describe the Dm

distribution in the Galaxy, see Tab.1.

Table 1. Galaxy parameters

Name default value units Symbol Comment
Rsun 8.5 kpc R⊙ Distance from Sun to center of Galaxy
rhoDM 0.3 GeV/cm3 ρ⊙ Dark Matter density at Rsun
Vesc 600 km/s vesc galactic escape velocity
Vearth 225.2 km/s vEarth Galaxy velocity of Earth
Vrot 220 km/s vrot rotation velocity at Sun orbit

Note: We keep the old recommended 1985 IAU value for vrot because it is used for comparing
results of Direct Detection experiments

In general different DM spatial and velocity distributions in the Milky

Way are considered and micrOMEGAs can work with any distribution im-

plemented as external functions. But the formulas presented above charac-

terize the DM distribution and contain all important features of distribu-

tions used in real calculations of direct and indirect DM signals.

The DM spatial mass density in micrOMEGAs is given as a product of

the local density at the Sun orbit with the halo profile function.

ρ(r) = ρ⊙Fhalo(r) .

By default micrOMEGAs uses the Zhao67 profile

Fhalo(r) =

�
R⊙
r

�γ �
r
α
c +R

α
⊙

rαc + rα

� β−γ
α

with parameters α = 1,β = 3, γ = 1, rc = 20[kpc] which corresponds to the

NFW68 profile. These values can be changed by the command

setProfileZhao(α,β,γ,rc) ,

for example,

setProfileZhao(2,2,0,3.5)

sets isothermal profile with a core.69 micrOMEGAs can work with any

external function that describes a spherically symmetric halo profile. For

this, call

setHaloProfile(myHaloProfile)

with the name of external functions as argument. To restore the default

Zhao profile use

setHaloProfiles(hProfileZhao).
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Indirect detection
• Annihilation of pairs of DM 

particles into SM : decay products 
observed 

• Searches for DM in 4 channels
– Antiprotons  (Pamela)
– Positrons/electrons from  

galactic halo/center (Pamela, 
ATIC, Fermi..)

– Photons from galactic halo/ 
center (Egret, Fermi, Hess..)

– Neutrinos from Sun (IceCube)

–

Hadronisation 
And decays

v=0.001c
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Photons
• Flux calculation

• Photon production
– In decay of SM particles + R-even new particles
– dN/dE : basic channels ff, VV, VH, HH and polarization of gauge 

bosons
– For particles of unknown mass (e.g. Z’..) compute 1->2 decay 

recursively until only basic channels
– Annihilation into 3 body (χ χ-> e+e-γ) 

• Integral over line of sight depends strongly on the galactic DM 
distribution
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Dark matter profile
• Dark matter profile 

parametrisation

• Different halo profile rather 
similar except in center of galaxy

• Also Einasto profile
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Monochromatic gamma-rays
• Monochromatic gamma rays (γγ,γZ) and (γh) are loop-

induced (suppressed) BUT lead to very distinctive signal
–  C. Weniger, 1204.2797, T.Bringmann et al, 1203.1312 

(signal in Fermi-LAT? m~130GeV σv~10-27cm3/s)
• Available for MSSM and some extensions (NMSSM)

– Computed with SloopS, a code for computation of 
one-loop processes in the SM,MSSM and some 
extensions

• F. Boudjema, A. Semenov, D. Temes, hep-ph/0507127 
• G. Chalons, A. Semenov, arXiv:1110.2064

• In generic models, not available, only have the Higgs 
contribution (through   hγγ effective vertices - see later) 
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Antiprotons and positrons from DM 
annihilation in halo

M. Cirelli, Pascos2009

Energy lossesdiffusion Source
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Propagation of cosmic rays

• For Charged particle spectrum detected different than spectrum at the 
source

• Charged cosmic rays deflected by irregularities in galactic magnetic field
– For strong magnetic turbulence effect similar to space diffusion

• Energy losses due to interactions with interstellar medium

• Convection driven by galactic wind and  reacceleration due to interstellar 
shock wave

• For positron, antiproton : solution propagation equations based on 
– Lavalle, Pochon, Salati, Taillet, astro-ph/0603796
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Propagation
• Choice of diffusion parameters (global parameters of micrOMEGAs)

• Strong impact on the predictions

• At low energies solar modulation effect

Donato et al
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DM capture in Sun
• DM particles captured by Sun/Earth, concentrate in center and 

annihilate into SM
• Lead to neutrino flux, can be observed at Earth 

(SuperKamiokande, IceCube)
• Shape of neutrino flux depends on dominant DM annihilation 

channel
• Signal determined by cross section for DM scattering on 

nuclei --related to DD
• Capture rate

40

200GeV [?]. Limits on the muon flux from neutrinos captured in the Sun were obtained
by Super-Kamiokande, Amanda and ICECUBE and are currently more sensitive than
direct detection experiments in probing DM nuclei spin dependent cross sections. The
best limit on the SD cross section on protons is currently obtained by ICECUBE, σSD =
1.2 × 10−40cm−2 for mCDM = 200GeV [?], with their projected sensitivities ICECUBE
should be able to probe a fraction of the parameter space of the MSSM and of other
DM models [?]. Note that ICECUBE has a threshold energy above 25 GeV, making it
unsuitable for detecting the neutrino flux from light DM, although the DeepCore extension
allows to decrease the threshold energy to 10GeV [?]. The best limit for mCDM = 100GeV
was obtained by Super-Kamiokande, σSD = 2.7× 10−40cm−2 [?]. Furthermore the Super-
K detector has a threshold of 1.6 GeV and is the only one suitable for light dark matter
candidates.

The computation of the neutrino flux from the galaxy was provided in the indirect
detection module of micrOMEGAs2.4 together with the photon, antiproton and positron
fluxes, the neutrino flux and the induced muon flux from DM captured in the Sun and
the Earth is a new module and will be described below.

3.1 Neutrinos from annihilation in the Sun

The capture rate for DM particles in the core of the Sun depends on the DM–nucleus
scattering cross-section, as well as on the DM velocity distribution and local density. A
WIMP will get captured if after scattering with a nucleus at a distance r from the center,
its velocity is lower than the escape velocity, vesc(r).

The capture rate per unit volume was derived in [?]

Cχ =
ρχ
mχ

� ∞

o

duf1(u)

�
4πr2dr

�

A

σχAnA(r)
βA

αA

�
e−αAu2 − e−αA(u2+v2esc(r))/βA

�
(26)

where the integral over r is performed over the region where the gravitational potential
satisfies the condition φ(r) > v2esc

2 (βA − 1) and

αA =
1

3
mχmAR

2
A, βA =

(mχ +mA)2

4mχmA
(27)

and u is the WIMP velocity at infinity, f1(u)du is the WIMP velocity distribution. By
default we assume a Maxwellian velocity distribution. σχA is the scattering cross section
for DM on nuclei, A, and nA is the number density of nucleus A. The computation of σχA

takes into account the fact that the WIMP scattering cross section is velocity dependent
which implies a form factor dependence

|F (q2)|2 = exp

�
−q2R2

A

3h̄2

�
(28)

where q is the momentum transfer and RA the nuclear radius, E0 = 3h̄2/(2mAR2
A) is the

characteristic coherence energy. For the Gaussian form factor5 we assume that

RA =
�
0.91(mA/GeV)1/3 + 0.3

�
× 10−13cm (29)

5Note that in the direct detection module we use a Woods Saxon form factor rather than a Gaussian
form factor as it is more accurate especially at large q2, however the Gaussian form factor can be integrated
analytically and the error is small (per-cent check Ellis Flores PLB263 1991)
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• Annihilation

• Number of DM particles

• When capture/annihilation is 
large, no evaporation, self-
conj. particle, equilibrium is 
reached and annih. rate 
determined by capture rate

• In general solve equation for 
number density numerically 
and obtain ν flux at Earth

41

For spin-independent interactions, the sum over selected nuclei up to 59Ni is included.
For spin-dependent interaction, there is no coherence effect ∝ A2 therefore hydrogen gives
the largest contribution, in this case we do not include the form factor. The capture rate
can modified by finite temperature effects, however this effect is below 1% [?] so we neglect
it.

maybe show plot of capture rate and also compare with approximate for-
mula - we had this

3.2 Annihilation

The annihilation rate

Aχ = �σv� V2

V 2
1

(30)

where Vj is the effective volume of the Sun/Earth

Vj = 4π

� R⊙

0

r2dre−jφ(r)mχ/Tχ (31)

and φ(r) is the gravitational potential. The WIMPs are trapped close to the center of the
Sun, in this region we can consider that the temperature and the density are constant.
We choose Tχ = T⊙(r̄) where r̄ is the mean WIMP radius

r̄ =

�
6T (r̄)

π2Gρ(r̄)mχ

�1/2

(32)

with G the Newton’s constant. The mean radius can be solved numerically from the
temperature and density profile of the Sun/Earth.

If we assume that the density is constant, the gravitational potential simplifies to
φ = 2πGρ⊙(r̄)r2/3, and the effective volume can be integrated to give

Vj =

�
3kTχ

2jGmχρ⊙

�3/2

(33)

The effective volume at the core of the Sun is roughly

Veff = V2/V
2
1 = 5.8× 1030cm3(mχ/GeV)−3/2

[?].

3.3 Evaporation

DM captured in the Sun/Earth can scatter with nuclei inside the Sun and gain enough
energy to escape from the Sun. Evaporation depends very sensitively on the DM mass, it
is important for light DM. This effect was estimated in [?, ?], approximate formulas for
the evaporation rate were derived in [?]. The evaporation rate [?]

E⊙ =
8σc

π3r̄3
v̄
mχφ(r̄)

T (r̄)
e−mχφ(r̄)/T (r̄) (34)
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where mχφ is the DM escape energy from the center of the Sun/Earth, r̄ is the mean
radius (Eq. ??) and v̄ the mean speed of DM,

v̄ =

�
8T (r̄)

πmχ

�1/2

(35)

T (r) is the temperature profile of the Sun/Earth as given in the standard solar model [?].
The evaporation rate depends also on the scattering cross section of DM on nuclei inside
a radius rc, σc,

σc =

� rc

0

σχini4πr
2dr (36)

where rc is taken to be the radius where the temperature drops to 95% of its value,
T (rc) = 0.95T (r̄), ni is the number density of nucleus Ni. Typically, the evaporation
affects significantly DM particles lighter than 3 GeV and is irrelevant for heavier DM
particles.

need to comment on Sun and Earth

3.4 Neutrino flux

When DM is self-conjugate, the equation describing the evolution of the number of DM
particle Nχ is

Ṅχ = Cχ − AχχN
2
χ − EχNχ ,

(37)

where the capture rate , the annihilation rate and the evaporation rate were given above,
Eqs. ??,??,??. When the evaporation is negligible and the capture and annihilation rates
are sufficiently large, equilibrium is reached and the annihilation rate is only determined by
the capture rate. Γχ = AχχN2

χ = Cχ/2. The condition for equilibrium is
�
CχAχχt � 1.

For the Sun, where t⊙ = 4.57×109yrs, equilibrium is reached for annihilation cross section
σv > 10−30 for a capture rate. For the Earth, equilibrium might not be reached. To take
into account the most general case, we do not make assumptions about equilibrium and
solve this equation numerically.

In models where the DM is not self-conjugate, one can get different capture rates for
particles and antiparticles. Furthermore both particle–particle (antiparticle–antiparticle)
and particle–antiparticle annihilation channels exist. For example for a Dirac fermion
DM one can get χ̃χ̃ → νν (Aχχ) and χ̃χ̃∗ → XX̄ (Aχχ̄) where X is any SM particle.
The equations describing the evolution of the number of DM (anti-)particles, Nχ(Nχ̄), are
then

Ṅχ = Cχ − AχχN
2
χ − Aχχ̄NχNχ̄ − ENχ ,

Ṅχ̄ = Cχ̄ − Aχχ̄NχNχ̄ − Aχχ̄N
2
χ̄ − ENχ̄ , (38)

The capture and annihilation rates can be evaluated as above, and the two coupled equa-
tions solve numerically to extract the number density of DM and anti-DM. In the case
that evaporation is negligible and equilibrium is reached, these equations can be solve
analytically, see Appendix.
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After solving for the number density, one can compute the neutrino flux at the Earth.

First define

Γχχ =
1

2
AχχN

2
χ Γχ̄χ̄ =

1

2
Aχ̄χ̄N

2
χ̄ Γχχ̄ = Aχχ̄NχNχ̄ (39)

The total neutrino spectrum at the Earth, assuming self-annihilation channels are

solely into neutrino pairs,do we always have this? is given by

dφν

dEν
=

1

4πd2

�
ΓχχBrνν

dNνν

dE
+ Γχχ̄

�

f

Brff̄
dNf

dE

�
,

dφν̄

dEν̄
=

1

4πd2

�
Γχ̄χ̄Brν̄ν̄

dNν̄ν̄

dE
+ Γχχ̄

�

f

Brff̄
dNf

dE

�
, (40)

where d = 1.5 × 10
8
km is the distance from the Sun to the Earth, Brνν is the branch-

ing fraction for annihilation into neutrino pairs, Brff̄ the branching fraction into each

particle/antiparticle final state ff̄ . Nf and Nνν(Nν̄ν̄) are the neutrino spectra resulting

from those annihilations. Here dNνν/dE is simply proportional to a delta function. The

neutrino spectrum originating from different annihilation channels into SM particles and

taking into account oscillations was computed in [?], we use the tables given there. Note

that for the neutrino pair production an average over the three flavours in the annihila-

tion process is assumed. In models where DM annihilate directly into neutrinos of a given

flavour (e.g. the light sneutrino scenario in [?]) this is not the case, however this is still

a good approximation since almost perfect 3-generation mixing is expected for neutrinos

below 10 GeV propagating in the Sun [?]. what about heavier neutrinos

3.5 Muon fluxes

Neutrinos that reach the Earth interact with rock below or water/ice within the detector

and will give muons. To compare with the data, one must therefore compute the muon

flux. First consider muons that are created inside the detector, leading to the contained

muon flux,

dφµ

dEµ
= ρNA

mχ̃�

Eµ

dEν
dφν

dEν

dσcc(Eν)

dEµ
(41)

where ρ is the water density, NA the Avogadro number, and σcc the cross section for

charged current interactions for neutrinos on nucleons, νN → µN �
. This cross section is

averaged over protons and neutrons. what did we use here, ref.
When neutrinos interact with matter outside the detector, one must also take into

account the fact that muons lose energy on their way to the detector. The energy loss for

a muon is assumed to be
dEµ

dz
= −ρ(α + βEµ) (42)

where ρ = 2.6 g/cm
3
is the rock density and α = 2×10

−3
GeVcm

2
/g, β = 3×10

−6
cm

2
/g

characterize the average energy loss of the muon traveling through rock or water. (?? or
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• neutrino spectrum originating from different SM 
decays and including oscillation available in 
– M. Cirelli, hep-ph/0506298

• Neutrinos that reach the Earth interact with rock below 
or water/ice in detector -> muon flux

• Both neutrino flux and muon flux are computed

42
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CMSSM
(5 parameters)
NUHM
AMSB

MSSM
19 parameters
“soft terms”

Spectrum 
calculation

 SUSPECT
 SOFTSUSY
 SPHENO
 Isajet

Spectrum 
calculation

Rad corr to mass
    Spectrum 
    calculator

Independent
Parameters 

Physical
 parameters
of MSSM:

Masses and
Mixings of SLHA

Model file

CalcHEP -ME

Calculation of 
all annihilation

and coannihilation
cross-sections

and
Relic density

Parameters of MSSM model file

SLHA
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MSSM-Specific features

• Independent parameters of model are physical parameters of SHLA, flexibility: 
any model for which the MSSM spectrum can be calculated with an external 
code can be incorporated easily

• Input parameters to micrOMEGAs can be specified at the weak scale or at the 
GUT scale using some SpectrumCalc program, includes CMSSM, non-univ. 
SUGRA, AMSB

• Uses SUSY Les Houches Accord

• Includes  other constraints (developed for MSSM) – not automatic yet
b->s γ (NLO) , (g-2) µ, Bs->µµ, B->τν, Δρ

• Radiative corrections to masses can be important – SUSY masses and Higgs 
masses (via spectrum calculator) 
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Also include QCD corrections to higgs couplings to fermion pairs and 
SUSY-QCD corrections to hbb relevant at large tanβ

mercredi 27 février 2013



Extensions of MSSM
• Spectrum calculation, constraints on models: make use of 

existing programs develop independently, when possible 
interface with SLHA2
– NMSSM 

• relies on NMSSMTools (NMSPEC and NMHDECAY) for spectrum 
calculation, indirect constraints (B physics, g-2, Higgs collider constraints)

• New implementation of Higgs potential -  Higgs to Higgs couplings 
directly given in NMSSMTools 

• Ellwanger, Gunion, Hugonie

– CPVMSSM :
• interface to CPSuperH (J.S. Lee et al ) for spectrum calculation, 

effective Higgs potential and constraints: edm, Bphysics
• Interface to Higgs bounds for LEP/Tevatron Higgs constraints 

New
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Dark matter models
• Models distributed

– MSSM
– NMSSM (with C. Hugonie, hep-ph/0505142)
– CPV-MSSM (with S. Kraml, hep-ph/0604150)
– Right-handed neutrino (with G. Servant, arXiv:0706.0526)
– Little Higgs (A. Belyaev)

• Models not yet public
– SUSY N=2 (with K. Benakli, M. Goodsell.. arXiv:0905.1043)
– UED (with M. Kakizaki)
– MSSM+RHneutrino (with M. Kakizaki, S. Kraml, E.K. Park) 
– UMSSM (J. DaSilva)
– IDM
– Inert doublet+singlet Z3 (with K. Kannike, M. Raidal)
– BMSSM (F. Boudjema, G. Drieu La Rochelle)

• Many more models implemented by users
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Collider physics
• CalcHEP is included: computes all  2->2(3) processes  and  1-> 2,3 

decays at tree-level
• Some facilities provided for pp collisions (function that computes 

directly pp process - summing over processes at parton level)
• Interactive link to CalcHEP 

• New: improved Higgs sector
– 3 body decays (WW*,ZZ*)

– loop-induced decays (gg,γγ) 
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Figure 3: Branching ratios of the SM Higgs boson (left) and total decay width (right) for Higgs-boson
masses accessible at LEP and before, calculated with Hdecay.
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widths illustrating the parametric and theoretical uncertainties, and total decay width (right, taken
from Ref. [25]) in the Higgs-boson mass range accessible by the LHC.
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Loop induced Higgs decays
• Introduce effective operators

– λh Fµν Fµν (CP-even)       λ’h Fµν Fµν (CP-odd)

• Add QCD corrections
– e.g. for gluons

– Good agreement with HDECAY for SM-like Higgs
50

two effective operators of the form λhFµνF µν for the CP even part and λ�hFµν F̃ µν for the
CP-odd part6. These operators receive contributions from charged scalars, vector bosons
or fermions. For a generic Lagrangian describing the Higgs interactions with fermions ψ,
scalars φ and vector bosons V µ,

L = ghψψψ̄ψh+ ig�
hψψψ̄γ5ψh+ ghφφMφhφφ+ ghV VMV hVµV

µ (56)

the contribution to the effective operators read

λ =
α

8π

�
ghψψf

c

ψq
2
ψ

1

Mψ
A1/2(

M2
h

4M2
ψ

)− ghV V f
c

V
q2
V

1

2MV

A1(
M2

h

4M2
V

)

+ ghφφf
c

φq
2
φ

1

2Mφ
A0(

M2
h

4M2
φ

)

�
(57)

and

λ� =
α

16π
g�
hψψf

c

ψq
2
ψ

1

Mψ
Ã1/2(

M2
h

4M2
ψ

) (58)

where q is the electric charge of the virtual particle for γγ operators and is 1 for the gluon
operator, f c is the color factor associated with the virtual particle. For the fundamental
SU(3) representation f c = 3 for γγ and f c = 1/2 for gg. For the adjoint representation
f c = 8 for photons and f c = −2 for gluons. The functions A1/2, A1, A0, Ã1/2 are defined in
[?, ?]. Note that in supersymmetric models, higher-order corrections SUSY corrections,
the so-called ∆mb corrections, are taken into account by a redefinition of the hbb vertex.
These are also included when defining the b-quark contribution to hγγ and hgg.

There are important QCD corrections to the effective vertices with coloured particles
in the loop. For hγγ the QCD corrections are described as an overall factor

1 +
αs(Mh/2)

π
Cl

�
M2

h

4M2
l

�
(59)

where Ml is the mass of the particle in the loop and the Cl functions are known for
fermions and scalars in the fundamental representation of SU(3). The HDECAY package
is used to generate tables for these functions. is this correct? I see only this factor
for new particles

For hgg the QCD corrections to order α3
s
have been computed in the limit of a heavy

top quark. These include both vertex corrections and corrections from gluon emission [?].
The corrections are therefore split into a radiation factor and a vertex factor. For lighter
quarks or for new colored particles, only NLO vertex corrections are known. To take
into account QCD corrections for all colored fermions and scalars in the loop, we use the
following prescription. We use the common radiation factor, R, for all colored particles
and introduce QCD correction factors in the amplitude for top/heavy new quarks (Ct),
light quarks (Cq) or colored scalars (Cs). The hgg vertex including QCD corrections for
SM fermions and colored scalars (such as squarks in the MSSM) thus reads

λ = −R

�
ALO

htt
Ct + (ALO

hbb
+ ALO

hcc
)Cq +

�

q̃

ALO

hq̃q̃
Cq̃

�
(60)

6
These operators are also used in CalCHEP [?]
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• Reduced couplings are computed within micrOMEGAs - 
provided in a SLHA file

• Can compute signal strength

• Also use for more extensive constraints on the multi-Higgs 
sector, for example using interface HiggsBounds (Bechtle et al) 
which contains compilation of several Higgs searches at 
Tevatron/LHC

• Interface Higgsbounds via SLHA file - indicates whether point 
excluded at 95% CL

51

where A
LO

hXX
denote the contribution of particle X to Eq. ?? and the QCD factors with

a = αs(Q)/π, are [],

R
2 = 1 +

149

12
a+ 68.648a2 − 212.447a3 (61)

and

Ct = 1 +
11

4
a+ (6.1537 + 2.8542 log

�
m

2
t

Q2

�
)a2 (62)

+ (10.999 + 17.93 log

�
m

2
t

Q2

�
+ 5.47 log

�
m

2
t

Q2

�2

)a3 (63)

Cq = 1 +
11

4
a (64)

Cq̃ = 1 +
9

2
a (65)

where Q = Mh/2 The top contribution to the hgg partial widths agrees with Ref. [?] to
order α3

s
. There are some differences with HDECAY say what it is for top. For lighter

quarks or for new particles, the QCD factor in the partial width is in agreement with
HDECAY only to order αs. For a SM Higgs of 126 GeV, the difference is below.... Our
approach which consists in a modification of the effective hγγ, hgg vertices, necessarily
incorporates only part of higher order corrections to the partial widths in high orders
of perturbation theory (for example for lighter quarks the contribution to order alphas

are taken into account but only some of the alpha
2
s
contributions. As said above the

theoretical uncertainty induces by this method is only at the ...% level.
In most extensions of the standard model, the Higgs sector contains several doublets

and/or singlets. We follow the same procedure for computing the Hγγ and Hgg vertices,
including QCD corrections. but here the heavy top quark limit does not work -

Sasha please confirm what we have.
In addition to a measurement of the Higgs mass, the LHC collaborations provide

estimates of the signal strength as compared to the SM expectation in various production
times decay channel. For example for the two-photon decay of a Higgs produced via gluon
fusion(ggF) or vector boson fusion(VBF)

R
ggF

γγ =
σ(gg → h)NPBr(h → γγ)NP

σ(gg → h)SMBr(h → γγ)SM
R

V BF

γγ =
σ(WW → h)NPBr(h → γγ)NP

σ(WW → h)SMBr(h → γγ)SM
(66)

where NP stands for the new physics model under consideration. The ratio of the Higgs
partial widths can be obtained easily from the reduced coupling squared

chXX = g
2
hXX

(NP )/g2
hXX

(SM) (67)

These reduced couplings as well as all partial widths are computed within micrOMEGAs
and provided in the SLHA file for the MSSM and its extensions.

6.2 Exclusion with HiggsBounds

To obtain easily the limits on the Higgs sector for models with more than one Higgs boson,
we rely on the public code HiggsBounds which allow to take into account the exclusion
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FIG. 1. Signal strengths (relative to SM repeat) Rh1
V BF (bb) versus R

h2
gg (γγ) for mh1 ∈ [96−100] GeV and mh2 ∈ [123−128] GeV.

Higgs branching ratio to a given final state X, relative to the corresponding value for the SM Higgs boson, as

Rhi
gg
(X) ≡ Γ(hi → gg) BR(hi → X)

Γ(hSM → gg) BR(hSM → X)
, Rhi

VBF(X) ≡ Γ(hi → WW ) BR(hi → X)

Γ(hSM → WW ) BR(hSM → X)
, (1)

where hi is the ith NMSSM scalar Higgs, and hSM is the SM Higgs boson. Note that the corresponding ratio for
V ∗ → V hi (V = W,Z) with hi → X is equal to Rhi

VBF(X). In the context of any two-Higgs-doublet plus singlets model,
not all the Rhi are independent. For example, Rhi

V H
(X) = Rhi

V BF
(X), Rhi

Y
(ττ) = Rhi

Y
(bb) and Rhi

Y
(ZZ) = Rhi

Y
(WW ).

A complete independent set of Rhi ’s can be taken to be (with h = h1 or h = h2)

Rh

gg
(WW ), Rh

gg
(bb), Rh

gg
(γγ), Rh

V BF
(WW ), Rh

V BF
(bb), Rh

V BF
(γγ) . (2)

In order to display the ability of the NMSSM to simultaneously explain the LEP and LHC Higgs-like signals, we
turn to NMSSM scenarios with semi-unified GUT scale soft-SUSY-breaking. By “semi-unified” we mean universal
gaugino mass parameter m1/2, scalar (sfermion) mass parameter m0, and trilinear coupling A0 ≡ At = Ab = Aτ

at the GUT scale, but m2
Hu

, m2
Hd

and m2
S
as well as Aλ and Aκ are taken as non-universal at MGUT. Specifically,

we use points from the scan performed in [6] using NMSSMTools 3.2.0 [7–9]. These scenarios obey all experimental
constraints (including Ωh2 < 0.136 and 2011 XENON100 constraints on the spin-independent scattering cross section)
except that the SUSY contribution to the anomalous magnetic moment of the muon, δaµ, is too small to explain the
discrepancy between the observed value aµ and that predicted by the SM. For a full discussion of the kind of NMSSM
model employed see [5, 6, 10].

We first display in Fig. 1 the crucial plot that shows Rh1
V BF

(bb) versus Rh2
gg
(γγ) when mh1 ∈ [96 − 100] GeV and

mh2 ∈ [123−128] GeV are imposed in addition to the above mentioned experimental constraints. Note that Rh1
V BF

(bb)
values are always smaller than 0.3 by virtue of the fact that the LEP constraint on the e+e− → Zbb channel with
M

bb
∼ 100 GeV is included in the NMSSMTools program. Those points with Rh1

V BF
(bb) between about 0.1 and 0.25

would provide the nicest fit to the LEP excess. (We note again the Rh1
V BF

(bb) is equivalent to Rh1
V h1

(bb) as relevant for

LEP.) A large portion of such points have Rh2
gg
(γγ) > 1 as preferred by LHC data. In all the remaining plots we will

impose the requirements: Rh2
gg
(γγ) > 1 and 0.1 ≤ Rh1

V BF
(bb) ≤ 0.25. To repeat, the Rh2

gg
(γγ) > 1 requirement is such as

to focus on points that could be consistent with the enhanced γγ Higgs signal at the LHC. The 0.1 ≤ Rh1
V BF

(bb) ≤ 0.25
window is designed to reproduce the ∼ 100 GeV reduced Higgs signal seen in LEP data at M

bb
∼ 100 GeV in the Zbb

final state
In Fig. 2, we plot Rh1

gg
(γγ) vs. Rh2

gg
(γγ) and Rh1

V BF
(γγ) vs. Rh2

V BF
(γγ), on the top showing that the h2 can easily

have an enhanced γγ signal in both gg and VBF fusion whereas the γγ signal arising from the h1 for both production
mechanisms is quite small and unlikely to be observable. The bottom row of the figure focuses on the bb final state.
We observe the reduced Rh2

gg
(bb) and Rh2

V BF
(bb) values that are associated with reduced bb width (relative to the SM)

needed to have enhanced Rh2
gg
(γγ) and Rh2

V BF
(γγ). Meanwhile, the Rh1

gg
(bb)and Rh1

V BF
(bb) values are such that the h1
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Conclusion

• To understand the nature of dark matter clearly 
need information and cross checks from 
cosmology, direct and indirect detection as well 
as from collider physics

• micrOMEGAs is  tool to perform these analyses 
in a generic model
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