ATLAS Status and Recent Physics Highlights

Andreas Hoecker (CERN)

LHCC Open Session, 5 Dec 2012

ATLAS Status and performance

LHCC Open Session, 5 Dec 2012

- ATLAS Status Report -

Recorded luminosity in 2012

Measured with forward detectors, calibrated with beam separation scans

ATLAS integrated luminosity in 2012

- Peak *L* = 7.7×10³³ s⁻¹cm⁻² (Aug)
- Max L/fill: 237 pb⁻¹ (June)
- Weekly record: 1350 pb⁻¹ (June)
- Longest stable beams: 22.8 h (July)
- Fastest turn-around between stable beams: 2.1 h (April)
- Best weekly data-taking efficiency: 92 h (55%) (July)

At $L = 7 \times 10^{33} \text{ s}^{-1} \text{ cm}^{-2}$ and 8 TeV pp collisions, 560 Higgs bosons of mass 125 GeV ($\sigma_{pp \rightarrow H} = 22.3 \text{ pb}$) are produced in ATLAS and CMS per hour

Or: every 45 min. 1 $H \rightarrow \gamma\gamma$, need ~2 typical 160 pb⁻¹ fills to produced one $H \rightarrow 4l$ ($l=e/\mu$)

Luminosity and pileup in 2012

Measured with forward detectors, calibrated with beam separation scans

Peak luminosity & pileup profiles

Current 2012 luminosity uncertainty 3.6%

• Dominated by non-linearities in beam profiles of April & July 2012 van-der-Meer scans

New van-der-Meer scan performed 22 Nov ($\beta^* = 11m$)

- First look promising: Gaussian shapes
- 3D beam shaping in injectors pays off

Luminosity profile during Nov 22 van-der-Meer scan

- ATLAS Status Report —

Pileup in 2012

In general, do not expect a significant impact on tracking, nor muons, nor even electrons and photons

However, sizable impact on jets, E_T^{miss} and tau reconstruction as well as on trigger rates and computing

Date: 2012-04-15 16:52:58 CEST

 $Z \rightarrow \mu\mu$ event in ATLAS with 25 reconstructed vertices Display with track p_T threshold of 0.4 GeV and all tracks are required to have at least 3 Pixel and 6 SCT hits

LHCC Open Session, 5 Dec 2012

- ATLAS Status Report –

Stability of electron energy response versus pileup

With bipolar LAr pulse shape bunch-integrated pileup contribution cancels*

Reconstructed e energy in $Z \rightarrow ee$ and $W \rightarrow ev$ (E/p)

- Left plot: relative stability versus <µ> better than 0.1%
- <u>Center</u>: however, energy rise versus *number of vertices* seen: expected from in-time versus out-of time selection bias
- <u>Right</u>: data / MC ratio: effect well reproduced by simulation

*Designed for 25 ns bunches and uniform bunch luminosity

LHCC Open Session, 5 Dec 2012

- ATLAS Status Report –

E_T^{miss} and tau reconstruction versus pileup

Pileup dependence from soft activity in calorimeter

Including tracking information Tau BDT reconstruction efficiencies versus number of vertices helps to mitigate effects from Signal Efficiency Efficiencies Multi Prong BDT loose pileup interactions predicted by p_ > 20 GeV, hpl < 2.3 PYTHIA8 MC 🗕 BDT tight 0.8 Tested in E_{τ}^{miss} resolution in $Z \rightarrow \mu\mu$ events with and without data with soft-term vertex fraction correction 0.6 $Z \rightarrow \tau \tau$ tag-26 σ(E^{miss}) [GeV] and-probe **ATLAS** Preliminary 0.4 MC12 default 0 24 analysis MC12 Pile-up suppression STVF Data 2012 default 22 Data 2012 Pile-up suppression STVF **Background Efficiency** Background Multi Prona 2012 data dt L = 740 pb20 p_ > 20 GeV, ml < 2.3 efficiencies Z → μμ BDT loose 18 . √s = 8 TeV measured ---- BDT medium 10⁻¹ from dijet Ldt=1.7 fb⁻¹ 16 🗕 BDT tight data samples 14 - 0 jets p_>20 GeV 12 10⁻² 10 8 **ATLAS** Preliminary 6^L 10⁻³ 5 15 20 25 30 6 8 18 10 10 12 16 Number of reconstructed vertices Number of reconstructed vertices

LHCC Open Session, 5 Dec 2012

Flavour tagging

Understanding of *b*-tagging efficiencies crucial for many analyses (SM, $H \rightarrow bb$, searches)

Default tagger: 'MV1' neural network using other taggers as input

Several methods available to determine *b*-tagging efficiency versus *b*-jet p_T . Compatible results found among all of them, including those using *tt* and dijet events

LHCC Open Session, 5 Dec 2012

Data taking efficiency

Continued excellent performance of detector, trigger and reconstruction

Average data taking efficiency: ~94%

• Deadtime is dominant inefficiency source (~4%)

Stable detector performance

ATLAS p-p run: April-Sept. 2012										
Inner Tracker			Calorimeters		Muon Spectrometer				Magnets	
Pixel SCT TRT LAr Tile MDT RPC CSC TGC Solenoid Toroid									Toroid	
100 99.3 99.5 97.0 99.6 99.9 99.8 99.9 99.9 99.7 99.2										
All good for physics: 93.7%										
Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at Vs=8 TeV between April 4 th and September 17 th (in %) – corresponding to 14.0 fb ⁻¹ of recorded data. The inefficiencies in the LAr calorimeter will partially be recovered in the future.										

Total efficiency (delivered \rightarrow physics): ~88%

2012 Trigger

Baseline menu designed for $L = 8 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ and mostly unchanged during 2012 run

Additional / looser E_{τ}^{miss} & tau as well as VBF triggers added to increase sensitivity for 125 GeV Higgs in *bb* and $\tau\tau$ modes

prompt trigger streams

(~1700 stable beam hours)

Primary triggers in 2012

★ Looser selection available later in 2012 data in either prompt or delayed streams

Signature	Offline selection	Trigger L1	selection EF	l	L1 Peak (kHz) L _{peak} = 7×10 ³³	EF Ave (Hz) L _{ave} = 5×10 ³³	
Cingle lentons	Single muon p_{τ} > 25 GeV	15 GeV	24 GeV		8	45	
single leptons	Single electron p_{τ} > 25 GeV	18 GeV	24 GeV		17	70	
	2 muons p_T > 6 GeV	2 × 6(4 _{EOF}) GeV (also 2mu4 barrel only)	2 × 6 GeV		3	2	
	2 muons p_{τ} >15 GeV	2 × 10 GeV	2 × 13 GeV		1	5	
Two leptons	2 muons p_T > 20,10 GeV	15 GeV	18,8 GeV		8	8	
	2 electrons, each p_{τ} > 15 GeV	2 × 10 GeV	2×12 GeV		6	8	
	2 taus p _T > 45, 30 GeV	15,11 GeV	29,20 GeV	*	12	12	
Two photons	2 photons, each p_T > 25 GeV 2 loose photons, p_T > 40,30 GeV	2 × 10 GeV 12,16 GeV	2 × 20 GeV 35, 25 GeV		6 6	10 7	
Single jet	Jet <i>p_T</i> > 360 GeV	75 GeV	360 GeV	*	2	5	
E_T^{miss}	$E_T^{\text{miss}} > 120 \text{ GeV}$	40 GeV	80 GeV	*	2	17	
Multi-jets	5 jets, each $p_T > 60$ GeV 6 jets, each $p_T > 50$ GeV	4×15 GeV	5 × 55 GeV 6 × 45 GeV	*	1	8	
<i>b</i> -jets	b + 3 other jets p_T > 45 GeV	4 × 15 GeV	4 × 45 GeV + <i>b</i> -ta	ıg	1	4	
TOTAL					< 75	~ 400 (ave)	
LHCC Open Ses	sion, 5 Dec 2012	— ATL	AS Status Report –			11	

Reconstruction, production, computing

Computing & grid cope with needs, providing the means for timely output of physics results New Integrated Simulation Framework to flexibilise MC production for large needs \rightarrow slide in the backup

2012 high pileup challenge

- 6k CPUs in Tier-0 (up to 7.5k when heavy load)
- Reco. time / event: 10–50 sec for $\langle \mu \rangle = 5 \sim 50$

Reprocessing of 2012 data ongoing (~2B events)

• Conditions updates only (calibration & alignment, data quality, other fixes), no MC reprocessing

IP precision improvement after alignment (in reprocessing) ATLAS Preliminary Updated Alignment ATLAS Preliminary Updated Alignment Data 2012. √s= 8 TeV لم 120 Original Alignment Data 2012. Vs= 8 TeV Original Alignment Entries 100 Entries in $\eta - \phi$ map Left: ΔZ_{0} Right: Δd_0 60 20010 -100 -50 100 150 $\Delta z_0 [! m]$ $\Delta d_n [! m]$

– ATLAS Status Report

ATLAS Physics

ATLAS publications http://atlasresults.web.cern.ch/atlasresults

On Nov 30:

- ATLAS produced 220 papers using collision data
- 421 preliminary conference notes

LHCC Open Session, 5 Dec 2012

Small extract of huge amount

of results available

ATLAS Status Report

ATLAS Physics — Recent Highlights Standard Model Physics

Available statistics allows to perform powerful fiducial and differential and cross-section measurements even in rare channels as dibosons

LHCC Open Session, 5 Dec 2012

ATLAS Status Report -

Differential Y(1S/2S/3S) production cross-section

Sensitivity greatly improved compared to previous measurements (increased p_{τ} range)

1211.7255

Dimuon final state for $p_T(\mu) > 4$ GeV, $|\eta_{\mu}| < 2.3$

- Comparison of the three states interesting because of contributions from direct production and feed-down from decays of higher mass states (Y's, χ 's)
- Comparison with theory models reveals problems at high p_{τ}

LHCC Open Session, 5 Dec 2012

ATLAS Status Report

250×10³

ATLAS

√s = 7 TeV

L dt = 1.8 fb

 $|v^{\mu\mu}| < 1.2$

Data

 $\gamma(1S) : \sigma = 120 \text{ MeV}$

 $\gamma(2S) : \sigma = 127 \text{ Me}$ Y(3S) : σ = 131 MeV

250 MeV 200 The second second

200

100

W and Z physics – differential measurements

Large statistics allows precise tests of generators/theory, PDFs and bkg to searches

ATLAS-CONF-2012-156

Measurement of W + b-jets fiducial ($p_T > 25$ GeV, $|\eta| < 2.1$) & differential cross section

Fiducial cross section within 1.5 σ of theory prediction p_T spectrum harder in data, but compatible within uncertainties with generators

- ATLAS Status Report -

Diboson physics: WW, WZ, ZZ, $W\gamma$, $Z\gamma$, $\gamma\gamma$

ATLAS performed total, fiducial & differential diboson cross-sections measurements

Measured 11 diboson fiducial cross-sections: most are slightly above theory expectation (but syst. and theo. errors correlated)

See last week's ATLAS diboson seminar by Shih-Chieh Hsu: http://indico.cern.ch/conferenceDisplay.py?confld=218398

1210.2979, 1208.1390, 1211.6096

Examples for differential cross section measurements: WW, ZZ (7 TeV, 4.6 fb⁻¹)

So far, satisfying agreement with NLO generators, also for mass spectra. Same for WZ Also searched for diboson resonance production (ZZ [8 TeV, ATLAS-CONF-2012-150], $W\gamma$, $Z\gamma$)

- ATLAS Status Report –

Diboson physics: WW, WZ, ZZ, $W\gamma$, $Z\gamma$, $\gamma\gamma$

ATLAS performed total, fiducial & differential diboson cross-sections measurements

Measured 11 diboson fiducial cross-sections: most are slightly above theory expectation (but syst. and theo. errors correlated)

See last week's ATLAS diboson seminar by Shih-Chieh Hsu: http://indico.cern.ch/conferenceDisplay.py?confld=218398

Preliminary

Examples for differential cross section measurements: $W\gamma$, $Z\gamma$ (7 TeV, 4.6 fb⁻¹)

Too low incl. cross-section by MCFM (NLO, parton-level). Scaled ALPGEN/SHERPA (LO) with multiple quark/gluon emission in ME more accurate \rightarrow Similar for $\gamma\gamma$ [1211.1913]

Top pair production cross-section measurement

Precision measurement already - all the work is on understanding systematics

8 TeV: ATLAS-CONF-2012-149

Large variety of 7 TeV measurements public: 0/1/2-lepton (incl. taus) – agreement with theory Measurement of 8 TeV cross-section in 1-lepton channel (5.8 fb⁻¹) using likelihood template fit

Inclusive tt cross section (using m(t) = 172.5 GeV):

```
σ = 241 ± 2 (stat)
± 31 (syst)
± 9 (lumi) pb
```

Syst. dominated by MC signal modeling (ISR/FSR, generator, parton shower, PDF)

Agreement with theory: 238⁺²²₋₂₄ pb (HATHOR, approx. NNLO)

Top pair production cross-section measurement

Precision measurement already - all the work is on understanding systematics

8 TeV: ATLAS-CONF-2012-149

Large variety of 7 TeV measurements public: 0/1/2-lepton (incl. taus) – agreement with theory Measurement of 8 TeV cross-section in 1-lepton channel (5.8 fb⁻¹) using likelihood template fit

Inclusive tt cross section (using m(t) = 172.5 GeV):

```
\sigma = 241 \pm 2 \text{ (stat)} \pm 31 \text{ (syst)} \pm 9 \text{ (lumi)}
```

Syst. dominated by MC signal modeling (ISR/FSR, generator, parton shower, PDF)

Agreement with theory: 238⁺²²₋₂₄ pb (HATHOR, approx. NNLO)

Understanding top pair production at the LHC

Top pairs in association with jets are dominant background for many BSM searches

ATLAS-CONF-2012-155, see also: 1203.5015

Prelim. measurement of fiducial jet multiplicity in *tt* production (lepton+jets) at 7 TeV (4.7 fb⁻¹)

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report –

ATLAS Physics – Recent Highlights Higgs (-*like*)

A new era, new challenges

Higgs physics moves from searches to measurements

Huge efforts spent on scrutinising systematic effects and designing robust analyses

Higgs status after Summer 2012

One new boson with Higgs-like properties ... nothing else around

1207.7214

Combination of 7 TeV (~4.7 fb⁻¹) and 8 TeV (~5.8 fb⁻¹) data

Discovery *p*-value with contributions from $\gamma\gamma$, ZZ* and WW, slighter stronger signal than SM

For HCP 2012: update of $H \rightarrow WW$, $\tau\tau$, bb analyses with 13.0 fb⁻¹ at 8 TeV

 $H \rightarrow WW^{(*)} \rightarrow e\mu + 2\nu$

Different-flavour channel and 8 TeV (13 fb⁻¹) uncombined result only for this update

Numerous relevant backgrounds: diboson, top, *W*/*Z*+jets, estimated from control regions

Distinguish 0/1 jet and leading lepton \rightarrow 4 categories, main discrimination with: $m_{ll}, \Delta \phi_{ll}, m_T$

 $H \rightarrow WW^{(*)} \rightarrow e\mu + 2\nu$

Different-flavour channel and 8 TeV (13 fb⁻¹) uncombined result only for this update

ATLAS-CONF-2012-158

Background subtracted transverse mass (stat errors only) with expected H(125) signal (left) Background-only *p*-value (right)

 $\mu(125) = 1.5 \pm 0.6$ / Significance (125): 2.6 σ [exp: 1.9 σ] $\sigma(pp \rightarrow H(125)) \cdot BR(H \rightarrow WW) = 7.0^{+1.7}_{-1.6}(stat)^{+1.7}_{-1.6}(syst theo) \pm 1.3(syst exp) \pm 0.3(lumi) pb$

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report –

$H \rightarrow \tau \tau$

Combined and reoptimised 7+8 TeV analysis

ATLAS-CONF-2012-160

Build exclusive categories: lep-lep, lep-had, had-had and jets: 0, 1 (boosted or not), 2 (VBF, VH) BDT-based tau identification, Higgs discrimination based on $m_{\tau\tau}$

Use MMC (missing mass calculator) to estimate $m_{\tau\tau}$, $\sigma(m_{\tau\tau}) = 13\% \sim 20\%$, best for boosted τ Backgrounds dominated by $Z \rightarrow \tau\tau$ (use " τ embedded" $Z \rightarrow \mu\mu$), also top and fakes important

 $H \rightarrow \tau \tau$ (doubly hadronic) candidate in VBF channel (m_{MMC} = 131 GeV)

$H \rightarrow \tau \tau$

Combined and reoptimised 7+8 TeV analysis \rightarrow total of 25 exclusive fit categories

ATLAS-CONF-2012-160

Available statistics allows meaningful VFB vs. non-VBF scan, similar sensitivity in both modes, but best VBF constraint from all Higgs decays

95% CL limit (125): 1.9 [exp: 1.2] × SM / Significance (125): 1.1σ [exp: 1.7σ]

- ATLAS Status Report -

VH production with $H \rightarrow bb$

Combined and reoptimised 7+8 TeV analysis

Also new 7 TeV analysis of tt+H, with $H \rightarrow bb$ [ATLAS-CONF-2012-135]

ATLAS-CONF-2012-161

Require 2 *b*-tags and distinguish 0, 1, 2 lepton channels, where 0-lepton uses E_T^{miss} trigger Higgs discrimination based on m_{bb} , resolution of ~16%, improved by including muons Categories in E_T^{miss} , jets, $p_T(V)$ [depending on channel] \rightarrow reduced background for boosted Higgs Obtain W/Z + light/*c*/*b* & top scale factors from flavour pre-fit, W/Z+*b* and top vary in final fit Dominant systematics from the *b* and *c* tagging and jet/ E_T^{miss} scales

VH production with $H \rightarrow bb$

Combined and reoptimised 7+8 TeV analysis \rightarrow 16 exclusive fit categories

ATLAS-CONF-2012-161

Fitting cross check (left): detect expected WZ and ZZ peak with $Z \rightarrow bb$. Plot sums over categories, all non-diboson bkgs subtracted. Significance of peak: 4σ

 $\mu(125) = -0.4 \pm 0.7(\text{stat}) \pm 0.8(\text{syst}) / 95\%$ CL limit (125): 1.8 [exp: 1.9] × SM

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report –

Updated Higgs combination

Simplest analysis only: combination of three new results to derive combined μ

ATLAS-CONF-2012-162

Previous result [July paper, using 7 TeV analyses of $\tau\tau$, *bb*, 5.8 fb⁻¹ analyses for $\gamma\gamma$, *ZZ*, *WW*] gave: $\mu = 1.4 \pm 0.3$

New result: $\mu = 1.3 \pm 0.3$

Compatibility with common μ is 36%

Compatibility with SM μ = 1 is 23%

```
Higgs or Higgs-like,
that is the ...
```


ATLAS Physics – Recent Highlights Searches

LHC reaches deeply into matter

ATLAS responds with a broad and intense BSM research programme

LHCC Open Session, 5 Dec 2012

- ATLAS Status Report –

ATLAS mines its data for new physics in events with jets ... gradually approaching the limits of phase space

ATLAS-CONF-2012-148

Observed and fitted dijet mass

Data / fit ratio, compared to four q* models

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report –

The highest-mass central dijet event collected. The two central high- p_{τ} jets have an invariant mass of 4.69 TeV

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report –

ATLAS mines its data for new resonances decaying to top pairs ...

If the Z' is very heavy, the outgoing tops will be strongly boosted; hadronic tops will be merged A powerful semileptonic *tt* resonance search w/ boosted techniques already presented last time

ATLAS-CONF-2012-136, limit: 1.7 TeV (95% CL)

LHCC Open Session, 5 Dec 2012

ATLAS Status Report -

ATLAS mines its data for new resonances decaying to top pairs ... searching for *tt* fully-hadronic resonances in boosted regime

1211.2202, see also: ATLAS-CONF-2012-136

Leptophobic topcolour Z' excluded up to 1 TeV at 95% CL

Boosted technique also exploited for other searches

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report –
ATLAS mines its data for new resonances in events with leptons ... for example: dilepton, like-sign dilepton, lepton- γ resonances

Dilepton resonance search: $m(Z'_{SSM}) > 2.49 \text{ TeV}$ (95% CL, 6.1 fb⁻¹) ATLAS-CONF-2012-129

1210.4538, 1210.5070, 1210.8389, ATLAS-CONF-2012-146

Prompt like-sign leptons powerful probe for many forms of new physics

For compositeness scale $\Lambda = m(l^*)$: exclude excited leptons < 2.2 TeV (95% CL)

LHCC Open Session, 5 Dec 2012

- ATLAS Status Report –

Supersymmetry

See recent (Oct 23) ATLAS seminar by Nick Barlow reviewing results on long-lived particle searches with ATLAS

LHCC Open Session, 5 Dec 2012

- ATLAS Status Report -

After ...

- 25 papers at 7 TeV with full 2011 statistics
- 13 preliminary 8 TeV results
 No discovery yet ...

ATLA3-CONF-2012-103

Limits from this model:

$$\begin{split} m(\tilde{q}) &\approx m(\tilde{g}) < 1.5 \text{ TeV} \\ m(\tilde{q}) &< 1.4 \text{ TeV} \ (\forall \ m(\tilde{g}) < 2 \text{ TeV}) \\ m(\tilde{g}) &< 1 \text{ TeV} \ (\forall \ m(\tilde{q}) < 2 \text{ TeV}) \end{split}$$

Lightest squarks are stop/sbottom, gluinos possibly too heavy, gauginos accessible ?

Lower cross-sections and larger SM backgrounds require dedicated searches

Strong & strategic approach by ATLAS

Gluino-mediated \tilde{b}/\tilde{t} production

Direct \tilde{b}/\tilde{t} pair production

Associated gaugino production χ⁰ χ± $\tilde{\chi}_2^0$ $\tilde{\chi}_1^0$ χ^{\pm}

1208.2884, 1208.3144, ATLAS-CONF-2012-154

Direct slepton-pair production

 \rightarrow see backup

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report –

Gluino-mediated stop production

ATLAS-CONF-2012-145, ATLAS-CONF-2012-151

- ATLAS Status Report –

Direct sbottom production (here $2b + E_T^{\text{miss}}$ final state)

ATLAS-CONF-2012-151, ATLAS-CONF-2012-165

LHCC Open Session, 5 Dec 2012

ATLAS Status Report -

Direct stop production, including decays to top + neutralino and b + chargino

Direct stop production features similar final states as top pairs, searches use 0/1/2-lepton final states and depend on sparticle masses and stop decays

New results on 8 TeV 13 fb⁻¹ in 1-L and 2-L final states, optimising for stop \rightarrow top + N and stop \rightarrow b + C decays

LHCC Open Session, 5 Dec 2012

ATLAS-CONF-2012-166. ATLAS-CONF-2012-167

5 papers on 7 TeV:

1208.1447

1208.4305, 1209.2102, 1209.4186, 1208.2590,

Direct stop search - status SUSY-12 workshop

Direct stop search - status LHCC 2012

Direct stop search - status LHCC 2012

Significantly improved sensitivity at high stop mass with exp. limits up to 620 GeV (before 500 GeV) Also, strongly enhanced sensitivity for lower mass stop decaying into b + chargino

Direct stop search - status LHCC 2012

Significantly improved sensitivity at high stop mass with exp. limits up to 620 GeV (before 500 GeV) Also, strongly enhanced sensitivity for lower mass stop decaying into b + chargino There is still room at low mass — remember: our models are simplified

What about Dark Matter ?

Detection of invisible particle production

Should we give up on natural SUSY and directly search for WIMP (dark matter) production in proton-proton collisions ?

Exploit "ISR technique" (huge potential!)

 \rightarrow Search for mono-jets events

1210.4491, ATLAS-CONF-2012-147

extra dimensions, WIMP, gravitinos

LHCC Open Session, 5 Dec 2012

ATLAS Status Report –

What about Dark Matter ?

Detection of invisible particle production

Should we give up on natural SUSY and directly search for WIMP (dark matter) production in proton-proton collisions ?

Exploit "ISR technique" (huge potential!)

 \rightarrow Search for mono-jets events

1210.4491, ATLAS-CONF-2012-147

Complementarity between acceleratorbased and space-based particle physics

LHCC Open Session, 5 Dec 2012

ATLAS Status Report –

ATLAS thoroughly studies signatures for new physics...

Huge variety of models probed, but also model-independent results

		ATLAS Exotics Searches* - 95% CL Lower Limits (Status: HCP 2012)	E
	Large ED (ADD) : monoiet + E		
	Large ED (ADD) : monophoton + E_{-}	$\frac{1}{1-4} \frac{1}{6} \frac{1}{1} \frac{1}{7} \frac{1}{7} \frac{1}{7} \frac{1}{10} \frac{1}{$	
S	Large ED (ADD) : diphoton & dilepton m	$(-47 \text{ fb})^2$ TEV (1911 1150) (1150 418 CV M_0 (HIZ δ =3 NLO) (ATLAS	
00	UED : diphoton + E_{T}	Let 8 th ⁻¹ 7 TeV (ATLAS-CONE-2012-072) 141 TeV Compact scale B ⁻¹ Preliminary	
ISI	S^{1}/Z ED : dilepton m.	$(-4.9.5.0^{\circ})$, $(-7.1eV)$ (1209.2535) 4.71 TeV $M_{\rm ev} \sim R^{-1}$	
lel	RS1 : diphoton & dilepton, m	L=4.7.5.0 fb ⁻¹ , 7 TeV [1210.8389] 2.23 TeV Graviton mass $(k/M_{\rm Pl} = 0.1)$	
Ē	RS1 : ZZ resonance, m	L=1.0 fb ² , 7 TeV (1203.0718) 845 GeV Graviton mass $(k/M_{\rm Pl} = 0.1)$	G
8	RS1 : WW resonance, $m_{T, \text{b.b.}}$	L=4.7 fb ⁻¹ , 7 TeV (1208,2880) 1.23 TeV Graviton mass ($k/M_{cv} = 0.1$) $Ldt = (1.0 - 13.0) \text{ fb}^{-1}$	0
Į,	RS g _w \rightarrow tt (BR=0.925) : tt \rightarrow I+jets, m	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-136] 1.9 TeV 9, mass	
Ω.	ADD BH $(M_{TH}/M_{D}=3)$: SS dimuon, N_{ch} part	L=1.3 fb ⁻¹ , 7 TeV [1111.0080] 1.25 TeV M_0 ($\delta = 6$) Is = 7, 8 TeV	
	ADD BH $(M_{TH}^{T}/M_{D}=3)$: leptons + jets, Σp_{T}^{T}	L=1.0 fb ⁻¹ , 7 TeV [1204.4646] 1.5 TeV M ₀ (δ=6)	
	Quantum black hole : dijet, $F_{i}(m_{i})$	L=4.7 fb ⁻¹ , 7 TeV [1210.1718] 4.11 TeV M_{\odot} (δ =6)	S
	qqqq contact interaction : $\chi(m_{\perp})$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-038] 7.8 TeV A	St
0	qqll CI : ee & μμ, m	L=4.9-5.0 fb ⁻¹ , 7 TeV [1211.1150] 13.9 TeV Λ (constructive int.)	B
-	uutt CI : SS dilepton + jets + $E_{T \text{ miss}}$	L=1.0 fb ⁻¹ , 7 TeV [1202.5520] 1.7 TeV A	14
	Z' (SSM) : m _{oo/uu}	L=5.9.6.1 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-129] 2.49 TeV	
	Z' (SSM) : m	L=4.7 fb ⁻¹ , 7 TeV [1210.6604] 1.4 TeV Z' mass	V
-	W' (SSM) : m _{To(i}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446] 2.55 TeV W' mass	Q
\geq	W' $(\rightarrow tq, g_p=1)$: m_{tq}	L=4.7 fb ⁻¹ , 7 TeV [1209.6593] 430 GeV W' mass	B
	$W'_{B} (\rightarrow tb, SSM) : m_{H}$	L=1.0 fb ⁻¹ , 7 TeV [1205.1016] 1.13 TeV W' mass	T
	$W^*: m_{Te/u}$	L=4.7 fb ⁻¹ , 7 TeV [1209.4446] 2.42 TeV W* mass	D
	Scalar LQ pair (β =1) ; kin. vars. in eeii. evii	L=1.0 fb ⁻¹ , 7 TeV [1112.4828] 660 GeV 1 st gen. LQ mass	
g	Scalar LQ pair (β =1) : kin. vars. in µµjj, µvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172] 685 GeV 2 nd gen. LQ mass	E
	Scalar LQ pair ($\beta=1$) : kin. vars. in $\tau\tau i$, $\tau v j$	L=4.7 fb ⁻¹ , 7 TeV [Preliminary] 538 GeV 3 rd gen. LQ mass	E.
S	4 th generation : t't'→ WbWb	L=4.7 fb ⁻¹ , 7 TeV [1210.5468] 656 GeV t ¹ mass	
ž	4^{th} generation : b'b'($T_{r_0}T_{5/3}$) \rightarrow WtWt	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-130] 670 GeV b' (T) mass	
n	New quark b' : b'b [*] → Žb+X, m _z	L=2.0 fb ⁻¹ , 7 TeV [1204.1265] 400 GeV b' mass	L
6	Top partner : TT \rightarrow tt + A ₀ A ₀ (dilepton, M ₂)	L=4.7 fb ⁻¹ , 7 TeV [1209.4186] 483 GeV T mass (m(A ₂) < 100 GeV)	H
θИ	Vector-like guark : CC, m_{ha}^2	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137] 1.12 TeV VLQ mass (charge -1/3, coupling $\kappa_{n0} = v/m_0$)	
Ž	Vector-like quark : NC, m	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137] 1.08 TeV VLQ mass (charge 2/3, coupling $\kappa_{oQ} = \nu/m_0$)	C
1t. 7	Excited quarks : γ-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580] 2.46 TeV q* mass	C
XC	Excited quarks : dijet resonance, $m_{ii}^{\gamma jet}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148] 3.84 TeV q* mass	
Щ <i>Ф</i>	Excited lepton : I-y resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146] 2.2 TeV I^* mass ($\Lambda = m(I^*)$)	
	Techni-hadrons (LSTC) : dilepton, mee/uu	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535] 850 GeV $\rho_{\rm T}/\omega_{\rm T}$ mass $(m(\rho_{\rm T}/\omega_{\rm T}) - m(\pi_{\rm T}) = M_{\rm m})$	D
	Techni-hadrons (LSTC) : WZ resonance (vIII), m_{TWZ}	L=1.0 fb ⁻¹ , 7 TeV [1204.1648] 483 GeV ρ_{τ} mass $(m(\rho_{\tau}) = m(\pi_{\tau}) + m_{W_{\tau}}, m(a_{\tau}) = 1.1 \overset{W}{m}(\rho_{\tau}))$	
5	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420] 1.5 TeV N mass $(m(W_{p}) = 2 \text{ TeV})$	4
the	W _R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420] 2.4 TeV W _R mass (m(N) < 1.4 TeV)	
0	$H_{L}^{\pm\pm}$ (DY prod., BR($H_{L}^{\pm\pm} \rightarrow II$)=1) : SS ee ($\mu\mu$), m_{μ}	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 409 GeV H ^{±±} _L mass (limit at 398 GeV for μμ)	
	H ^{±±} (DY prod., BR(H ^{±±} →eμ)=1) : SS eμ, m ["]	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 375 GeV H ^L _L mass	
	Color octet scalar : dijet resonance, $\breve{m}_{ m ii}^{ m \mu}$	1.86 TeV [1210.1718] 1.86 TeV	V
			Μ
		10^{-1} 1 10^{-1}	H
		IVIASS SCALE LEV	

Exotics Models:

a dimensions: **RS KK Graviton** (dibosons, dileptons, diphotons) RS KK gluons (top antitop) ADD (monojets, monophotons, dileptons, diphotons) KK Z/gamma boosns (dileptons) nd Unification symmetries (dielectons, dimuons, ditaus) Leptophobic topcolor Z' boson (dilepton ttbar, l+j, all had) color octet scalars (dijets) ng resonance (dijets,) chmark Sequential SM Z', W' lepton+MET, dijets, tb) (lepton+MET, dijets) ntum Black Holes (dijet) k Holes (l+jets, same sign leptons) nnihadrons (dileptons, dibosons) Matter WIMPs (Monojet, monophotons) ited fermions , Excited guarks (dijets, photon+jet) , excited leptons (dileptons+photon) toquarks (1st, 2nd, 3rd generations) s -> hidden sector (displaced vertices, lepton jets) tact Interaction llgg CI 4q CI (dijets) bly charged Higgs (multi leptons, same sign leptons) t'->Wb, t'->ht, b'-Zb, b'->Wt (dileptons, same sign leptons, l+J) -Vector Like quarks netic Monopoles (and HIP)

vy Majorana neutrino and RH W

*Only a selection of the available mass limits on new states or phenomena shown

...and deeply mines SUSY signature and model space

Strong push on naturalness dedicated searches, but also long-lived particles and RPV

os		ATLAS SUSY Searches* - 95% CL Lower Limits (Status: Dec 2012)
. ⊆ .	MSUGBA/CMSSM 0 len + i's + F	
	MSUGRA/CMSSM : 1 lep + i's + $E_{T,miss}$	in the fair latter of the fair of the fa
<u>10</u>	Pheno model : 0 lep + j's + $E_{T mise}$ L=5.8 ft	8 TeV [ATLAS-CONF-2012-109] 1.18 TeV \tilde{g} mass $(m\tilde{g}) < 2$ TeV, light $\tilde{\chi}^0$ ATLAS
يى.	Pheno model : 0 lep + j's + $E_{T.miss}$ L=5.8 ft	الله الله الله الله الله الله الله الل
ω	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q\bar{q}\tilde{\chi}^{\pm}$) : 1 lep + j's + $E_{T \text{ miss}}$ L=4.7 th	7 (b⁻¹, 7 TeV [1208.4688] 900 GeV $\widetilde{\mathbf{g}}$ mass $(m(\widetilde{\chi}_1^0) < 200 \text{ GeV}, m(\widetilde{\chi}^2) = \frac{1}{2}(m(\chi^0) + m(\widetilde{g}))$
S	$\%$ GMSB (ÎNLSP) : 2 lep (OS) + j's + $E_{T,miss}$ L=4.7 ft	7 fb⁻¹, 7 TeV [1208.4688] 1.24 TeV 9 G MASS (tanβ < 15)
ž	GMSB (τ NLSP) : 1-2 τ + 0-1 lep + J'S + E COM (bins NI CD) turn t $\Gamma^{T,miss}$	7 fb⁻¹ , 7 TeV [1210.1314] 1.20 TeV g mass $(tan \beta > 20)$
a	GGIVI (DITIO INLSP) . $\gamma\gamma + E$ GGIVI (DITIO INLSP) . $\gamma\gamma + E$ L=4.8 ft	8 (b) , 7 TeV [1209.0753] 1.07 TeV [g mass $(m(\chi_1) > 50 \text{ GeV})$ $Ldt = (2.1 - 13.0) \text{ fb}^{-1}$
D I	$GGM (higgsing-hing NI SP) : y + b + E^{T,miss}$	8 tb ⁻ , 7 TeV [ATLAS-CONF-2012-144] 619 GeV g mass
Ъ	$GCM (higgsino-bino NEST) : \gamma + b + L$	8 tb ; 7 TeV [1211.1167] 900 GeV (9 TILASS (m(x_i) > 220 GeV) [S = 7, 8 IeV
S	Gravitino I SP : 'monoiet' + E	and be reviewed at the second
	$\tilde{\alpha}_{-} \approx \tilde{\alpha}_{-} $	
<u> </u>	$\vec{\alpha} \rightarrow \vec{t} \vec{x}^{\text{ol}}$ (virtual \vec{t}) : 2 lep (SS) $\pm i$'s $\pm \vec{E}$	L^{1} at L^{1} (L^{1} (L^{1} (L^{1} (L^{1})) L^{1} (L^{1}) L^{1}) L^{1} (L^{1}) L^{1} (L^{1}) L^{1} (L^{1}) L^{1}) L^{1} (L^{1}) L^{1} (L^{1}) L^{1} (L^{1}) L^{1}) L^{1}) L^{1} (L^{1}) L^{1}) L^{1}) L^{1} (L^{1}) L^{1}) L^{1} (L^{1}) L^{1}) L^{1}) L^{1} (L^{1})
	$\vec{q} \rightarrow \vec{t} \vec{r}$ (virtual \vec{t}): 2 lop (00) + j s + $E_{T,miss}$	3.0 fb ⁺ , 8 TeV [ATLAS-CONF-2012-151] 860 GeV G Mass (m(x) < 300 GeV) 8 TeV results
<u>p</u>	$\widetilde{q} \rightarrow \widetilde{t} \widetilde{\chi}$ (virtual \widetilde{t}) : 0 lep + multi-i's + $E_{T,miss}$	8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-103] 1.00 TeV \tilde{g} (mass $(m_{\chi}^{(0)}) < 300$ GeV) 7 ToV results
금	$\tilde{\sigma} \rightarrow \tilde{\tau}$ $\tilde{g} \rightarrow \tilde{t} \tilde{\chi}^{0}$ (virtual \tilde{t}) : 0 lep + 3 b-j's + $E_{T min}$	2.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145] <u>1,15 TeV</u> <u>ğ</u> mass (m ⁽ ζ ⁰) < 200 GeV)
S I	$\widetilde{bb}, \widetilde{b}, \rightarrow b\widetilde{\chi}^0$: 0 lep + 2-b-jets + $E_{T \text{ miss}}$ L=12.81	2.8 fb ¹ , 8 TeV [ATLAS-CONF-2012-165] 620 GeV b mass (m(x ⁰ ₂) < 120 GeV)
-	$\widetilde{b}\widetilde{b}, \widetilde{b}_1 \rightarrow t \widetilde{\chi}^{\pm}_1: 3 \text{ lep } + j's + E_{T,miss}$ L=13.01	3.0 fb⁻¹, 8 TeV [ATLAS-CONF-2012-151] 405 GeV b mass $(m(\widetilde{\chi}_1^{+}) = 2 m(\widetilde{\chi}_1^{0}))$
	$\underbrace{1}_{2} \underbrace{1}_{2} \underbrace{1}_{2} \underbrace{1}_{2} \underbrace{1}_{2} \operatorname{lep} (+ b \operatorname{-jet}) + E_{T, \text{miss}} \underbrace{L=4.7 \text{ ft}}_{L=4.7 \text{ ft}}$	7 tb⁻¹, 7 TeV [1208.4305, 1209.2102]67 GeV t mass $(m_{\tilde{k}_{1}}^{*}) = 55 \text{ GeV}$
D	$\widetilde{a} = 0$ tt (medium), $t \rightarrow b\chi^{-1}$: 1 lep + b-jet + $E_{T,miss}$ L=13.01	3.0 fb ³ , 8 TeV [ATLAS-CONF-2012-166] 160-350 GeV t mass $(m(\chi) = 0 \text{ GeV}, m(\chi) = 150 \text{ GeV})$
	L=13.01	3.0 ft ⁽⁷⁾ , 8 TeV [ATLAS-CONF-2012-167] 160-440 GeV [TIBSS $(m(\chi_1) = 0 \text{ GeV}, m(\eta_1)-m(\chi_1) = 10 \text{ GeV})$
2	$\begin{array}{c} \text{II, } I \rightarrow I\chi, \text{ I } \text{ Iep + D-Jet + } E_{T,\text{miss}} \end{array} $	3.0 tr , 8 lev (AILAS-CONF-2012-166) 230-360 GeV trillas ($m_{\chi}^{(2)} = 0$)
\sim	$\mathfrak{m} = \mathfrak{m}$ $\mathfrak{m} \mathfrak{m} \mathfrak{m} \mathfrak{m} \mathfrak{m} \mathfrak{m} \mathfrak{m} \mathfrak{m} $	10^{-3} , 10^{-1} (1206,1947,1206,293,1205,4100) 200-400 GeV (111035 ($m(\chi) = 0$) 10^{-3} , 710^{-1} (1206,1947,6120) 200,201 (111035 ($m(\chi) = 0$)
	$1111 \rightarrow \sqrt{2} 2 \ln t = T, \text{miss}$	10^{-1} (1902) (1902) (1902) (1902) (19
\geq	$\gtrsim 5$ $\tilde{\chi}^+ \tilde{\chi}^- \tilde{\chi}^+ \rightarrow \tilde{V}(\tilde{V}) \rightarrow \tilde{V}\tilde{\chi}^ 2 \text{ lep } + E$ $L=4.7 \text{ ft}$	$T_{10}^{(1)}$, 7 TeV [1208.2884] 110 .340 GeV $\widetilde{T}_{10}^{(2)}$ (mGS) $(m\widetilde{\chi}_{1}) = \frac{1}{4}(m\widetilde{\chi}_{1}^{2}) + m\widetilde{\chi}_{1}^{(0)})$
ω I	$\widetilde{\mathcal{L}} = \widetilde{\chi}^{\pm} \widetilde{\chi}_{\perp}^{\pm} \rightarrow \widetilde{I}, \forall \widetilde{I}, (\widetilde{\gamma} \vee), \widetilde{\nabla}\widetilde{I}, (\widetilde{\gamma} \vee) : 3 \text{ lep } + E_{\perp} \text{ L=13.01}$	3.0 fb⁺, 8 TeV [ATLAS-CONF-2012-154] 50 GeV $\tilde{\chi}^{\pm}$ mass $(m(\tilde{\chi}^{\pm}) = m(\tilde{\chi}^{0}), m(\tilde{\chi}^{-}) = 0, m(\tilde{\chi})$ as above)
_	$\chi^{1/2}_{2} \widetilde{\chi}^{\pm} \widetilde{\chi}^{0} \rightarrow W^{(*)} \widetilde{\chi}^{0} Z^{(*)} \widetilde{\chi}^{0} : 3 \text{ lep } + E_{T \text{ mino}}^{T, \text{miss}}$ L=13.01	3.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-154] 140-295 GeV $\tilde{\chi}^{\pm}_{z}$ mass $(m_{\chi}^{\pm}) = m_{\chi}^{(0)}, m_{\chi}^{(0)} = 0$, sleptons decoupled)
	Direct χ^{\pm} pair prod. (AMSB) : long-lived χ^{\pm} L=4.7 ft	7 fb⁻¹, 7 TeV [1210.2852] 220 GeV $\tilde{\chi}^{\pm}_{\pm}$ mass $(1 < \tau(\tilde{\chi}^{\pm}_{\pm}) < 10 \text{ ns})^2$
<u>م</u>	Stable g̃ R-hadrons : low β, βγ (full detector)	7 fb ⁻¹ , 7 TeV [1211.1597] 985 GeV g mass
	$b_{0} = b_{1} + b_{2}$ Stable \tilde{t} R-hadrons : low β, βγ (full detector) L=4.7 ft	7 fb ⁻¹ , 7 TeV [1211.1597] 683 GeV t mass
_	GMSB : stable ₹ L=4.7 ft	7 fb⁻¹ , 7 TeV [1211.1597] 300 GeV $\vec{\tau}$ TMASS (5 < tan β < 20)
_	$\chi \rightarrow qq\mu$ (RPV) : μ + heavy displaced vertex $L=4.4$ ft	4 (b', 7 TeV [1210.7451] 700 GeV q Mass (0.3×10 [°] < λ ₂₁₁ < 1.5×10 [°] , 1 mm < ct < 1 m, g decoupled)
	LFV : pp $\rightarrow v_{\tau} + X$, $v_{\tau} \rightarrow e + \mu$ resonance L=4.6 ft	6 fb , 7 TeV [Preliminary] 1.6 if TeV V_{π} mass $(\lambda_{31}=0.10, \lambda_{132}=0.05)$
$\overline{\mathbf{O}}$	LFV: $pp \rightarrow v_{\tau} + X$, $v_{\tau} \rightarrow e(\mu) + \tau$ resonance L=4.6 m Bilinear BPV CMSSM : 1 lop + 7 i's + F	
	$\widetilde{\alpha}^{\dagger}\widetilde{\alpha}^{\dagger}\widetilde{\alpha}^{\dagger} \rightarrow W\widetilde{\alpha}^{0}\widetilde{\alpha}^{0} \rightarrow \Theta \psi$ every 4 len + F	$\frac{1}{10} \frac{1}{10} \frac{1}{100} \frac{1}{1$
	$\chi_{1}\chi_{1}\chi_{1}$	$\frac{1}{2} \frac{1}{10} $
	$\widetilde{q} \rightarrow qqq$ 3-jet resonance pair $L=4.6$ ft	6 fb ⁻¹ , 7 TeV [1210.4813] 666 GeV ĝ mass
โม โ	Scalar gluon : 2-jet resonance pair L=4.6 ft	.6 fb ⁻¹ , 7 TeV [1210.4826] 100-287 GeV Sgluon Mass (incl. limit from 1110.2693)
ž	WIMP interaction (D5, Dirac χ): 'monojet' + $E_{T \text{ miss}}$	0.5 fb⁻¹, 8 TeV [ATLAS-CONF-2012-[147] 704 GeV M [*] βCale (m _χ < 80 GeV, limit of < 687 GeV for D8)
<u>T</u>		
0		10 ⁻¹ 1 10

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Mass scale [TeV]

Summary I attempted a (necessarily incomplete) overview of the ATLAS status and recent physics highlights after 3 years of running

- The accelerator (thanks to the LHC team!) and ATLAS detector are continuously delivering data of excellent quality and efficiency;
 88% of the delivered luminosity is included in our physics results
- We strive to further improve the detector understanding and to cope with the pileup exceeding expectations
- The 2011 and 2012 data samples provide huge opportunities in all areas of the LHC physics programme
- ATLAS, as well as the other LHC experiments, has proven to deliver highquality analyses. Fully exploiting the available data will engage the collaborations for years, and engages the theorists to continue improving MC tools allowing us to exploit our data for precision measurements and searches
- Measuring the properties of the new particle is a central pillar of the ATLAS physics programme. It needs all the prerequisites mentioned above. The Higgs-like boson also re-emphasises the importance of our searches
- Physics beyond the SM did not show up yet. There is no need for preliminary conclusions. Let's continue our work and look were we haven't looked so far

LHCC Open Session, 5 Dec 2012

- ATLAS Status Report —

Extra slides...

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report –

LS1 and more

LS1 consolidation and upgrade work

- New Insertable Pixel *B*-layer (IBL)
 [installation either on surface (preferred) or in situ / decision end of Jan 2013]
- New Pixel service quarter panels (nSQP) [if IBL installed on surface]
- New ID evaporative cooling plant
- New Al forward beam pipe
- New calorimeter LVPS
- Consolidation of other detectors and infrastructure
- Complete muon spectrometer (EE, RPC, feet)
- Add specific muon shielding
- Upgrade magnet cryogenics
- Detector readout for Level-1 100 kHz rate

Towards the Phase-1 upgrade

- Lol submitted Marc 2012 / received strong support from LHCC
- Work for TDRs in full swift: four (new μ SW, FTK, LAr+Tiles, TDAQ) expected to be completed in 2013, AFP in 2014

Integrated Simulation Framework (ISF) developments

Need to increase simulation flexibility to cope with vast MC needs: ~4B events / year [some fits, eg, W mass templates, require 10⁸ events per parameter setting]

Several analyses MC stat. limited (eg, $H \rightarrow bb$, searches), all would benefit from more MC ISF allows to mix into detector regions by particle type and dynamically per event:

- Full simulation (Geant4)
- Calorimeter shower parametrisation (FastCaloSim)
- Fast track simulation (Fatras)
- and possible future technologies

MC sample for $gg \rightarrow H \rightarrow \gamma\gamma$ (no pileup)ISF exec
time/eventSpeed-
up factorFull Geant4 (G4)560 s1ATLFAST-2
(G4 + FastCaloSim)25 s~25ATLAST-2-F0.75750

0.75 s

FastGamma		
(ATLFAST-2-F with	0.18 s	~3000
oartial sim. only)		

ATLAS Status Report —

(ATLFAST-2 + Fatras)

~750

LHCC Open Session, 5 Dec 2012

Forward detectors: ALFA 2 LHC fills at $\beta^* = 1$ km run on Oct 24/25

- De-squeeze to $\beta^* = 1$ km in ~45 min
- Repeated scraping with primary collimators to 2σ , followed by retraction to 2.5σ to reduce backgrounds
- About 10 h data taking with Roman Pots at 3 σ , about 0.85 mm distance to beam centers
- About 300k elastic events and many diffractive triggers recorded

 $t_{\rm min} \sim 0.0005 \ {\rm GeV^2}$: first measurement in the Coulomb-Nuclear interference region

Beam induced backgrounds (BIB)

Measured with various subdetectors, monitored throughout the year

BIB rates low in 2012 as in 2011

No significant change between years

BIB can nevertheless be harmful in searches

- Relatively loose cleaning applied everywhere
- Tighter cleaning in, eg, monojet analysis: require minimum charge and EM fractions for jets

10

ATLAS Preliminary E_{Beam} 3.5 TeV

0.2

0.3

0.4

 10^{7}

 10^{6}

10⁵

10⁴

 10^{3}

10²

10

1₀

0.1

Events

ATLAS Status Report

W and Z physics – differential measurements

Large statistics allows precise tests of generators/theory, PDFs and bkg to searches

1211.<u>6899</u>

Measurement of Z/γ ϕ_{η}^{*} distribution

- ϕ_{η}^{*} is measure of scattering angle of leptons wrt. z in Z/y rest frame
- Depends on lepton angles only, more precisely measured than momenta
- ϕ_{η}^* correlated to $p_{T,Z}/m_{ll}$ \rightarrow probes same physics

ResBos provides best description (within 4%), large deviations for POWHEG / MC@NLO

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report –

Diboson physics: WW, WZ, ZZ, $W\gamma$, $Z\gamma$, $\gamma\gamma$

ATLAS performed total, fiducial & differential diboson cross-sections measurements

See last week's ATLAS diboson seminar by Shih-Chieh Hsu: http://indico.cern.ch/conferenceDisplay.py?confld=218398

1211.1913

Examples for differential cross section measurements: $\gamma\gamma$ (7 TeV, 4.9 fb⁻¹)

Powerful test of perturbative QCD and quark fragmentation

"Direct" quark annihilation (dominant: $O(\alpha^2)$)

Collinear fragmentation, $O(\alpha^2 \alpha_s)$, but non-isolated γ

Box diagram, $O(\alpha^2 \alpha_s^2)$, but due to gg luminosity comparable to LO terms

LHCC Open Session, 5 Dec 2012

Diboson physics: WW, WZ, ZZ, $W\gamma$, $Z\gamma$, $\gamma\gamma$

ATLAS performed total, fiducial & differential diboson cross-sections measurements

See last week's ATLAS diboson seminar by Shih-Chieh Hsu: http://indico.cern.ch/conferenceDisplay.py?confld=218398

1211.1913

Examples for differential cross section measurements: $\gamma\gamma$ (7 TeV, 4.9 fb⁻¹)

Powerful test of perturbative QCD and quark fragmentation

"Direct" quark annihilation (dominant: $O(\alpha^2)$)

Collinear fragmentation, $O(\alpha^2 \alpha_5)$, but non-isolated γ

Box diagram, $O(\alpha^2 \alpha_s^2)$, but due to gg luminosity comparable to LO terms

q

a

Understanding top pair production at the LHC

Top pairs in association with jets probe ISR/FSR activity

ATLAS-CONF-2012-155, see also: 1203.5015

Rapidity gap fraction^(*) measurements vs. |y| help to assess uncertainties related to ISR/FSR ALPGEN+PYTHIA α_s up/down variations used in *tt* differential cross section measurement

Satisfying description for |y| < 1.5, but for large |y| too much jet activity predicted

 Q_0 is the fraction of events with no additional jet radiated within a considered rapidity interval

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report –

ATLAS mines its data for new physics in events with leptons ...

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report –

ATLAS mines its data for new resonances with leptons

Many other searches, for example: dilepton, like-sign dilepton, lepton- γ resonances

Dilepton resonance search: $m(Z'_{SSM}) < 2.49 \text{ TeV}$ (95% CL, 6.1 fb⁻¹) ATLAS-CONF-2012-129

1210.4538, 1210.5070, 1210.8389

Doubly charged Higgs gives rise to a narrow like-sign resonance (left) RS bulk graviton with strong coupling to SM can decay to a photon pair (right)

LHCC Open Session, 5 Dec 2012

ATLAS Status Report –

ATLAS mines its data for new physics in events with leptons ... searching for compositeness w/ excited leptons in $ll^* \rightarrow ll + \gamma$

ATLAS-CONF-2012-146

For compositeness scale $\Lambda = m(l^*)$: exclude excited leptons below 2.2 TeV at 95% CL

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report —

ATLAS mines its data for diboson resonances

Search for narrow resonance decaying to ZZ ($\rightarrow llqq$)

RS graviton with $\kappa/m_{\rm Pl}$ = 1.0 excluded below 850 GeV with 95% CL

LHCC Open Session, 5 Dec 2012

- ATLAS Status Report —

ATLAS mines its data for diboson resonances

Search for narrow resonance decaying to $W\gamma$ or $Z\gamma$

Limits obtained on fiducial cross-sections of narrow resonances. Low scale TC

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report –

Preliminary

Once mass spectrum fixed, all cross-sections predicted

Spin structure of SUSY spectrum: lower σ than other BSM models, harder to find !

Also: dedicated searches for SUSY with long-lived particles and *R*-parity violation

Recent (Oct 23) ATLAS seminar by Nick Barlow reviewing results on long-lived particle searches with ATLAS

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report -

Inclusive squark and gluino searches Complete "jets + X + E_T^{miss} " programme, for example: GM

Gauge-mediated SUSY breaking scenarios feature very light gravitino. Phenomenology determined by nature of next-to-LSP

Dedicated search programme including final states with E_T^{miss} + taus, dilepton (Z & non-Z), diphotons, photon + lepton, photon + b

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report -

Are squarks & gluinos too heavy to be produced at 8 TeV ? Look at EW production !

1208.2884, 1208.3144, ATLAS-CONF-2012-154

Dedicated searches for EW slepton/gaugino production in multilepton final states published this summer; 8 TeV 13 fb⁻¹ update of 3-*L* search

Interpretation in simplified models but also in a phenomenological MSSM model (less "naïve")

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report –

R-parity violating SUSY scenarios

Decays of LSP in RPV models can lead to many leptons, many jets, resonances

ATLAS-CONF-2012-153, Preliminary, 1210.4813

Dedicated research programme designed to assess extremely broad RPV phenomenology

LHCC Open Session, 5 Dec 2012

– ATLAS Status Report -

What about Dark Matter ?

Limits on WIMP production assuming high-scale contact interaction

Limit on WIMP pair production cross-section can be transformed into limit on effective WIMPhadronic contact interaction:

Vector (SI):
$$(\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}q)\cdot\Lambda^{-2}$$

Axial-v. (SD): $(\overline{\chi}\gamma_{\mu}\gamma^{5}\chi)(\overline{q}\gamma^{\mu}\gamma^{5}q)\cdot\Lambda^{-2}$

1210.4491, ATLAS-CONF-2012-147

- ATLAS Status Report —

Monojet analysis as search for gravitino production

Same signature as WIMP production, but not ISR search (similar to ADD)

ATLAS-CONF-2012-147

In GM SUSY, gravitino LSP with mass related to SUSY breaking scale At LHC with low-scale SUSY breaking, direct \tilde{G} + \tilde{q} or \tilde{G} + \tilde{g} production can dominate. Cross-section ~ $1/m^2(\tilde{G})$

Lower limits on gravitino mass as function of squark/gluino masses

Improves existing limits by O(magnitude)

LHCC Open Session, 5 Dec 2012

- ATLAS Status Report —