RF Cavity Design

Erk Jensen

CERN BE/RF

CERN Accelerator School
Accelerator Physics (Advanced level)
Trondheim 2013

Overview

- DC versus RF
 - Basic equations: Lorentz & Maxwell, choice of frequency, RF breakdown, breakdown rate
- Some theory: from waveguide to pillbox
 - rectangular waveguide, waveguide dispersion, group and phase velocity, modes, equations, standing waves ... waveguide resonators, round waveguides, Pillbox cavity
- Accelerating gap
 - Principle, ferrite cavity, Finemet® cavity, drift tube linac
- Characterizing a cavity
 - Accelerating voltage, transit time factor
 - Resonance frequency, shunt impedance,
 - Beam loading, loss factor, RF to beam efficiency,
 - Transverse effects, Panofsky-Wenzel, higher order modes, PS 80 MHz cavity (magnetic coupling)
- More examples of cavities
 - PEP II, LEP cavities, PS 40 MHz cavity (electric coupling),
- Many gaps
 - Why?
 - Example: side coupled linac, LIBO
- Travelling wave structures
 - Brillouin diagram, iris loaded structure, waveguide coupling
- Superconducting Accelerating Structures
 - RF superconductivity, elliptical multi-cell cavity, low- β geometries, cryomodule
- Cavity fabrication techniques
 - Materials (Cu, Nb)
 - Forming techniques
 - joining techniques
 - Specific techniques developed for SCRF

DC VERSUS RF

CAS Trondheim 2013 — RF Cavity Design

3

DC versus RF

DC accelerator

RF accelerator

Lorentz force

- A charged particle moving with velocity $\vec{v} = \frac{\vec{p}}{m\gamma}$ through an electromagnetic field experiences a force $\frac{d\vec{p}}{dt} = q(\vec{E} + \vec{v} \times \vec{B})$.
- The total energy of this particle is $W=\sqrt{(mc^2)^2+(pc)^2}=\gamma\ mc^2$, the kinetic energy is $W_{kin}=mc^2(\gamma-1)$.
- The role of acceleration is to increase W.
- Change of W (by differentiation):

$$WdW = c^{2}\vec{p} \cdot d\vec{p} = qc^{2}\vec{p} \cdot (\vec{E} + \vec{v} \times \vec{B})dt = qc^{2}\vec{p} \cdot \vec{E}dt$$
$$dW = q\vec{v} \cdot \vec{E}dt$$

Note: Only the electric field can change the particle energy!

CAS Trondheim 2013 — RF Cavity Design

ļ

Maxwell's equations (in vacuum)

$$\nabla \times \vec{B} - \frac{1}{c^2} \frac{\partial}{\partial t} \vec{E} = \mu_0 \vec{J} \qquad \nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} + \frac{\partial}{\partial t} \vec{B} = 0 \qquad \nabla \cdot \vec{E} = \mu_0 c^2 \rho$$

1. Why not DC?

DC (
$$\frac{\partial}{\partial t}\equiv 0$$
): $\nabla imes \vec{E}=0$, which is solved by $\vec{E}=-\nabla \Phi$

Limit: If you want to gain 1 MeV, you need a potential of 1 MV!

2. Circular machine: DC acceleration impossible since $\oint \vec{E} \cdot d\vec{s} = 0$ With time-varying fields:

$$abla imes \vec{E} = -rac{\partial}{\partial t} \vec{B}, \quad \oint \vec{E} \cdot d\vec{s} = -\iint rac{\partial \vec{B}}{\partial t} \cdot d\vec{A}.$$

Maxwell's equations in vacuum (contd.)

Source-free:

$$\nabla \times \vec{B} - \frac{1}{c^2} \frac{\partial}{\partial t} \vec{E} = 0$$
 $\nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} + \frac{\partial}{\partial t} \vec{B} = 0$ $\nabla \cdot \vec{E} = 0$

curl (rot, $\nabla \times$) of 3rd equation and $\frac{\partial}{\partial t}$ of 1st equation:

$$\nabla \times \nabla \times \vec{E} + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0.$$

Using the vector identity $\nabla \times \nabla \times \vec{E} = \nabla \nabla \cdot \vec{E} - \Delta \vec{E}$ and the 4th Maxwell equation, this yields:

$$\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0,$$

i.e. the 4-dimensional Laplace equation.

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

.

Choice of frequency

- Size:
 - Linear dimensions scale as f^{-1} , volume as f^{-3} .
 - amount of material, mass, stiffness, tolerances, ...
 - Outer radius of elliptical cavity $\sim 0.45 \lambda$.
- Beam interaction:
 - -r/Q increases with f but also for HOMs!
 - short bunches are easier with higher f.
- Technology:
 - superconducting: BCS resistance $\propto f^2$.
 - Power sources available?
 - Max. accelerating voltage?

Breakdown limit – f-dependence

surface field, in vacuum, Cu surface, room temperature

Note: More recent experimental data show much less f-dependence!

E.g.: http://prl.aps.org/abstract/PRL/v90/i22/e224801

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

(

Breakdown rate!

- In an accelerator with many structures, the breakdown rate (BDR) must be much smaller than the number of structures.
- E.g.: CLIC target $3 \cdot 10^{-7} \text{m}^{-1}$ (results in 1% for 30 km)
- Empirically, the breakdown rate can be described with the

dependence $BDR{\sim}e^{\frac{{\varepsilon_0}E^2\Delta V - E_f}{k_bT}}$, where

- E_f : **formation energy** required to form a dislocation (void),
- ΔV : the volume change due to the dislocation.
- This is a very steep

 dependence on the surface field

FROM WAVEGUIDE TO PILLBOX

CAS Trondheim 2013 — RF Cavity Design

1

Homogeneous plane wave

$$\begin{split} \vec{E} &\propto \vec{u}_y \cos(\omega t - \vec{k} \cdot \vec{r}) \\ \vec{B} &\propto \vec{u}_x \cos(\omega t - \vec{k} \cdot \vec{r}) \\ \vec{k} \cdot \vec{r} &= \frac{\omega}{c} (z \cos \varphi + x \sin \varphi) \end{split}$$

Wave vector \vec{k} :

the direction of \vec{k} is the direction of propagation,

the length of \vec{k} is the phase shift per unit length.

 $ec{k}$ behaves like a vector.

Wave length, phase velocity

• The components of \vec{k} are related to the wavelength in the direction of that component as $\lambda_Z = \frac{2\pi}{k_Z}$ etc. , to the phase velocity as $v_{\varphi,Z} = \frac{\omega}{k_Z} = f \lambda_Z$.

Superposition of 2 homogeneous plane waves

This way one gets a hollow rectangular waveguide

Rectangular waveguide

Fundamental (TE₁₀ or H₁₀) mode in a standard rectangular waveguide.

Example: "S-band": 2.6 GHz ... 3.95 GHz,

Waveguide type WR284 (2.84" wide), dimensions: 72.14 mm x 34.04 mm.

Operated at f = 3 GHz.

power flow: $\frac{1}{2} \operatorname{Re} \left\{ \iint \vec{E} \times \vec{H}^* \cdot d\vec{A} \right\}$

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

15

Waveguide dispersion

What happens with different waveguide dimensions (different width a)?

a = 52 mm, $f/f_c = 1.04$

2:
$$a = 72.14 \text{ mm},$$
 $f/f_c = 1.44$

a = 144.3 mm, $f/f_c = 2.88$

26-Aug-2013

cutoff

CAS Trondheim 2013 — RF Cavity Design

Phase velocity

The phase velocity is the speed with which the crest or a zero-crossing travels in zdirection.

Note on the three animations on the right that, at constant f, it is $\propto \lambda_g$. Note that at $f = f_{c'} v_{\varphi,z} = \infty!$ With $f \to \infty$, $v_{\varphi,z} \to c!$

a = 72.14 mm, $f/f_c = 1.44$

a = 144.3 mm, $f/f_c = 2.88$

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

Summary waveguide dispersion and phase velocity:

In a general cylindrical waveguide:

$$\gamma = j \sqrt{\left(\frac{\omega}{c}\right)^2 - k_{\perp}^2}$$

$$Z_0 = \frac{j\omega\mu}{\gamma} \text{ for TE}, \quad Z_0 = \frac{\gamma}{j\omega\varepsilon} \text{ for TM}$$

$$k_z = \operatorname{Im}\{\gamma\} = \frac{2\pi}{\lambda_g}$$

e.g.: TE₁₀-wave in rectangular waveguide:

$$\gamma = j\sqrt{\left(\frac{\omega}{c}\right)^2 - \left(\frac{\pi}{a}\right)^2}$$

$$Z_0 = \frac{j\omega\mu}{\gamma}$$

$$\lambda_{\text{cutoff}} = 2a$$

In a hollow waveguide: phase velocity > *c*, group velocity < *c*

Rectangular waveguide modes

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

19

Radial waves

Also radial waves may be interpreted as superposition of plane waves. The superposition of an outward and an inward radial wave can result in the field of a round hollow waveguide.

CAS Trondheim 2013 — RF Cavity Design

26-Aug-2013

26-Aug-2013

21

General waveguide equations:

Transverse wave equation (membrane equation): $\Delta T + \left(\frac{\omega_c}{c}\right)^2 = 0$.

	TE (or H-) modes	TM (or E-) modes
Boundary condition:	$\vec{n} \cdot \nabla T = 0$	T = 0
longitudinal wave equations (transmission line equations):	$\frac{\mathrm{d}U(z)}{\mathrm{d}z} + \gamma Z_0 I(z) = 0$ $\frac{\mathrm{d}I(z)}{\mathrm{d}z} + \frac{\gamma}{Z_0} U(z) = 0$	
Propagation constant:	$\gamma = j \frac{\omega}{c} \sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}$	
Characteristic impedance:	$Z_0 = \frac{\mathrm{j}\omega\mu}{\gamma}$	$Z_0 = \frac{\gamma}{\mathrm{j}\omega\varepsilon}$
Ortho-normal eigenvectors:	$\vec{e} = \vec{u}_z \times \nabla T$	$\vec{e} = -\nabla T$
Transverse fields:	$\vec{E} = U(z)\vec{e}$ $\vec{H} = I(z)\vec{u}_z \times \vec{e}$	
Longitudinal fields:	$H_z = \left(\frac{\omega_c}{\omega}\right)^2 \frac{T \ U(z)}{\mathrm{j}\omega\mu}$	$E_z = \left(\frac{\omega_c}{\omega}\right)^2 \frac{T I(z)}{\mathrm{j}\omega\varepsilon}$

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

23

Special cases: rectangular and round waveguide

Rectangular waveguide: transverse eigenfunctions

TE (H-) modes:	$T_{mn}^{(H)} = \frac{1}{\pi} \sqrt{\frac{a b \varepsilon_m \varepsilon_n}{(mb)^2 + (na)^2}} \cos\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right)$
TM (E-) modes:	$T_{mn}^{(E)} = \frac{2}{\pi} \sqrt{\frac{a b}{(mb)^2 + (na)^2}} \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right)$

$$\frac{\omega_c}{c} = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$$

Round waveguide: transverse eigenfunctions

TE (H-) modes:
$$T_{mn}^{(H)} = \sqrt{\frac{\varepsilon_m}{\pi(\chi_{mn}'^2 - m^2)}} \frac{J_m\left(\chi_{mn}'\frac{\rho}{a}\right)}{J_m(\chi_{mn}')} \begin{Bmatrix} \cos(m\varphi) \\ \sin(m\varphi) \end{Bmatrix}$$

$$T_{mn}^{(E)} = \sqrt{\frac{\varepsilon_m}{\pi}} \frac{J_m\left(\chi_{mn}\frac{\rho}{a}\right)}{J_{m-1}(\chi_{mn})} \begin{Bmatrix} \sin(m\varphi) \\ \cos(m\varphi) \end{Bmatrix}$$

$$\frac{\omega_c}{c} = \frac{\chi_{mn}}{a}$$

where in both cases $\varepsilon_i = \begin{cases} 1 & \text{if } i = 0 \\ 2 & \text{if } i \neq 0 \end{cases}$

Waveguide perturbed by notches

Reflections from notches lead to a superimposed standing wave pattern. "Trapped mode"

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

25

Short-circuited waveguide

26-Aug-2013

Single WG mode between two shorts

Eigenvalue equation for field amplitude a:

$$a = e^{-jk_z 2\ell}a$$

Non-vanishing solutions exist for $2k_z\ell=2\pi m$:

With
$$k_z=rac{\omega}{c}\sqrt{1-\left(rac{\omega_c}{\omega}
ight)^2}$$
, this becomes $f_0^2=f_c^2+\left(crac{m}{2\ell}
ight)^2$.

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

27

Simple pillbox

(only 1/2 shown)

electric field (purely axial)

magnetic field (purely azimuthal)

Pillbox cavity field (w/o beam tube)

$$T(\rho, \varphi) = \sqrt{\frac{1}{\pi}} \frac{J_0\left(\frac{\chi_{01}\rho}{a}\right)}{\chi_{01} J_1\left(\frac{\chi_{01}}{a}\right)} \quad \chi_{01} = 2.40483...$$

The only non-vanishing field components:

$$E_{z} = \frac{1}{\mathrm{j}\omega\varepsilon_{0}} \frac{\chi_{01}}{a} \sqrt{\frac{1}{\pi}} \frac{\mathrm{J}_{0}\left(\frac{\chi_{01}\rho}{a}\right)}{a\mathrm{J}_{1}\left(\frac{\chi_{01}}{a}\right)}$$

$$B_{\varphi} = \mu_{0} \sqrt{\frac{1}{\pi}} \frac{\mathrm{J}_{1}\left(\frac{\chi_{01}\rho}{a}\right)}{a\mathrm{J}_{1}\left(\frac{\chi_{01}}{a}\right)}$$

$$\left. \begin{array}{l} \left. \left. \left. \left(\frac{\alpha_0}{a} \right) \right|_{pillbox} \right. = \frac{\chi_{01} c}{a} \quad \eta = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 377 \,\Omega \\ \left. \left(\frac{Q}{a} \right) \right|_{pillbox} = \frac{\sqrt{2a \eta \sigma \chi_{01}}}{2\left(1 + \frac{a}{h}\right)} \\ \left. \left(\frac{R}{Q} \right) \right|_{pillbox} = \frac{4\eta}{\chi_{01}^3 \pi \, J_1^2(\chi_{01})} \frac{\sin^2(\frac{\chi_{01}}{2} \frac{h}{a})}{h/a} \end{array} \right.$$

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

Pillbox with beam pipe

TM₀₁₀-mode

(only 1/4 shown)

One needs a hole for the beam pipe – circular waveguide below cutoff

magnetic field

A more practical pillbox cavity

Round of sharp edges (to reduce field enhancement!)

TM₀₁₀-mode (only 1/4 shown)

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

31

ACCELERATING GAP

Accelerating gap

- We want a voltage across the gap!
- It cannot be DC, since we want the beam tube on ground potential.

• Use
$$\oint \vec{E} \cdot d\vec{s} = -\iint \frac{d\vec{B}}{dt} \cdot d\vec{A}$$

- The "shield" imposes a
 - upper limit of the voltage pulse duration or – equivalently –
 - a lower limit to the usable frequency.
- The limit can be extended with a material which acts as "open circuit"!
- Materials typically used:
 - ferrites (depending on f-range)
 - magnetic alloys (MA) like Metglas®,
 Finemet®, Vitrovac®...
- resonantly driven with RF (ferrite loaded cavities) – or with pulses (induction cell)

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

33

Ferrite cavity

Finemet® Cavity

- Finemet® is a magnetic alloy exhibiting wideband frequency response and large magnetic field saturation level; it allows building wide-band cavities.
- Compared to ferrite cavities, no bias is needed!
- Example: the CERN PSB 5-gap system:

Single Finemet® ring on its cooling plate

5 gap prototype .

... installed in PSB ring 4

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

35

Gap of PS cavity (prototype)

Drift Tube Linac (DTL) – how it works

For slow particles! E.g. protons @ few MeV

The drift tube lengths can easily be adapted.

electric field

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

Drift tube linac – practical implementations

CHARACTERIZING A CAVITY

CAS Trondheim 2013 — RF Cavity Design

39

Acceleration voltage & R-upon-Q

I define $V_{acc}=\int E_z e^{\mathrm{j}\frac{\omega}{\beta c}z}\mathrm{d}z$. The exponential factor accounts for the variation of the field while particles with velocity βc are traversing the gap (see next page).

With this definition, V_{acc} is generally complex – this becomes important with more than one gap. For the time being we are only interested in $|V_{acc}|$.

Attention, different definitions are used!

The square of the acceleration voltage is proportional to the stored energy W . The proportionality constant defines the quantity called \emph{R} -upon- \emph{Q} :

$$\frac{R}{Q} = \frac{\left|V_{acc}\right|^2}{2\,\omega_0 W}$$

Attention, also here different definitions are used!

Transit time factor

The transit time factor is the ratio of the acceleration voltage to the (non-physical) voltage a particle with infinite velocity would see.

$$TT = \frac{|V_{acc}|}{\left|\int E_z dz\right|} = \frac{\left|\int E_z e^{j\frac{\omega}{\beta c}z} dz\right|}{\left|\int E_z dz\right|}$$

The transit time factor of an ideal pillbox cavity (no axial field dependence) of height (gap length) *h* is:

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

4

Shunt impedance

The square of the acceleration voltage is proportional to the power loss P_{loss} . The proportionality constant defines the quantity "shunt impedance"

$$R = \frac{\left|V_{acc}\right|^2}{2 P_{loss}}$$

Attention, also here different definitions are used!

Traditionally, the shunt impedance is the quantity to optimize in order to minimize the power required for a given gap voltage.

Cavity resonator - equivalent circuit

Simplification: single mode

R: Shunt impedance

 $\sqrt{\frac{L}{C}}$: R-upon-Q

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

43

Resonance

Reentrant cavity

Nose cones increase transit time factor, round outer shape minimizes losses.

Nose cone example Freq = 500.003

Example: KEK photon factory 500 MHz

- R probably as good as it gets -

this cavity	optimized
	pillbox
111 Ω	107.5 Ω
44270	41630

Q: R: $4.9 \,\mathrm{M}\Omega$ $4.47~\mathrm{M}\Omega$

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

R/Q:

45

Loss factor

Impedance seen by the beam

$$k_{loss} = \frac{\omega_0}{2} \frac{R}{Q} = \frac{|V_{gap}|^2}{4 W} = \frac{1}{2 C}$$

Energy deposited by a single

charge q: $k_{loss} q^2$

Cavity

V (induced)

Voltage induced by a single charge q:

Summary: relations $V_{\it gap}$, W, $P_{\it loss}$

R-upon-Q

$$\frac{R}{Q} = \frac{\left|V_{gap}\right|^2}{2\omega_0 W}$$

$$k_{loss} = \frac{\omega_0}{2} \frac{R}{Q} = \frac{\left|V_{gap}\right|^2}{4W}$$

 $V_{egin{subarray}{c} ext{gap} \end{array}}$

Shunt impedance

$$R_{shunt} = \frac{\left|V_{gap}\right|^2}{2 P_{loss}}$$

Energy stored inside the cavity

$$Q = \frac{\omega_0 W}{P_{loss}}$$

Q factor

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

47

Beam loading – RF to beam efficiency

- The beam current "loads" the generator, in the equivalent circuit this appears as a resistance in parallel to the shunt impedance.
- If the generator is matched to the unloaded cavity, beam loading will cause the accelerating voltage to decrease.
- The power absorbed by the beam is $-\frac{1}{2} \operatorname{Re} \left\{ V_{gap} \ I_B^* \right\}$, the power loss $P = \frac{\left| V_{gap} \right|^2}{2 \ R}$.
- For high efficiency, beam loading shall be high.
- The RF to beam efficiency is $\eta = \frac{1}{1 + \frac{V_{gap}}{R |I_B|}} = \frac{|I_B|}{|I_G|}$.

Beam Loading – allows efficiency

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

49

Characterizing cavities

- Resonance frequency
- Transit time factor
- field varies while particle is traversing the gap Circuit definition
- Shunt impedance gap voltage - power relation
- Q factor
- R/Qindependent of losses - only geometry!
- loss factor

$$\omega_0 = \frac{1}{\sqrt{L \cdot C}}$$

$$\frac{\left| \int E_z e^{j\frac{\omega}{c}z} dz \right|}{\left| \int E_z dz \right|}$$

 $\left|V_{gap}\right|^2 = 2 R_{shunt} P_{loss} \left|V_{gap}\right|^2 = R_{shunt} P_{loss}$

$$\omega_0 W = Q P_{loss}$$

$$\frac{R}{Q} = \frac{\left|V_{gap}\right|^2}{2\omega_0 W} = \sqrt{\frac{L}{C}} \qquad \frac{R}{Q} = \frac{\left|V_{gap}\right|^2}{\omega_0 W}$$

$$k_{loss} = \frac{\omega_0}{2} \frac{R}{Q} = \frac{\left|V_{gap}\right|^2}{4W} \qquad k_{loss} = \frac{\omega_0}{4} \frac{R}{Q} = \frac{\left|V_{gap}\right|^2}{4W}$$

Linac definition

$$\left|V_{gap}\right|^2 = R_{shunt} P_{loss}$$

$$\frac{R}{Q} = \frac{\left|V_{gap}\right|^2}{Q_0 W}$$

$$k_{loss} = \frac{\omega_0}{4} \frac{R}{O} = \frac{\left|V_{gap}\right|^2}{4 W}$$

Example Pillbox:

$$\omega_{0}|_{pillbox} = \frac{\chi_{01} c}{a}$$

$$\chi_{01} = 2.4048$$

$$\eta = \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} = 377 \Omega$$

$$2\left(1 + \frac{a}{h}\right)$$

$$\chi_{01} = 2.4048$$

$$\sigma_{Cu} = 5.8 \cdot 10^{7} \text{ S/m}$$

$$\frac{R}{Q}\bigg|_{pillbox} = \frac{4\eta}{\chi_{01}^{3}\pi J_{1}^{2}(\chi_{01})} \frac{\sin^{2}(\frac{\chi_{01}}{2}\frac{h}{a})}{h/a}$$

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

51

Higher order modes

Pillbox: dipole mode

(only 1/4 shown)

magnetic field

CAS Trondheim 2013 — RF Cavity Design

53

Panofsky-Wenzel theorem

For particles moving virtually at v=c, the integrated transverse force (kick) can be determined from the transverse variation of the integrated longitudinal force!

$$j\frac{\omega}{c}\vec{F}_{\perp} = \nabla_{\perp}F_{\parallel}$$

Pure TE modes: No net transverse force!

Transverse modes are characterized by

- the transverse impedance in ω-domain
- the transverse loss factor (kick factor) in t-domain!

W.K.H. Panofsky, W.A. Wenzel: "Some Considerations Concerning the Transverse Deflection of Charged Particles in Radio-Frequency Fields", RSI 27, 1957]

CERN/PS 80 MHz cavity (for LHC)

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

55

Higher order modes

Example shown: 80 MHz cavity PS for LHC.

Color-coded:

 \vec{E}

colour coding

Higher order modes (measured spectrum)

26-Aug-2013

CAS Trondheim 2013 - RF Cavity Design

57

MORE EXAMPLES OF CAVITIES

PS 19 MHz cavity (prototype, photo: 1966)

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

59

Examples of cavities

PEP II cavity 476 MHz, single cell, 1 MV gap with 150 kW, strong HOM damping,

LEP normal-conducting Cu RF cavities, 350 MHz. 5 cell standing wave + spherical cavity for energy storage, 3 MV

CERN/PS 40 MHz cavity (for LHC)

example for capacitive coupling

coupling C

cavity

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

61

MANY GAPS

What do you gain with many gaps?

• The R/Q of a single gap cavity is limited to some 100Ω . Now consider to distribute the available power to n identical cavities: each will receive P/n, thus produce an accelerating voltage of $\sqrt{2RP/n}$.

The total accelerating voltage thus increased, equivalent to a total equivalent shunt impedance of nR.

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

67

Standing wave multicell cavity

- Instead of distributing the power from the amplifier, one might as well couple the cavities, such that the power automatically distributes, or have a cavity with many gaps (e.g. drift tube linac).
- Coupled cavity accelerating structure (side coupled)

The phase relation between gaps is important!

Example of Side Coupled Structure

LIBO (= Linac Booster)

A 3 GHz Side Coupled Structure to accelerate protons out of cyclotrons from 62 MeV to 200 MeV

Medical application: treatment of tumours (proton therapy)

Prototype of Module 1 built at CERN (2000)

Collaboration
CERN/INFN/TERA Foundation

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

69

LIBO prototype

This Picture made it to the title page of CERN Courier vol. 41 No. 1 (Jan./Feb. 2001)

TRAVELLING WAVE STRUCTURES

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

71

Iris loaded waveguide

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

73

Disc loaded structure with strong HOM damping "choke mode cavity"

Power coupling with waveguides

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

7

3 GHz Accelerating structure (CTF3)

Examples (CLIC structures @ 11.4, 12 and 30 GHz)

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

SUPERCONDUCTING ACCELERATING **STRUCTURES**

RF Superconductivity

- Best described by BCS (Bardeen-Cooper-Schrieffer) Theory
- $R_{BCS} \propto \frac{\omega^2}{T} \exp\left(-1.76 \frac{T_c}{T}\right)$
- Surface resistance $R = R_{RCS} + R_{res}$.
- R is not zero Q_0 is finite.
- Good values are some 10^{10} .
- Typical performance plot of a SC cavity:

FIG. 1. The surface resistance of a 9-cell TESLA cavity plotted as a function of T_c/T . The residual resistance of $3 \text{ n}\Omega$ corresponds to a quality factor of $Q_0 = 10^{11}$.

From prst-ab.aps.org/abstract/PRSTAB/v3/i9/e092001

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

Elliptical multi-cell cavities

- The elliptical shape was found as optimum compromise between
 - maximum gradient (E_{acc}/E_{surf})
 - suppression of multipactor
 - mode purity
 - machinability
- Operated in π -mode, i.e. cell length is exactly $\beta \lambda/2$.
- It has become de facto standard, used for ions and leptons! E.g.:
 - ILC/X-FEL: 1.3 GHz, 9-cell cavity
 - SNS (805 MHz)
 - SPL/ESS (704 MHz)
 - LHC (400 MHz*)

*): accelconf.web.cern.ch/accelconf/SRF93/papers/srf93g01.pdf

LHC SC RF, 4 cavity module, 400 MHz

installed in LHC IP4, 2 MV/cavity

LHC spare module stored in CERN's SM18

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

Small β superconducting cavities (example RIA, Argonne)

 $\beta = 0.2$ "lollipop" cavity

 $\beta = 0.4$ spoke cavity

 $\beta = 0.03$ fork cavity

 $\beta = 0.06 \, \text{QWR}$ 1/4-wave-resonator

Some pictures from Shepard et al.: "Superconducting accelerating structures for a multi-beam driver linac for RIA", Linac 2000, Monterey, others from

SC Cavity Cryomodule examples

HL-LHC Crab Cavity test CM

CAS Trondheim 2013 — RF Cavity Design

26-Aug-2013

2-cavity string

83

Cryomodule

Presently under study!

T. Jones, S. Pattalwar

CAVITY FABRICATION TECHNIQUES

CAS Trondheim 2013 — RF Cavity Design

85

Materials

- Selection criteria
 - Electrical conductivity
 - Secondary emission yield
 - mechanical stiffness/hardness
 - thermal conductivity, thermal expansion
 - machining & joining techniques
 - vacuum tight, low outgassing rate
 - creep resistance,
 - magnetic permeability
 - radiation hardness
 - fatigue stress
 - **—** ...
- Important: specify what you need and what you can measure/control at reception!

OFE copper

- Most room temperature cavities are made from copper (SLAC, CERN LEP, etc., B-factories) – (but still with plenty of exceptions, aluminium PEP).
- Solid OFE*) copper was used in LEP injector linac and the NC linear collider studies (NLC, JLC, CLIC). It is used for NC linacs today (Linac4, CLIC & CTF, linac based light sources and medical linacs).
- Copper becomes soft after annealing (or brazing). It is hardened by deformation (forging).
- The copper for the LEP storage cavities and for CERN's S-Band waveguides contain 0.1% silver (Cu-OFS), which increases the creep resistance by a factor 5.
- "official names": copper OFE Grade 1 (ASTM B224-98 oxygen free electronic, ISO 431 Cu-OFE, UNS C10100)

*) also called OFHC – oxygen free high conductivity

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

87

Galvanic Cu plating of stainless steel

Niobium

- Magnets use NbTi or Nb₃Sn, SC Cavities use mainly Nb!
- Pure Nb has a high critical magnetic field ($H_c = 200 \text{ mT}$)
- Nb has a high transition temperature ($T_c = 9.3 \text{ K}$).
- It is chemically inert (surface covered by oxide layer)
- It can be machined and deep-drawn
- It is available as bulk and sheet material in any size, fabricated by forging and rolling
- Large grain sizes (often favoured) obtained by e-beam melting
- Instead of bulk or sheet Nb, Nb can also be coated (e.g. by sputtering) on Cu – CERN has built the LEP, LHC and HIE-Isolde cavities with this technique. Advantages: thermal stability, material cost, optimisation of R_{RCS} possible; disadvantages: difficult technology to master, lower Q_0 .

Nb ingot after EBM at Heraeus (D)

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

Dielectrics

- Aluminium oxide, AL₂O₃, aka Alumina, is often used in vacuum/RF windows and vacuum feed-throughs.
- Isostatically pressed AL₂O₃ is used for leak-tightness (LEP power couplers, e.g.)
- To reduce multipactor, it is often coated with titanium or titanium nitride (TiN).
- Other window materials: Sapphire, BeO, quartz, diamond ...)

- Silicon carbide (SiC), C-loaded AIN have been effectively used as RF absorbers inside vacuum.
- Different ferrites are used as absorbers and to use their variable magnetic permeability.

Metal forming

Typical surface finish for classical machining operations

Surface finish	N8	N7	N6	N5	N4	N3	N2	N1
Ra (µm)	3.2	1.6	0.8	0.4	0.2	0.1	0.05	0.025
drilling								
turning								
diamond turning				ı				
milling						1		
lapping								
polishing								

roughness obtained with standard workshop practice

roughness obtained with special care

CAS Trondheim 2013 — RF Cavity Design

Turning

Classical industrial technique; cheap and accurate, gives excellent surface finish. Applies to a wide range of cavity dimensions (frequencies).

NB.:

- Cutting fluids should be oil-free and sulphur free.
- High-speed machining with diamond tools can be made with alcohol or even dry.

5-axis milling

Direct 5-axis milling of cooling water circuit groove in PEPII cavity.

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

9

EDM (Electric discharge machining)

 Machines el. conductors (metals, alloys, carbides, graphite etc.) by creating sparks with temperatures of 8,000 to 12,000 °C. The part and the electrode are immersed in a dielectric liquid, usually water or mineral oil. There are two types of EDM, die sinking and wire cutting.

die sinking

wire cutting

wire cutting of the iris slots of SICA (slotted iris – constant aperture) disks for CERN's CTF3 drive beam accelerator

Fabrication of Nb sheets at

Nb ingot

Forging

Cutting

Pressing

Milling

Annealing

1st EB melting

Rolling

Levering

2nd, 3rd ... EB melting

Polishing

Chemical polishing

Separate from base plate

Rolling

Inspections: (ICP-AES, Gas analysis, RRR, grain size, hardness tensile stress ...)

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

95

Other forming techniques

- Forging, pressing, deep drawing, ...
- Spinning, planing, rolling, ...
- lapping, polishing, electropolishing, ...
- Electroforming, hydroforming, explosion forming
- Powder metal techniques, 3-D printing
- **Sputtering**

Joining techniques

TIG welding

double joint: inner for vacuum, out for mechanical stability

EB welding

Microstructure of the EB welding area grain size (50 ÷ 2000) μm

26-Aug-2013

CAS Trondheim 2013 — RF Cavity Design

97

Advances in SCRF Technology

Forming

EB Welding

Ti purification

Chemical etching 100-200 μm

BCP

Annealing 800°C, 2h (or 600°C, 10h)

Chemical etching 5-20 µm

Specific rinsing

High pressure rinsing (HPR)

Assembling

Baking, 120°C, 48h

Post processing

Test RF

He processing, HPP

WHY

Clean welding

RRR enhancement

Remove contamination and damage layer

Get rid of hydrogen

Remove diffusion layer (O, C, N)

e.g. remove S particles due to EP

Get rid of dust particles

Ancillaries: antennas, couplers,

Decrease high field losses (Q-drop)

Get rid of "re-contamination"?

Cavity's performance

Decrease field emission

C. Antoine: CAS SC 2013

