

1

23/08/2013

Ô	Outline	
Why	a linear collider	
Gen	eral considerations	
CLIC	5	
ILC		
Sum	imary	
Enik Adli	700M developments School & descent Courses, descent 22 2011, Translation Manager	<i>a</i>

Ô	Luminosity: power	
	Luminosity (ignoring enhancement factor)	
	$L=rac{n_bN^2f_{rep}}{4\pi\sigma_x\sigma_y}$	
	Total beam power $P_{beams} = n_b N f_{rep} E_{cm} \label{eq:power}$	
	Requires a total wall-plug power of	
	$P_{AC} = P_{beam}/\eta_{AC2beam}$	
	Thus, luminosity proportional to power	
	$\Rightarrow L = \frac{\eta_{AC2beam} P_{AC}}{E_{cm}} \frac{N}{4\pi \sigma_x \sigma_y}$	
Erik Adli	CERN Accelerator School Advanced Course, August 23,2013, Transheim, Norway 1	11

Ð		Summary challenges	
Energy	reach $E_{cm} = 2$	$2F_{fill} L_{linac} G_{RF}$	
TypicStruct	al accelerator gradi tures: large accel	ient ~10 MV/m -> ~100 km site for 1 TeV collisions lerating gradient with low breakdown rate M^2 C A^{C} $P = 2^{V}$	
Lumino	osity $L = \frac{n}{4}$	$\frac{\eta_b N^- f_{rep}}{4\pi \sigma_x^* \sigma_y^*} \times H_D \propto \frac{\eta_{beam}^{nc} P_{AC}}{\varepsilon_y^{1/2}} \frac{\delta_{BS}^{1/2}}{E_{cm}} \qquad $	
• Beam com • Gene i	acceleration: ~10 MV pare to "1 TW" LHC ty ration of ~10 nm ve	N of beam power with high gradient and efficiency ppe beam: reduce dimensions by a factor $\sim 10^5$ 0 ertical emittances by radiation damping (damping rin	$\tau = \sqrt{\varepsilon\beta}$ gs):
	See lectures of A. Wolski	s RF cavity p	
• Prese Precise sta forwards.	ervation of ultra sma atic alignement, beam Stability of nanome	all emittances through main linacs : n-based alignment plus advanced feedback and feed- eter range.	
Chron Very stron Stability	maticity corrected fi g final doublet magne of sub-nanometer ra	inal focus with beta function to order of 100 um : ets, and sextupoles to compensate chromatic aberrations. ange.	
Erik Adli	CERN AG	ccelerator School Advanced Course, August 23 2013, Trondheim, Norway	13

Why a linear collider General considerations CLIC ILC Summary

7

Pre-alignment of beam liv			
re-angriment of beam in	ne components :		
Rf structures, quadrupoles (main	and drive beam)		
Wire Positioning System, then in	dependent pre-alignment by r	novers with respect	to wires
	After computation, for a the standard deviations o of the zero of each co fitting line will be incluc radius of a few microns:	sliding window of 200 f the transverse posi mponent w.r.t a strai ded in a cylinder wit) m, tion ight h a
	→ 14 µm (RF structures &	MB quad BPM)	
AU-100 AU AU-100 Longitudin	→ 17 µm (MB quad)		
	Adjustment: step size belo	w 1 µm	
	le stabilisation:0 2nm h	eam-beam stabi	lity@IP
 Beam stability by quadrupo quadrupole passive and beam feedback (pulse to 	active stabilisation pulse) and Intrabeam fee	dback	
 Geam stability by quadrupo quadrupole passive and beam feedback (pulse to Quadrupole 	active stabilisation pulse) and Intrabeam fee Magnets Horizontal	dback Vertical	
3eam stability by quadrupo • quadrupole passive and • beam feedback (pulse to Quadrupole Linac (2600 d	active stabilisation pulse) and Intrabeam feet Magnets Horizontal quads) 14nm	dback Vertical 1.5 nm	

23/08/2013

9

23/08/2013

Ø		Decel	lerator Test Be	am Line
Test Beam Line: Tr energy using 16 Pl	ransport of the 28A, 150 ETS, each producing Cl	MeV CTF3 Driv IC level rf pow	ve Beam, while extracting n er, with small loss level.	nore than 50% of the
Current status: 13 parameter versus i	out of max. 16 PETS insta rf power production and d	alled demonstart	ing > 35% drive beam decelera ully studied and shows very go	ation. Correleation bear ood agreement.
		125	Prediction from PETS rf pr Prediction from beam cur Spectrometer measurem	ower rent ent
100		120	Number of pulses: 60 Initial energy: 125 MeV Assumed form factor F(X): 1.05	
MD	e x e	E 110	Rf power calibration adjustmen Maximum deceleration: 25.0 % Average beam current: 13.56 A	t 8%
		95	• verger i o pore: • • • • •	<u></u>
ALS?		90 50	0 100 150 200 Time [ns]	250 300 350
Erik Adli	CERN Accelerator Sch	ool Advanced Course, Augus	t 23,2013, Trondheim, Norway	47

Outline	
Why a linear collider	
General considerations	
CLIC	
ILC	
Summary	

Comparison ILC - CLIC					
From F. Tecker		ILC	CLIC	marke	
		0.5 TeV	3 TeV	Temarks	
Technology readiness		TDR complete	CDR complete	CLIC: proof of principle of two-beam acc. demonstrated (CDR, 2012)	
No. of particles / bunch	109	20	3.7	CLIC can't go higher because of short range wakefields	
Bunch separation	ns	370	0.5	Short spacing essential for CLIC to get comparable RF to beam efficiency, but CLIC requirements on long range wakefield suppression much more stringent	
Bunch train length	αcs	970	0.156	Iorces detectors to integrate over several bunch crossings One CLLC pulse fits easily in small damping ring, simple single turn extraction from DR. But intra train feedback very difficult.	
Charge per pulse	nC	8400	185	Positron source much easier for CLIC	
Linac repetition rate	Hz	5	50	Pulse to pulse feedback more efficient for CLIC (less linac movement between pulses)	
γ ε _x , γ ε _y	nm	10000, 40	660, 20	Because of smaller beam size CLIC has more stringent requirements for DR equilibrium emittance and emittance preservation (partly offset by lower bunch charge and smaller DR)	
Erik Adli CERN Accelerator School Advanced Course, August 23,2013, Trondheim, Norway 64					

<u>æ</u>	Conclus	ions
Exciting time in	the linear collider world!	
ILC is basically a Japanese site h	ready for construction and as been proposed	私たちは 国際リニアコライダー 計画を応援しています。 We unwork the laterational
CLIC, as a Mult thriving R&D pl X-band technolo now being consi application	ti-TeV e+ e- option, is in an mase as the CLIC high gradient gy is becoming mature and dered for other accelerator	We support the international
These project, un umbrella, will he topics for studen	nder the Linear Collaboration ost a number of research ts in the years to come	

Eighth International Accelerator School for Linear Colliders December 4 – 15, 2013 Hotel Rixos Downtown, Antalya, Turkey • Hotel by the Institute of Accelerator Technologies of Akiara University TOPECS: ILC • CLC • Superconducting & Warm RF Technology • Baum Dynamics of Colliders • Lance & Clarge Bing • Eng Colliders • Beam Entrumentation • Beam-Beam http://www.linearcollider.org/school/2013 online application deadline: September 10, 2013

Acknowledgements

- In addition to CLIC CDR and ILC TDR material, I have borrowed slides from linear collider experts: Frank Tecker, Barry Barish, Nick Walker, Alex Chao and many others
- I enjoyed useful discussions with Marc Ross, Jean-Pierre Delahaye and Steinar Stapnes while preparing this talk

1

Ð

Extra

Why a linear collider General considerations CLIC ILC

Summary

LC 500 GeV Main parameters						
Centre-of-mass energy	NLC 500 GeV	ILC 500 GeV	CLIC 500 G Relaxed	CLIC 500 G Nominal		
Total (Peak 1%) luminosity	2.0(1.3) 1034	2.0(1.5)·10 ³⁴	0.9(0.6)·10 ³⁴	2.3(1.4) 10 ³⁴		
Repetition rate (Hz)	120	5	50			
Loaded accel. gradient MV/m	50	33.5	80			
Main linac RF frequency GHz	11.4	1.3 (SC)	12			
Bunch charge10 ⁹	7.5	20	6.8			
Bunch separation ns	1.4	176	0.5			
Beam pulse duration (ns)	400	1000	177			
Beam power/linac (MWatts)	6.9	10.2	4.9			
Hor./vert. norm. emitt (10 ⁻⁶ /10 ⁻⁹)	3.6/40	10/40	7.5 / 40 4.8 / 25			
Hor/Vert FF focusing (mm)	8/0.11	20/0.4	4/0.4	4/0.1		
Bunch length (microns)	100	300	100	72		
Hor./vert. IP beam size (nm)	243/ 3	640/5.7	248 / 5.7	202/ 2.3		
Soft Hadronic event at IP	0.10	0.12	0.07	0.19		
Coherent pairs/crossing at IP	10?	10?	10	100		
BDS length (km)	3.5 (1 TeV)	2.23 (1 TeV)	1.87			
Total site length (km)	18	31	13.0			
Wall plug to beam transfer eff.	7.1%	9.4%	4.1%			
Total power consumption MW	195	216		240		

