

Protection from Energy and Power

- Risks come from Energy stored in a system (Joule), and Power when operating a system (Watt)
 - "Very powerful accelerator" ... the power flow needs to be controlled
- An uncontrolled release of the energy, or an uncontrolled power flow can lead to unwanted consequences
 - Loss of time for operation or damage of equipment
 - · For particle beams, activation of equipment
- This is true for all systems, in particular for complex systems such as accelerators
 - For the RF system, power converters, magnet system ...
 - For the particle beams

Lecture on Machine Protection for preventing damage caused by particle beams

Rudiger Schmidt

CAS Trondheim 2013

Content

- Different accelerator concepts: examples for LHC and ESS
- Hazards and Risks
- Accidental beam losses and consequences
- Accidental beam losses and probability
- Machine Protection
- Examples
- Outlook

Machine Protection related to beams

Many accelerators operate with high beam intensity and/or energy

- For synchrotrons and storage rings, the energy stored in the beam increased with time (from ISR to LHC)
- For linear accelerators and fast cycling machines, the beam power increases

The emittance becomes smaller (down to a beam size of nanometer)

 This is important today, and even more relevant for future projects, with increased beam power / energy density (W/mm² or J/mm²) and increasingly complex machines

Rüdiger Schmidt

CAS Trondheim 2013

nana t

Hazards and Risks

Rudiger Schmidt

CAS Trondheim 2013

Hazard and Risk for accelerators

Hazard: a situation that poses a level of threat to the accelerator.
 Hazards are dormant or potential, with only a theoretical risk of
 damage. Once a hazard becomes "active": incident. Hazard and
 possibility interact together to create RISK, can be quantified:

RISK = Consequences · Probability

Related to accelerators

- Consequences of an uncontrolled beam loss
- Probability of an uncontrolled beam loss
- The higher the RISK, the more Protection is required

Example for ESS

- Bending magnet in an accelerator deflecting the beam
- Assume that the power supply fails and the magnets stops deflecting the beam
 - Probability: good MTBF for power supply is 100000 hours = 15 years
- The beam is not deflected and hits the vacuum chamber
 - Consequences: what is expected to happen?

Consequences of (accidental) beam loss

Beam losses and consequences

- Charged particles moving through matter interact with the electrons of atoms in the material, exciting or ionizing the atoms
 => energy loss of traveling particle described by Bethe-Bloch formula.
- If the particle energy is high enough, particle losses lead to particle cascades in materials, increasing the deposited energy
 - the maximum energy deposition can be deep in the material at the maximum of the hadron / electromagnetic shower
- The energy deposition leads to a temperature increase
 - material can vaporise, melt, deform or lose its mechanical properties
 - risk to damage sensitive equipment for some 10 kJ, risk for damage of any structure for some MJoule (depends on beam size)
 - superconducting magnets could quench (beam loss of ~mJ to J)
 - superconducting cavities performance degradation by some 10 J
 - · activation of material, risk for hand-on-maintenance

11

Heating of material with low energy protons

Temperature increase in the material: $dT_{Fe} := \frac{r}{c_{Fe_spec} \cdot F_{beam} \cdot \rho_{Fe}}$

Temperature increase for a proton beam impacting on a Fe target:

Beam size: $\sigma_h = 1.00 \cdot \text{mm}$ and $\sigma_V = 1.00 \cdot \text{mm}$

Iron specific heat:

Iron specific weight:

Energy loss per proton/mm:

 $c_{\text{Fe_spec}} = 440 \cdot \frac{J}{\text{kg} \cdot \text{K}}$ $\rho_{\text{Fe}} = 7860 \cdot \frac{\text{kg}}{\text{m}^3}$ $dEdx_{\text{Fe}} = 56.696 \cdot \frac{\text{MeV}}{\text{mm}}$ $N_{\text{p}} = 1.16 \times 10^{12}$ $E_{\text{p}} = 0.003 \cdot \text{GeV}$ $dT_{\text{p}} = 762 \cdot \text{K}$ Number of protons: Energy of the proton: $dT_{Fe} = 763 \, K$ Temperature increase:

Heating of material with high energy protons

Nuclear inelastic interactions (hadronic shower)

- · Creation of pions when going through matter
- Causes electromagnetic shower through decays of
- Exponential increase in number of created particles
- Final energy deposition to large fraction done by large number of electromagnetic particles
- Scales roughly with total energy of incident particle
- Energy deposition maximum deep in the material
- Energy deposition is a function of the particle type, its momentum and parameters of the material (atomic number, density, specific heat)
- No straightforward expression to calculate energy deposition
- Calculation by codes, such as FLUKA, GEANT or MARS
- Other programs are used to calculate the response of the material (deformation, melting, ...) to beam impact (mechanical codes such as ANSYS, hydrodynamic codes such as BIG2 and others)

Beam losses and consequences

- Beams at very low energy have less power.... however, the energy deposition is very high, and can lead to (limited) damage in case of beam impact
 - issue at the initial stage of an accelerator, after the source, low energy beam transport and RFQ
 - limited impact (e.g. damaging the RFQ) might lead to long downtime, depending on spare situation
- Beams at very high energy can have a tremendous damage potential
 - for LHC, damage of metals with beam loss in the order of a few 10¹⁰ protons
 - one LHC bunch has about 1.5·10¹¹ protons, in total up to 2808 bunches
 - · in case of catastrophic beam loss, damage beyond repair

- A Roman pot (movable device) moved into the beam
- Particle showers from the Roman pot quenched superconducting magnets
- The beam moved by 0.005 mm/turn, and touched a collimator jaw surface after about 300 turns
- The entire beam was lost, mostly on the collimator

Observation of HERA tungsten collimators: grooves on the surface when opening the vacuum chamber were observed. No impact on operation.

Beam losses in SNS linac **Beam Current** 37.5 المعادر ويواد والمراجع والمراع 35 -Monitors (BCM) 32.5measure current 30 -27.5 pulse at different 25 locations along the 22.5 **680 μs** of 20-17.5-15linac. beam before sc linac **16 μs** of beam 12.5 About 16 usec of lost in the sc 10 **664 µs** of linac beam lost in the 7.5beam after 5. superconducting sc linac 2.5 part of linac 0-1 -2.5--5-0.0 50.0u 100.0u 150.0u 750.0u charge Beam energy in 16 µs HEBT BCM01 14.2u 664 120610_214127.9858 End of DTL = 30 J CCL BCM102 End of CCL = 66 J 15u 680 120610_214127.9858 End of SCL = 350 J MEBT BCM02 15u 120610_214127.9858 676

Beam loss with low energy deposition

- Beam might hit surface of HV system (RFQ, kicker magnets, cavities)
- Surfaces with HV, after beam loss performance degradation might appear (not possible to operate at the same voltage, increased probability of arcing, ...)
- SNS: errant beam losses led to a degradation of the performance of superconducting cavity
 - Bam losses likely to be caused by problems in ion source, low energy beam transfer and normal conducting linac
 - Cavity gradient needs to be lowered, conditioning after warm-up helps in most cases
 - Energy of beam losses is about 100 J
 - Damage mechanisms not fully understood, it is assumed that some beam hitting the cavity desorbs gas or particulates (=small particles) creating an environment for arcing

CAS Trondheim 2013

Accidental beam loss and probability

Rudiger Schmidt

CAS Trondheim 2013

Beam losses mechanisms

In accelerators, particles are lost due to a variety of reasons: beam gas interaction, losses from collisions, losses of the beam halo, ...

- Continuous beam losses are inherent during the operation of accelerators
 - Taken into account during the design of the accelerator
- Accidental beam losses are due to a multitude of failures mechanisms
- The number of possible failures leading to accidental beam losses is (nearly) infinite

Beam losses, machine protection and collimation

Continuous beam losses: **Collimation** prevents too high beam losses around the accelerator (beam cleaning)

A collimation system is a (very complex) system with (massive) material blocks installed in an accelerator to capture halo particles

Such system is also called (beam) Cleaning System

Accidental beam losses: "Machine Protection" protects equipment from damage, activation and downtime

Machine protection includes a large variety of systems, including collimators (or beam absorbers) to capture missteered beam

Regular and irregular operation

Regular operation

Many accelerator systems
Continuous beam losses
Collimators for beam cleaning
Collimators for halo scraping
Collimators to prevent ion-induced
desorption

Failures during operation

Beam losses due to failures, timescale from nanoseconds to seconds

Machine protection systems

Collimators

Beam absorbers

Continuous beam losses: Collimation

Continuous beam with a power of 1 MW (SNS, JPARC, ESS)

- a loss of 1% corresponds to 10 kW not to be lost along the beam line to avoid activation of material, heating, quenching, ...
- assume a length of 200 m: 50 W/m, not acceptable
- · Ideas for accelerators of 5 MW, 10 MW and more

Limitation of beam losses is in order of 1 W/m to avoid activation and still allow hands-on maintenance

- avoid beam losses as far as possible
- define the aperture by collimators
- capture continuous particle losses with collimators at specific locations

LHC stored beam with an energy of 360 MJ

- Assume lifetime of 10 minutes corresponds to beam loss of 500 kW, not to be lost in superconducting magnets
- · Reduce losses by four orders of magnitude

....but also: capture fast accidental beam losses

Accidental beam losses: Machine Protection

Single-passage beam loss in the accelerator complex (ns - μs)

- transfer lines between accelerators or from an accelerator to a target station (target for secondary particle production, beam dump block)
- failures of kicker magnets (injection, extraction, special kicker magnets, for example for diagnostics)
- · failures in linear accelerators, in particular due to RF systems
- · too small beam size at a target station

Very fast beam loss (ms)

- e.g. multi turn beam losses in circular accelerators
- due to a large number of possible failures, mostly in the magnet powering system, with a typical time constant of ~1 ms to many seconds

Fast beam loss (some 10 ms to seconds)

Slow beam loss (many seconds)

(ERN)

Classification of failures

Type of the failure

- hardware failure (power converter trip, magnet quench, AC distribution failure such as thunderstorm, object in vacuum chamber, vacuum leak, RF trip, kicker magnet misfires,)
- controls failure (wrong data, wrong magnet current function, trigger problem, timing system, feedback failure, ..)
- operational failure (chromaticity / tune / orbit wrong values, ...)
- beam instability (due to too high beam / bunch current / e-clouds)

Parameters for the failure

- time constant for beam loss
- · probability for the failure
- damage potential

defined as risk

Rudiger Schmidt

CAS Trondheim 201

Probability of a failure leading to beam loss

- Experience from LHC (the most complex accelerator)
 - When the beam are colliding, the optimum length of a store is in the order of 10-15 hours, then ended by operation
 - Most fills (\sim 70 %) are ended by failures, the machine protection systems dump the beams
 - MTBF of about 6 h
- Other large accelerators (SNS, plans for ESS, synchrotron light sources)
 - · MTBF between 20 h and up to several 100 h

(.... more accurate numbers are appreciated)

 At high power accelerators, most failures would lead to damage if not mitigated = > the machine protection system is an essential part of the accelerator

Machine Protection

21

Strategy for protection and related systems

- Avoid that a specific failure can happen
- Detect failure at hardware level and stop beam operation
- Detect initial consequences of failure with beam instrumentationbefore it is too late...
- Stop beam operation
 - inhibit injection
 - extract beam into beam dump block
 - stop beam by beam absorber / collimator
- Elements in the protection systems
 - equipment monitoring and beam monitoring
 - beam dump (fast kicker magnet and absorber block)
 - chopper to stop the beam in the low energy part
 - collimators and beam absorbers
 - beam interlock systems linking different systems

Beam instrumentation for machine protection

Beam Loss Monitors

- stop beam operation in case of too high beam losses
- monitor beam losses around the accelerator (full coverage?)
- could be fast and/or slow (LHC down to 40 μs)

Beam Position Monitors

- ensuring that the beam has the correct position
- in general, the beam should be centred in the aperture
- for extraction: monitor extraction bump using BPMs (redundant to magnet current)

• Beam Current Transformers

- if the transmission between two locations of the accelerator is too low (=beam lost somewhere): stop beam operation
- if the beam lifetime is too short: dump beam

Beam Size Monitors

• if beam size is too small could be dangerous for windows, targets, ...

High power accelerators

- Operate with beam power of 1 MW and more
- SNS 1 MW, PSI cyclotron 1.3 MW, ESS planned for 5 MW, FRIB (ions) – planned for 0.4 MW
- ESS (4 % duty cycle): in case of an uncontrolled beam loss during 1 ms, the deposited energy is up to 130 kJ, for 1 s it is up to 5 MJ
- It is required to inhibit the beam after detecting uncontrolled beam loss how fast?
- The delay between detection and "beam off" to be considered

Some design principles for protection systems

- · Failsafe design
 - · detect internal faults
 - possibility for remote testing, for example between two runs
 - if the protection system does not work, better stop operation rather than damage equipment
- Critical equipment should be redundant (possibly diverse)
- Critical processes not by software (no operating system)
 - no remote changes of most critical parameters
- Demonstrate safety / availability / reliability
 - use established methods to analyse critical systems and to predict failure rate
- Managing interlocks
 - disabling of interlocks is common practice (keep track!)
 - LHC: masking of some interlocks possible for low intensity / low energy beams

Accelerators that require protection systems

- Hadron synchrotrons with large stored energy in the beam
 - Colliders using protons / antiprotons (TEVATRON, HERA, LHC)
 - Synchrotrons accelerating beams for fixed target experiments (SPS)
- High power accelerators (e.g. spallation sources) with beam power of some 10 kW to above 1 MW
 - · Risk of damage and activation
 - Spallation sources, up to (and above) 1 MW quasi-continuous beam power (SNS, ISIS, PSI cyclotron, JPARC, and in the future ESS, MYRRHA and IFMIF)
- Synchrotron light sources with high intensity beams and secondary photon beams
- Energy recovery linacs
 - Example of Daresbury prototype: one bunch train cannot damage equipment, but in case of beam loss next train must not leave the (injector) station

Rodinar Colomb

CAS Trondheim 2013

Accelerators that require protection systems II

- Linear colliders / accelerators with very high beam power densities due to small beam size
 - High average power in linear accelerators: FLASH 90 kW, European XFEL 600 kW, SNS 1.4 MW, JLab FEL 1.5 MW, ILC 11 MW
 - · One beam pulse can lead already to damage
 - "any time interval large enough to allow a substantial change in the beam trajectory of component alignment (~fraction of a second), pilot beam must be used to prove the integrity" from NLC paper 1999
- Medical accelerators: prevent too high dose to patient
 - · Low intensity, but techniques for protection are similar
- Very short high current bunches: beam induces image currents that can damage the environment (bellows, beam instruments, cavities, ...)

Rüdiger Schmidt

CAS Trondheim 2013

For future high intensity machines

Machine protection should always start during the design phase of an accelerators

- Particle tracking
 - to establish loss distribution with realistic failure modes
 - accurate aperture model required
- Calculations of the particle shower (FLUKA, GEANT, ...)
 - · energy deposition in materials
 - · activation of materials
 - accurate 3-d description of accelerator components (and possibly tunnel) required
- Coupling between particle tracking and shower calculations
- From the design, provide 3-d model of all components

Rudiger Schmidt

GAS Trouble to 2013

Summary

Machine protection

- is not equal to equipment protection
- requires the understanding of many different type of failures that could lead to beam loss
- requires comprehensive understanding of all aspects of the accelerator (accelerator physics, operation, equipment, instrumentation, functional safety)
- touches many aspects of accelerator construction and operation
- includes many systems
- is becoming increasingly important for future projects, with increased beam power / energy density (W/mm² or J/mm²) and increasingly complex machines

Thank you very much for your attention

