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Summary of the 2 lectures:

* Acceleration methods

* Accelerating structures

* Phase Stability + Energy-Phase oscillations (Linac)
* Circular accelerators: Cyclotron / Synchrotron

* Dispersion Effects in Synchrotron

* Longitudinal Phase Space Motion

« Stationary Bucket

* Injection Matching

* Adiabatic Damping

Two more related lectures:
 Linear Accelerators I + IT - Maurizio Vretanar
* RF Cavity Design - Erk Jensen
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Main Characteristics of an Accelerator

Newton-Lorentz Force ﬁ — dp _ (E 37 E) 2nd term always perpendicular

oh a char'ged par'Ticle: t —€ to motion => no acceleration

ACCELERATION is the main job of an accelerator.
- It provides kinetic energy to charged particles, hence increasing their momentum.
* In order to do so, it is hecessary to have an electric field E

preferably along the direction of the initial momentum (z). dp = oF
— =@
z

dt

BENDING is generated by a magnetic field perpendicular to the plane of the
particle trajectory. The bending radius p obeys to the relation :
P p [GeVic]

~=Bp in practical units: B/ [Tm] »
o 0.3

FOCUSING is a second way of using a magnetic field, in which the bending
effect is used to bring the particles trajectory closer to the axis, hence
to increase the beam density.
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Electrostatic Acceleration

E
sourcei i : —>i i :

Electrostatic Field:

Energy gain: W = e AV

Limitation: isolation problems
maximum high voltage (~ 10 MV)

used for first stage of acceleration:
particle sources, electron guns 750 kV Cockroft-Walton generator
x-ray tubes at Fermilab (Proton source)
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Methods of Acceleration: Induction

From Maxwell's Equations:

The electric field is derived from a scalar potential ¢ and a vector potential A

The time variation of the magnetic field H generates an electric field E

E = - %f 6—14 vacuum
Ot pipe
B= /‘Iﬁ 6 X Z

Example: Betatron

The varying magnetic field is used to guide
particles on a circular trajectory as well as
for acceleration.

Limited by saturation in iron

beam
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Radio-Frequency (RF) Acceleration

Electrostatic acceleration limited by isolation possibilities => use RF fields

A .
Vsin ot

®2 e

Widerde-type

Cylindrical electrodes (drift tubes) separated by gaps and fed by a RF
generator, as shown above, lead to an alternating electric field polarity

Synchronism condition — L=vT/2 v = particle velocity
T = RF period

rr 117 1rrr1rrrr

, Similar for standing wave

cavity as shown (with v&c)

M
D.Schulte
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Resonant RF Cavities

Considering RF acceleration, it is obvious that when particles get high
velocities the drift spaces get longer and one loses on the efficiency.
=> The solution consists of using a higher operating frequency.

The power lost by radiation, due to circulating currents on the electrodes,
is proportional to the RF frequency.

=> The solution consists of enclosing the system in a cavity which resonant
frequency matches the RF generator frequency.

- The electromagnetic power is now
constrained in the resonant volume

£, —— - Each such cavity can be independently
_ powered from the RF generator

- Note however that joule losses will
occur in the cavity walls (unless made
l of superconducting materials)
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Some RF Cavity Examples

L =vT/2 (m mode)

2

(s

h\

CAS Trondheim

L = vT (21 mode)
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RF acceleration: Alvarez Structure

g Used for protons, ions (50 - 200 MeV, ¥~ 200 MHz)

Synchronism condition (g << L)

- L= Vs TRF = :Bs ﬁ“RF

vV

_S

Ope =27 L
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Transit time factor

The accelerating field varies during the passage of the particle
=> particle does not always see maximum field => effective acceleration smaller

Transit time factor 7 — energy gain of particle with v = bc
defined as: “ maximum energy gain (particle with v — o0)
+¥ .
. . A 50
In the general case, the transit time factor is: OE.(s,7) COS?VRF — ds
\%
—_ -¥
for E(s,r,t)=FE (s,r)*XE, (¢ a .
(5,,0) = Ey(s,7)9E,(0) -
| -¥
Simple model E (s,r)= \ﬁ _ const.
uniform field: i g

-g/2 +g/2

e O« 7:7<1
« 7,51 forg— 0, smaller wgy-

2V 2V

follows: 7 =|sin War8 / Wer8

Important for low velocities (ions)
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Disc loaded traveling wave structures

-When particles gets ultra-relativistic (v~c) the drift tubes become very long
unless the operating frequency is increased. Late 40's the development of
radar led to high power transmitters (klystrons) at very high frequencies

(3 GHz).

-Next came the idea of suppressing the drift tubes using fraveling waves.
However to get a continuous acceleration the phase velocity of the wave needs
to be adjusted to the particle velocity.

CLIC Accelerating Structures (30 & 11 GHz)

solution: slow wave guide with irises  ==> iris loaded structure
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The Traveling Wave Case

| e

/\/\ ~ E.=E COS Wyt - kz)
:/e\/\ k= Wer wave number
I V.
| < . J

: /\/\ z=v(t- t,)

v, = phase velocity

The particle travels along with the wave, and v = particle velocity
k represents the wave propagation factor.
e v C
E =E, congRFt- Wer—t- [y
If synchronism satisfied:  v=v, afd, = £, COS7,

where @, is the RF phase seen by the particle.
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Energy Gain

In relativistic dynamics, total energy E and momentum p are linked by

E°‘=Ei+ p2(;2 (E=E,+W)  wkinetic energy

Hence:  dE=vdp

The rate of energy gain per unit length of acceleration (along z) is then:

d—E—vdp ap =el

dz dz dt
and the kinetic energy gained from the field along the z path is:

dW=dE=eE dz — W=eQE.dz=eV

where V is just a potential.
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Velocity, Energy and Momentum

1 P ——— |
" electrons
. . V 1
normalized velocity f=-= |1-— . _ .
C y g o5 normalized velocity |
=> electrons almost reach the speed of light protons
very quickly (few MeV range)
ol | | |
0 5 10 15 20
E_kinetic (MeV)
total energy 110 I I n
rest energy 11¢* - total energy P
E m 1 1 116 | rest energy 7 ]
Y= == = § " electrons |
2 2 § 100- )
E, m 1-V / 1-p S -
2 B
C 10 /
proM
1 —
E E | | |
— - h. = h = 0.1
Momentum p=mv=—bc=b bgmc ) ” o 110 11
C C E_kinetic (MeV)
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Summary: Relativity + Energy Gain

- dp s 2nd term alwa '
— — - ys perpendicular
Newton-Lorentz Force F' = E —€ (E TV B) to motion => no acceleration
Relativistics Dynamics RF Acceleration
Vv 1 E _m 1 A -
== 0yt B FESinwi=E, sinf(¢)

p:mvzgzbc:b%:bgmoc

C

E’=Ei+p'c® — dE=vdp

d—E—vdp dp—eE

dz dz dt

dE=dW=eE_dz — W=eQE,d:

oL, dz=

W =eVsing
(neglecting transit time factor)
The field will change during the
passage of the particle through the

cavity
=> effective energy gain is lower
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Common Phase Conventions

1. For circular accelerators, the origin of time is taken at the zero crossing of the RF
voltage with positive slope

2. For linear accelerators, the origin of time is taken at the positive crest of the RF
voltage

Time t= O chosen such that:

1 E, s 2 Ep

\ § = 0ge t /(\ ¢
v A

E,(r) = Eysin(w;, 1) E, (1) = E, c0S(Wp t)

Wqe 1

"

.

3. I will stick to convention 1 in the following to avoid confusion
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Principle of Phase Stability (Linac)

Lets consider a succession of accelerating gaps, operating in the 2m mode,
for which the synchronism condition is fulfilled for a phase ®s .

oA is the energy gain in one gap for the particle to reach the
eVS =elVsink s next gap with the same RF phase: P; ,P,, .... are fixed points.

eV
- BN
For a 2n mode, eV - - —Pll —————————— IP2— —————————————————————— =
the electric field N f i Nz\
is the same in all | |
gaps at any given <|1> n'_q)
time. ’

If an energy increase is transferred into a velocity increase =»
M; & N, will move towards P, => stable
M, & N, will go away from P, => unstable

(Highly relativistic particles have no significant velocity change)
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A Consequence of Phase Stability

N——

+

Transverse focusing fields at the entrance and defocusing at the exit of the cavity.
Electrostatic case: Energy gain inside the cavity leads to focusing

R N N\ [

RF case: Field increases during passage => transverse defocusing!
o N oV oE, defocusing
Longitudinal phase stability means: — > 0= —= < 0 RF force
ot 0z 1
The divergence of the field is — OE, OCE, oE,
zero according to Maxwell : VE=0 = ox * oz =0 = ox >0

External focusing (solenoid, quadrupole) is then necessary
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Energy-phase Oscillations (1)

- Rate of energy gain for the synchronous particle:

?ES ps =eE,sing,

- Rate of energy gain for a non-synchronous particle, expressed in
reduced variables, w=W -W.=E—E, and @p=¢—¢ :

dw - -
T = eE [sin(4, + ¢)—sing,| ~ eE,cosg.o (small p)
- Rate of change of the phase with respect to the synchronous one:

do _ dt (dt) |_ 1 1 a)RF
dz wRF(dz (dz)sj_w (v vj V2 (v-v.)

S

Since: V-V, =C(f— ,B);ZIB(,B ~B)= movy
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Energy-phase Oscillations (2)

onhe gets: d(ﬁ _ CORF

dZ_ mo

s W

Combining the two 15" order equations into a 2"d order equation gives:

dZ(D 2 th Q _ BEWge COS¢
F + ngﬁ = O w mo

Stable harmonic oscillations imply: \NS2 >0 and real
hence:  CcOS¢, >0

And since acceleration also means: sing, >0

You finally get the result for T
the stable phase range: 0<g <5

CAS Trondheim, 18-29 August 2013
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Longitudinal phase space

The energy - phase oscillations can be drawn in phase space:

AE, Ap/p

AE, Aplp 4 acceleration
I
move | move
forward <-|-- @® - - -> packward
? \
/ v ’
reference deceleration

¢

The particle trajectory in the

phase space (Ap/p, §) describes
its longitudinal motion.

Emittance: phase space area including
all the particles

NB: if the emittance contour correspond to a
possible orbit in phase space, its shape does not
change with time (matched beam)
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Circular accelerators: Cyclotron

Used for protons, ions B = constant

W = constant
RF generator, Oy

Synchronism condition

B
g » S RF
25 pu.T,
B
Ton source n Cyclotron frequency (@ = q—
7Zs .
4 /4
) |
o y 1.  yincreases with the energy
N Exctraction = ho exact synchronism
electrode
Ions trajectory 2. ifvw<cec = yz=1
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Cyclotron / Synchrocyclotron

-

TRIUMF 520 MeV cyclotron Vancouver - Canada

Synchrocyclotron: Same as cyclotron, except a modulation of mge

B

Y WOgr

The condition:

constant

qB
m 7 (t)

CAS Trondheim, 18-29 August 2013

O (t) = Wgr (t) —

constant gr decreases with time

Allows to go beyond the
non-relativistic energies
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Circular accelerators: The Synchrotron

1.  Constant orbit during acceleration

2. To keep particles on the closed orbit,
B should increase with time

3. o and oy increase with energy

RF cavity <—
RF
generator
: . Ts =h TRF A integer,
Synchronism condition wsp > R harmonic number:
<z R —hT number of RF cycles
W, = h w. V., RF per revolution
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The Synchrotron

The synchrotron is a synchronous accelerator since there is a synchronous RF
phase for which the energy gain fits the increase of the magnetic field at each
turn. That implies the following operating conditions:

E e\; sind@ —  Energy gain per turn

O =] =cte—  Synchronous particle

RF synchronism
(h - harmonic number)

_— . Wne =how,—
injection extraction RF r

; bending p=Ccte R=cte — constant orbit

radius

Bp = % — B —— Variable magnetic field

e

If v&c, O, hence ®Wpgremain constant (ultra-relativistic e”)
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The Synchrotron

Energy ramping is simply obtained by varying the B field (frequency follows v):

dp : , 2per RB
p=eBr = —=erB = (D), =¢ BT, =
dt 1%
Since: E°=E +p°c® = DE=vDp
(DE) =(DW) =2per RB=eVsinf

Stable phase ¢, changes during energy ramping

. B . '
sing, =27pR — "™ | g :arcsm£27sz AB }
VRF VRF

 The number of stable synchronous particles is equal to the
harmonic number h. They are equally spaced along the circumference.

* Each synchronous particle satisfies the relation p=eBp.
They have the nominal energy and follow the nominal frajectory.
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The Synchrotron

During the energy ramping, the RF frequency
increases to follow the increase of the War =WB,R,)

revolution frequency : h

Hence: fRF(t): v(t) _ 1 ec
h  2pR, 2pE(f)R,

B (2) (using p(t)=eB(t)r, E=mc* )

Since E° = (mo(:z)2 +pzc2 the RF frequency must follow the variation
of the B field with the law
B(t)? ik

Jer(t) _ ¢ '
i 2PR 1 (m,c” | ecr)’ +B(t)2g

This asymptotically tends towards £ —— <
compared to myc’ [ (ecr) 2PR,
which corresponds to y — ¢

when B becomes large
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Dispersion Effects in a Synchrotron

If a particle is slightly shifted in
cavity momentum it will have a different
orbit and the length is different.

The "momentum compaction factor” is
defined as:

Circumference dl/L g = P dL

2nR a:d[/ _Z%
P

If the particle is shifted in momentum it
will have also a different velocity.

As a result of both effects the revolution
frequency changes:

p=particle momentum d f

R=synchrotron physical radius h = /fr b P df

f.=revolution frequency - d ]/ T _p
P
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Dispersion Effects in a Synchrotron (2)

pdL ds, = rdq s _P+dp
L dp ds=(f +x)dq

The elementary path difference
from the two orbits is: definition of dispersion D,

dl _ds-ds, x i D dp

ds, ds, oo p

leading to the total change in the circumference:

D_dp

dL = Gyl = (‘)’ridso O— L as,
C

< >, means that

the average is
1 D (S) With p=ce in <D > considered over
a = dSO straight sections o =~ 2/m the bending
f (S) we get: R magnet only

CAS Trondheim, 18-29 August 2013 29



Dispersion Effects in a Synchrotron (3)

bc b d. _db dR _db _dp

)= 2pR b RT b T p
definition of momentum
compaction factor
- 7
d(1- b° ]
gl n 0, )y
% p b (1_/92)2 \ Yzjb
g
df dp
r 1
dof, (1 o _f 1
f _(72 O‘) p - Ty
n=0 at the transition energy Vo = %
a

CAS Trondheim, 18-29 August 2013
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Phase Stability in a Synchrotron

From the definition of n it is clear that an increase in momentum gives
- below transition (n > 0) a higher revolution frequency
(increase in velocity dominates) while

- above transition (n < O) a lower revolution frequency (v = ¢ and longer path)
where the momentum compaction (generally > O) dominates.

eV

M, - Stable synchr. Particle

P, p,a form <0
eV, k- —-"f--"-""-"""""""-"-" """ —“"—— -~ — -« -~ - - - — - — — — :
N, :\ N 5 above transition
- >0
D T - Py
_d_
77 T 7/2 (04
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Crossing Transition

At fransition, the velocity change and the path length change with
momentum compensate each other. So the revolution frequency there is
independent from the momentum deviation.

Crossing transition during acceleration makes the previous stable
synchronous phase unstable. The RF system needs to make a rapid change
of the RF phase, a 'phase jump'.

High energy LLow energy

h /£
\/
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Synchrotron oscillations

Simple case (no accel.): 2= const., below transition V<V
The phase of the synchronous particle must therefore be ¢, = O.

d, - The particle is accelerated

- Below fransition, an increase in energy means an increase in revolution
frequency

- The particle arrives qur'Flie‘F' - tends toward ¢,

\ v

0, - The particle is decelerated
- decrease in energy - decrease in revolution frequency

- The particle arrives later - tends toward ¢,
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Synchrotron oscillations (2)

Phase space picture A% A

(.3\ |

CAS Trondheim, 18-29 August 2013
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Synchrotron oscillations (3)

Case with acceleration Bincreasing V<V

N\

¢ = gt

»

AP/
Phase space picture A

¢s<¢<7z-_¢s

stable region -
=

unstable regior\

CAS Trondheim, 18-29 August 2013

separatrix

[
»

¢

The symmetry of the
case B = const. is lost
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Longitudinal Dynamics in Synchrotrons

It is also often called “synchrotron motion”.

The RF acceleration process clearly emphasizes two coupled
variables, the energy gained by the particle and the RF phase
experienced by the same particle. Since there is a well defined
synchronous particle which has always the same phase ¢, and the
nominal energy E, it is sufficient to follow other particles with
respect to that particle.

So let's introduce the following reduced variables:

revolution frequency Af. =1, - frs
particle RF phase : Ad = ¢ - ¢
particle momentum : Ap = p - ps
particle energy : AE = E - E
azimuth angle : AO =0 - 0

CAS Trondheim, 18-29 August 2013 36



First Energy-Phase Equation

fRF:hfr = Df =-hDg with q:jW,dt

particle ahead arrives earlier
=> smaller RF phase

For a given particle with respec‘r to the reference one:

_d 1 do
Since: h= Py az’W < and ——
w, & dp o DE =v,Dp = w,,R Dp
AE___PR d(Ag)_ pR

one gets:

Wrs hﬂa)rs dt B hT]C()rs

CAS Trondheim, 18-29 August 2013
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Second Energy-Phase Equation

The rate of energy gained by a particle is: C(Ij—%_

The rate of relative energy gain with respect to the reference
particle is then: (

£
2pDk—J =el/(sinf - sinf.)
Expanding the left-hand side to first order:
: : : : . d
D(ET,) @EDT, +7,,DE =DET, + T, DE = E(Tm DE)

leads to the second energy-phase equation:

20 i[E/E] = eﬁ(smf sinf )

CAS Trondheim, 18-29 August 2013
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Equations of Longitudinal Motion

AE__ PR d(Ag) _ pR d( AE
C()rs_ h?](()rs dt - h?](()rs¢ 27Z-dt rs —eV(S|n¢ S|n¢s)

N\ /

deriving and combining

!

e d [+ 55 6ing-sing)=0

This second order equation is non linear. Moreover the parameters
within the bracket are in general slowly varying with time.

We will study some cases in the following...
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Small Amplitude Oscillations

Let's assume constant parameters R, p,, o, and n:

O | , hnaseVcosps
p+— os¢ (Sing—sings)=0 with Q= 2R

Consider now small phase deviations from the reference particle:

SiNg—sings =sin(@s+Ap)-SiNgs=CoSPsAg  (for small A¢)

and the corresponding linearized motion reduces to a harmonic oscillation:

f+WDf =0

where Q is the synchrotron angular frequency
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Stability condition for ¢,

Stability is obtained when ), is real and so €22 positive:

S

WE =€ V..hhw
2P R p,

tcosf | = W>0 <

hcosf >0

A

Stable in the region if

A
I

acceleration deceleration

CAS Trondheim, 18-29 August 2013
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Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference the
second order differential equation is non-linear:

¢+

Multiplying by ¢ and integrating gives an invariant of the motion:

¢22 ccg)232¢s (cosp+gsing,)= |

COS¢S (Sm ¢ Sin ¢s) (Q as previously defined)

which for small amplitudes reduces to:
; 2
f? Df
£y (O
2 2

Similar equations exist for the second variable : AEoxcd¢/dt

(the variable is A¢, and ¢, is constant)

=]
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Large Amplitude Oscillations (2)

When ¢ reaches n-¢, the force goes 5 . — gy
to zero and beyond it becomes non Ep %= 450 i e Y
restoring. 4t // %
Hence n-¢, is an extreme amplitude > 7 // K\
for a stable motion which in the ol __, / | _
f Jof ™\ 6'0°K 9%° \420' 150° -ﬁi" }
phase space( —,Df ) is shown as O\ \ "
. VVs ) -4 \\\ T ,
closed ftrajectories. L Wi
-
-2 e

Equation of the separatrix:
#_ L
> ~osy (COSP+osing: )= COS¢S (codz —¢)+(7—¢)sing)

Second value ¢,, where the separatrix crosses the horizontal axis:
COS @, + @ SiN @, = co(77 — 4 )+ (7 — ¢ )sin

Area within this separatrix is called "RF bucket”.
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Energy Acceptance

From the equation of motion it is seen that @ reaches an extreme
when ¢ =0, hence corresponding to ¢ = ¢..
Introducing this value into the equation of the separatrix gives:

F2 = 2WH{ 2+ (27, - p)tanf }

That translates into an acceptance in energy:

() g o

_Jl’hT]ES
G(f,)=gcosf +(2f - p)sinf p

+|

This "RF acceptance” depends strongly on ¢, and plays an important role
for the capture at injection, and the stored beam lifetime.
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RF Acceptance versus Synchronous Phase

g =180°

—— =

===

-ISO

W§

==

- @, =120°

The areas of stable motion

(closed trajectories) are
called "BUCKET".

As the synchronous phase
gets closer to 90° the
buckets gets smaller.,

The number of circulating
buckets is equal to “h".

The phase extension of the
bucket is maximum for ¢
=180° (or 0°) which
correspond to no
acceleration . The RF
acceptance increases with
the RF voltage.
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Stationnary Bucket - Separatrix

This is the case sing,:=0 (no acceleration) which means ¢,=0 or =« . The
equation of the separatrix for ¢,= © (above transition) becomes:

Y. .2

g Qicosg=07 ¢ —20¢sin’%

2 2 2
Replacing the phase derivative by the (canonical) variable W:

A

W=27AE = 27 PRs 5

Wi
\ (Vrs h Hcors
‘ and introducing the expression

0 T 27 "o for Qg leads to the following
equation for the separatrix:

C |-€VE, sini = inksini
c\ 2phh 2 2

with C=2nR, W =£2
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Stationnary Bucket (2)

Setting ¢=n in the previous equation gives the height of the bucket:

_»C _e\?Es
Wo=27 \/27Z'h77

This results in the maximum energy acceptance:

eV, .E
DEmax - M/rs Vka - bs 2 eVRF -
20 phh

27T
The area of the bucket is: Abkzzjo Wd¢

Since: jgﬂsin%d¢:4

C -eVES
one gets: Ay =8W, =16 c\/ 2phh — ka:?k
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Effect of a Mismatch

Injected bunch: short length and large energy spread
after 1/4 synchrotron period: longer bunch with a smaller energy spread.

For larger amplitudes, the angular phase space motion is slower
(1/8 period shown below) =>can lead to filamentation and emittance growth

N/ / +180 /LN/
\:\}\\\\\\\&\\\\ | \\\\\\\\\\\\\\\\K&\\ \/\\\

W.Pirkl

stationary bucket accelerating bucket
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Bunch Matching into a Stationnary Bucket

A particle trajectory inside the separatrix is described by the equation:

) o7
Q| Ps=T [P _
T ¢ (cosg+gsing )= . Sroicosp=|

+ W The points where the trajectory
crosses the axis are symmetric with

Wy respect to ¢;= =

-2

%+Q§cos¢:g§cos¢m

- .
O\\y/ " p=+0,/2(cosp, —CcOsp)
R g

=W, \/cos —- 0052/5

cos(f) = 2cos’ E 1

O 27- by,
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Bunch Matching into a Stationnary Bucket (2)

Setting ¢ = m in the previous formula allows to calculate the bunch height:

N

f _f s
Wb:kaCOS?m :kaS”]E or: Wb:%cOS7

( DE] ( DE] f [ DE] f
— | =|—] cos—2=|—| sin—
E; E, 2 \E, 2

b RF RF

This formula shows that for a given bunch energy spread the proper
matching of a shorter bunch (¢,, close to =, 7 small)
will require a bigger RF acceptance, hence a higher voltage

For small oscillation amplitudes the equa’rion of the ellipse reduces to:

Aw [5 ; (16w ( Df\
w=20% f2-(DF)) — =
e —
Ellipse area is called longitudinal emittance Ab:%Abkfz

CAS Trondheim, 18-29 August 2013 50



E -

£ - E, (MeV)

£, (MeV)

Capture of a Debunched Beam with Fast Turn-On

4

13

L

-

18

“' .

CAPTURE OF DEBUNCHED BEAM WITH FAST TURN-ON

; «.’““ ?“ '

._&‘ (ff

»“‘g’

Y &o&

S

?*tﬁi;Q; :aaegfx

TURN

.—

25

wo’fg
X
AL &
{351 E 0N

e (rad)

E - E, Mev)

L - E, (MeV)

.
R—7 e

o » +
+ b
- TS

‘ -
24 ?Q?"". +4e

400

CAS Trondheim, 18-29 August 2013




Capture of a Debunched Beam with Adiabatic Turn-On

= 17 (a)
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Potential Energy Function

The longitudinal motion is produced by a force that can be derived from

a scalar potential: 2¢ ouU
- F(g) F(¢)=—a—¢

= [*F(p)dp=— T S¢(cos¢+¢sln¢)

d

| V Feon
/~ 1 :
A \\ N /—> 4 | The sum of the potential

- \x/ energy and kinetic energy is

constant and by analogy
\\ ™ AU represents the total energy
\ N of a non-dissipative system.
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Hamiltonian of Longitudinal Motion

Introducing a new convenient variable, W, leads to the 15" order
equations:

dg_ 1 h?](()rsW

szn(A—EjzzmAp _ dt 2mpR
o %—V%/:ev(sin¢—sin¢s)

The two variables ¢,W are canonical since these equations of
motion can be derived from a Hamiltonian H(¢,W,1):

d¢ oH dW__oH
dt oW dt  0¢

H (W, t)}=eV[cosg—cosds+(g—gs )sin ¢s |- ﬁ hg(gsrswz

CAS Trondheim, 18-29 August 2013

54



Adiabatic Damping

Though there are many physical processes that can damp the
longitudinal oscillation amplitudes, one is directly generated by the
acceleration process itself. It will happen in the synchrotron, even
ultra-relativistic, when ramping the energy but not in the ultra-
relativistic electron linac which does not show any oscillation.

As a matter of fact, when E  varies with time, one needs to be more
careful in combining the two first order energy-phase equations in
one second order equation:

The damping coefficient is i A

proportional to the rate of dt (ES¢)_ (ZEAP

energy variation and from the .

definition of Q one has: Eo+Ep+Q2EAp=0
E_ L0 §+ 2 h+QAE A =0
E - “Q s
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Adiabatic Damping (2)

So far it was assumed that parameters related to the acceleration
process were constant. Let's consider now that they vary slowly with
respect to the period of longitudinal oscillation (adiabaticity).

For small amplitude oscillations the hamiltonian reduces to:
W =W cos ).t

Ag=(adpinet

Under adiabatic conditions the Boltzman-Ehrenfest theorem states
that the action integral remains constant:

/ h I'S :
H(pW.)=—Y cosp(agf - L T0mw?  with

| :M d¢g=const. (W, ¢ are canonical variables)
nce: dg_oH __ 1 h7ans

Since: dt oW 27 Rp. W

the action integral becomes: I:M %—fdt: 2];7 hRZCF‘)’:wazdt
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Adiabatic Damping (3)

~ 2
Previous integral over one period: szdt zyz-VL
h A |
leads to: —_MaosW__onst.
2RS ps QS
From the quadratic form of the hamiltonian one gets the relation:
W =27PRG: 3
h Tlors

Finally under adiabatic conditions the long term evolution of the
oscillation amplitudes is shown to be:

- V4

A¢?oc = R2\7/ZCOS¢ oc By W or AE oc Y4

W .Df = invariant
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