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Summary of the 2 lectures: 

• Acceleration methods 
• Accelerating structures 
• Phase Stability + Energy-Phase oscillations (Linac) 
• Circular accelerators: Cyclotron / Synchrotron 
• Dispersion Effects in Synchrotron 
• Longitudinal Phase Space Motion 
• Stationary Bucket 
• Injection Matching 
• Adiabatic Damping 

 
Two more related lectures: 

• Linear Accelerators I + II  – Maurizio Vretanar 
• RF Cavity Design  - Erk Jensen 
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Main Characteristics of an Accelerator 

ACCELERATION is the main job of an accelerator. 
• It provides kinetic energy to charged particles, hence increasing their momentum.  
• In order to do so, it is necessary to have an electric field      
   preferably along the direction of the initial momentum (z). dp

dt
= eEz

BENDING is generated by a magnetic field  perpendicular to the plane of the 

particle trajectory. The bending radius  obeys to the relation :  

B
e

p


FOCUSING is a second way of using a magnetic field, in which the bending 
effect is used to bring the particles trajectory closer to the axis, hence 
to increase the beam density. 

E


Newton-Lorentz Force 
on a charged particle:                                            

 
F =

dp

dt
= e E + v ´ B( ) 2nd term always perpendicular 

to motion => no acceleration 

B r [Tm] »
p [GeV/c]

0.3
in practical units: 
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Electrostatic Acceleration 

Electrostatic Field: 
 

Energy gain: W = e ΔV 
 
Limitation:  isolation problems 
    maximum high voltage (~ 10 MV) 
 
used for first stage of acceleration: 
particle sources, electron guns 
x-ray tubes 

750 kV Cockroft-Walton generator 

at Fermilab (Proton source) 

E 

DV 

vacuum envelope 

source 
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Methods of Acceleration: Induction 

E = -Ñf -
¶A

¶t

B = mH = Ñ´ A

coil 

beam 
vacuum 

pipe 

iron yoke 

Bf 

B 
Bf 

E 

R 

beam 

From Maxwell’s Equations: 
 
The electric field is derived from a scalar potential φ and a vector potential A 
The time variation of the magnetic field H generates an electric field E 
 
 
 
 
 
 
 
 
Example: Betatron 
The varying magnetic field is used to guide 
particles on a circular trajectory as well as 
for acceleration. 
Limited by saturation in iron  
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Radio-Frequency (RF) Acceleration 

Cylindrical electrodes (drift tubes) separated by gaps and fed by a RF 
generator, as shown above, lead to an alternating electric field polarity 

   Synchronism condition                    L = v T/2  v = particle velocity 
T = RF period 

D.Schulte 

Similar for standing wave 
cavity as shown (with v≈c) 

Electrostatic acceleration limited by isolation possibilities => use RF fields 

Wideröe-type 
structure 
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Resonant RF Cavities 

- Considering RF acceleration, it is obvious that when particles get high 
velocities the drift spaces get longer and one loses on the efficiency. 
=> The solution consists of using a higher operating frequency. 
 

- The power lost by radiation, due to circulating currents on the electrodes, 
is proportional to the RF frequency. 
=> The solution consists of enclosing the system in a cavity which resonant 
frequency matches the RF generator frequency. 

- The electromagnetic power is now 
constrained in the resonant volume 
 

- Each such cavity can be independently 
powered from the RF generator 
 

- Note however that joule losses will 
occur in the cavity walls (unless made 
of superconducting materials) 
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Some RF Cavity Examples 

  L = vT/2  (π mode)                         L = vT (2π mode) 

              Single Gap                                 Multi-Gap 
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L

vs
RF  2

Synchronism condition 

RFsRFs TvL 

 Lg 

g 

L1 L2 L3 L4 L5 

RF generator 

Used for protons, ions (50 – 200 MeV, f ~ 200 MHz) 

RF acceleration: Alvarez Structure 

LINAC 1 (CERN) 
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Transit time factor 

In the general case, the transit time factor is: 

Ta =

E1(s,r) cos wRF

s

v

æ

èç
ö

ø÷
ds

-¥

+¥

ò

E1(s,r) ds
-¥

+¥

ò

Transit time factor 
defined as: 

Ta =
energy gain of particle with v = bc

maximum energy gain (particle with v®¥)

const.),(1 
g

V
rsE RF

•  0 < Ta < 1 
• Ta  1  for g  0, smaller ωRF 

 
Important for low velocities (ions) 

E(s,r,t) = E1(s,r) × E2(t)for 

Simple model 
uniform field: 

Ta = sin
wRFg

2v

wRFg

2v
follows: 

The accelerating field varies during the passage of the particle 
=> particle does not always see maximum field => effective acceleration smaller 
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Disc loaded traveling wave structures 

-When particles gets ultra-relativistic (v~c) the drift tubes become very long 
unless the operating frequency is increased. Late 40’s the development of 
radar led to high power transmitters (klystrons) at very high frequencies 
(3 GHz). 
-Next came the idea of suppressing the drift tubes using traveling waves. 
However to get a continuous acceleration the phase velocity of the wave needs 
to be adjusted to the particle velocity. 

solution: slow wave guide with irises     ==>    iris loaded structure 

CLIC Accelerating Structures (30 & 11 GHz) 
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The Traveling Wave Case 

The particle travels along with the wave, and 
k represents the wave propagation factor. 

Ez = E0 cos wRFt -wRF

v

vj

t -f0

æ

è
çç

ö

ø
÷÷

Ez = E0 cos wRFt - kz( )

k =
wRF

vj

z = v(t - t0 )

wave number 

vφ = phase velocity 

v = particle velocity 

If synchronism satisfied: 
 
where Φ0 is the RF phase seen by the particle.  

Ez = E0 cosf0
v = vφ           and 
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Energy Gain 

In relativistic dynamics, total energy E and momentum p are linked by 
 
       W kinetic energy 
 

 
Hence:  
 

The rate of energy gain per unit length of acceleration (along z) is then: 

 
 
 
and the kinetic energy gained from the field along the z path is: 
 
 
 
where V is just a potential. 
 

cpEE
222

0
2 

dpvdE 

dE

dz
=v

dp

dz
=

dp

dt
=eEz

dW =dE=eEz dz W =e Ez dzò = eV

(E = E0 +W )
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Velocity, Energy and Momentum  

=> electrons almost reach the speed of light 
    very quickly (few MeV range)  

p = mv =
E

c2
bc = b

E

c
= bg m0cMomentum 

normalized velocity 

total energy 

rest energy 
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Summary: Relativity + Energy Gain 

RF Acceleration 
 
 
 
 
 
 
 
 
 
(neglecting transit time factor) 
 
The field will change during the 
passage of the particle through the 
cavity 
=> effective energy gain is lower 
 

Newton-Lorentz Force                                            

Relativistics Dynamics 
 
 
 
 
 
 
 
 
                 
 

 

cpEE
222

0
2  dpvdE 

 

dE

dz
=v

dp

dz
=

dp

dt
=eEz

 dE=dW =eEz dz
 
W =e Ez dzò

 
Ez = Êz sinwRFt= Êz sinf t( )

 Êz dz =V̂ò

sinV̂eW 

 
F =

dp

dt
= e E + v ´ B( ) 2nd term always perpendicular 

to motion => no acceleration 

p = mv =
E

c2
bc = b

E

c
= bg m0c

2

1
1


 

c

v
g =

E

E0

=
m

m0

=
1

1- b 2
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1. For circular accelerators, the origin of time is taken at the zero crossing of the RF 
voltage with positive slope 

Time t= 0 chosen such that:  

1 

1 

tRF 

E1(t) = E0 sin wRF t( )

E1
2 

2 

tRF 

E2(t) = E0 cos wRF t( )

2E

2. For linear accelerators, the origin of time is taken at the positive crest of the RF 
voltage 

Common Phase Conventions 

3. I will stick to convention 1 in the following to avoid confusion 
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Let’s consider a succession of accelerating gaps, operating in the 2π mode, 
for which the synchronism condition is fulfilled for a phase s . 

eVs = eV̂ sin Fs
is the energy gain in one gap for the particle to reach the 
next gap with the same RF phase: P1 ,P2, …… are fixed points. 

Principle of Phase Stability (Linac) 

If an energy increase is transferred into a velocity increase  =>  
 M1 & N1 will move towards P1 => stable  
 M2 & N2 will go away from P2  => unstable 
(Highly relativistic particles have no significant velocity change) 

For a 2π mode, 
the electric field 
is the same in all 
gaps at any given 
time. 
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00 










z

zE

t

V
Longitudinal phase stability means :  

The divergence of the field is 
zero according to Maxwell :  000. 
















x

E

z

E

x

E
E xzx

defocusing 
RF force  

External focusing (solenoid, quadrupole) is then necessary 

Transverse focusing fields at the entrance and defocusing at the exit of the cavity. 
Electrostatic case:  Energy gain inside the cavity leads to focusing 
RF case:    Field increases during passage => transverse defocusing! 

A Consequence of Phase Stability 
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- Rate of energy gain for the synchronous particle: 

s
ss eE

dt

dp

dz

dE
sin0

ss EEWWw  s 

     smalleEeE
dz
dw

sss .cossinsin 00 

- Rate of change of the phase with respect to the synchronous one: 

 s

s

RF

s
RF

s
RF vv

vvvdz
dt

dz
dt

dz
d

























 2

11 




Since:    
3

0

22

2
ss

s
s

ss
vm

wc
cvv





 

- Rate of energy gain for a non-synchronous particle, expressed in 

reduced variables,                                       and                      : 

Energy-phase Oscillations (1) 
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Energy-phase Oscillations (2) 

one gets: 
w

vmdz
d

ss

RF
33

0 




Combining the two 1st order equations into a 2nd order equation gives: 

0
2

2

2

 


s
dz

d
33

0

02 cos

ss

sRF
s

vm

eE




with 

Stable harmonic oscillations imply: Ws

2 > 0 and real

hence: 0cos s

And since acceleration also means: 0sin s

You finally get the result for 
the stable phase range: 2

0
  s
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DE, Dp/p 

 

Emittance:  phase space area including 
 all the particles  

NB: if the emittance contour correspond to a 
possible orbit in phase space, its shape does not 
change with time (matched beam)  

DE, Dp/p 

 

acceleration 

deceleration 

move  
backward 

move  
forward 

The particle trajectory in the 
phase space (Dp/p, ) describes 
its longitudinal motion. 

reference 

Longitudinal phase space 
 

The energy – phase oscillations can be drawn in phase space: 
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Circular accelerators: Cyclotron 

Cyclotron frequency 




0m

Bq


1.   increases with the energy 
 no exact synchronism 
 

2.  if  v  c      1 

Synchronism condition 

RFs

RFs

Tv







2

B  = constant 
RF = constant 

B 

RF generator, RF  

g 

Ion source 

Extraction 
electrode 

Ions trajectory 

Used for protons, ions 
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Synchrocyclotron: Same as cyclotron, except a modulation of RF 
 B = constant 

   RF  = constant RF decreases with time 

The condition: 
)(

)()(
0 tm

Bq
tt RFs


  Allows to go beyond the  

non-relativistic energies 

Cyclotron / Synchrocyclotron 

TRIUMF 520 MeV cyclotron   Vancouver - Canada 
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1.  Constant orbit during acceleration 
  

2. To keep particles on the closed orbit, 
B should increase with time 
 

3.   and RF increase with energy 
 E 

R 

RF 
generator 

B 

RF cavity 

Synchronism condition 

RF

s

RFs

Th
v

R

ThT





2

h integer, 
harmonic number: 
number of RF cycles 
per revolution wRF = hwr

Circular accelerators: The Synchrotron 
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The Synchrotron 

The synchrotron is a synchronous accelerator since there is a synchronous RF 
phase for which the energy gain fits the increase of the magnetic field at each 
turn. That implies the following operating conditions: 

B
e

PB

cteRcte

h

cte

Ve

rRF

s

















sin
^

Energy gain per turn 
 

 
Synchronous particle 
 
 
RF synchronism  
(h - harmonic number) 
 

Constant orbit 
 

 
Variable magnetic field 

If v≈c,  r hence RF remain constant (ultra-relativistic e- ) 

B 

injection extraction 

 

R=C/2π 

E 

Bending  
magnet 

bending 
radius 
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Energy ramping is simply obtained by varying the B field (frequency follows v): 

  
p = eBr Þ

dp

dt

= er B Þ (Dp)turn = er BTr =
2p er RB

v

Since:   
 E

2 = E0

2 + p2c2 Þ DE = vDp

• The number of stable synchronous particles is equal to the  
   harmonic number h.  They are equally spaced along the circumference. 

• Each synchronous particle satisfies the relation p=eB.  
  They have the nominal energy and follow the nominal trajectory.  

The Synchrotron 

turn
DE( ) =

s
DW( ) =2perRB=eV̂ sin

sf

Stable phase φs changes during energy ramping  

RF

s
V

B
R

ˆ
2sin


 
















RF

s
V

B
R

ˆ
2arcsin



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During the energy ramping, the RF frequency 
increases to follow the increase of the 
revolution frequency : 

Since          the RF frequency must follow the variation 

of the B field with the law   
E2 = (m0c

2 )2 + p2c2

The Synchrotron 

wr =
wRF

h
=w(B, Rs )

Hence:           ( using   ) fRF (t)

h
=

v(t)

2pRs

=
1

2p

ec2

Es(t)

r

Rs

B(t) p(t) = eB(t)r, E = mc2

fRF (t)

h
=

c

2p Rs

B(t)2

(m0c
2 / ecr)2 + B(t)2

ì
í
î

ü
ý
þ

1
2

This asymptotically tends towards   when B becomes large 
compared to 
which corresponds to   

fr ®
c

2p Rsm0c
2 / (ecr)

v®c
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Dispersion Effects in a Synchrotron 

If a particle is slightly shifted in 
momentum it will have a different 
orbit and the length is different. 

The “momentum compaction factor” is 
defined as: 

a =
p

L

dL

dp

If the particle is shifted in momentum it 
will have also a different velocity.  
As a result of both effects the revolution 
frequency changes: 

dp
df

f
p r

r



p=particle momentum 

R=synchrotron physical radius 

fr=revolution frequency 

E+E 

E 

cavity 

Circumference 

        2R a =

dL
L

dp
p

Þ

h =

d fr

fr

d p
p

Þ



CAS Trondheim, 18-29 August 2013 29 

Dispersion Effects in a Synchrotron (2) 

a =
p

L

dL

dp



x

0s

s
p

dpp 

d 

x 

ds0 = rdq

ds = r + x( )dq

The elementary path difference 
from the two orbits is: 

dl

ds0

=
ds - ds0

ds0

=
x

r
=

Dx

r

dp

p

leading to the total change in the circumference: 

dL = dl
C

ò =
x

rò ds0 =
Dx

r

dp

p
ds0ò

With ρ=∞ in 
straight sections 
we get: R

D
mx



< >m means that 
the average is 
considered over 
the bending 
magnet only 

definition of dispersion Dx 

a =
1

L

Dx (s)

r(s)
ds0

C

ò
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Dispersion Effects in a Synchrotron (3) 

dfr

fr

= h
dp

p

fr =
bc

2pR
Þ

dfr

fr

=
db

b
-

dR

R
=

db

b
- a

dp

p

 

p = mv = bg
E0

c
Þ

dp

p
=

db

b
+

d 1- b 2( )
- 1

2

1- b 2( )
- 1

2

= 1- b 2( )
-1

g 2

db

b

p
dp

f
df

r

r








 

 2

1 


 
2

1

=0 at the transition energy  


 1
tr

definition of momentum 
compaction factor 
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Phase Stability in a Synchrotron  

From the definition of  it is clear that an increase in momentum gives 
- below transition (η > 0) a higher revolution frequency 
  (increase in velocity dominates) while 

  
- above transition (η < 0) a lower revolution frequency (v  c and longer path) 
  where the momentum compaction (generally > 0) dominates. 

Stable synchr. Particle 
for  < 0 

above transition 
 > 0 




 
2

1
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Crossing Transition 

At transition, the velocity change and the path length change with 
momentum compensate each other. So the revolution frequency there is 
independent from the momentum deviation. 

Crossing transition during acceleration makes the previous stable 
synchronous phase unstable. The RF system needs to make a rapid change 
of the RF phase, a ‘phase jump’. 
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2 

2 - The particle is decelerated 
 - decrease in energy - decrease in revolution frequency 

 - The particle arrives later – tends toward 0 

1 - The particle is accelerated 
 - Below transition, an increase in energy means an increase in revolution 
frequency 

 - The particle arrives earlier – tends toward 0 
  

 

1 

0 

RFV

tRF 

Synchrotron oscillations 

Simple case (no accel.): B = const., below transition  tr 

The phase of the synchronous particle must therefore be 0 = 0. 
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1 

0 

RFV

t2 

p
pD



Phase space picture 

Synchrotron oscillations (2) 
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s 

RFV

tRF 

 

p
pD



ss  

stable region 

unstable region 

separatrix 

The symmetry of the 
case B = const. is lost 

Synchrotron oscillations (3) 

2 

1 

Case with acceleration B increasing  tr 

Phase space picture 
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Longitudinal Dynamics in Synchrotrons 

It is also often called  “synchrotron motion”. 

The RF acceleration process clearly emphasizes two coupled 
variables, the energy gained by the particle and the RF phase 
experienced by the same particle. Since there is a well defined 
synchronous particle which has always the same phase s, and the 
nominal energy Es, it is sufficient to follow other particles with 
respect to that particle. 
So let’s introduce the following reduced variables: 

               revolution frequency :             Dfr = fr – frs 

                     particle RF phase     :              D =  - s 

               particle momentum   :              Dp = p - ps 

               particle energy         :              DE = E – Es 

                       azimuth angle            :             D =  - s  
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First Energy-Phase Equation 

fRF = h fr Þ Df = -hDq with q = wr dtò

For a given particle with respect to the reference one: 

   
dt
d

hdt
d

hdt
d

r


 11

DDD

Since: h =
ps

w rs

dw r

dp

æ

èç
ö

ø÷
s

one gets: 
 








rs

ss

rs

ss

rs h
Rp

dt
d

h
RpE 

D
D

and 

2
E = 0

2
E +

2
p 2

c

DE = vsDp = w rsRsDp

particle ahead arrives earlier 
=> smaller RF phase 

s 

D 

R 

v 
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Second Energy-Phase Equation 

The rate of energy gained by a particle is: 



2

sinˆ rVe
dt
dE

The rate of relative energy gain with respect to the reference 
particle is then: 

 

2p D
E

w r

æ

è
ç

ö

ø
÷ = eV̂ (sinf - sinfs )

leads to the second energy-phase equation: 

2p
d

dt

DE

w rs

æ

èç
ö

ø÷
= eV̂ sinf - sinf s( )

 
D ETr( ) @ EDTr + Trs DE = DETr + Trs DE =

d

dt
Trs DE( )

Expanding the left-hand side to first order: 
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 Equations of Longitudinal Motion 

 s
rs

VeE
dt
d 


 sinsinˆ2 







 D 








rs

ss

rs

ss

rs h
Rp

dt
d

h
RpE 

D
D

deriving and combining 

  0sinsin
2

ˆ








s

rs

ss Ve
dt
d

h
pR

dt
d 






This second order equation is non linear. Moreover the parameters 
within the bracket are in general slowly varying with time. 

We will study some cases in the following… 
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Small Amplitude Oscillations 

  0sinsin
cos

2

 s
s

s 




(for small D) 

 f + Ws

2Df = 0

ss

srs

s pR
Veh




2
cosˆ

2 with 

Let’s assume constant parameters Rs, ps, s and : 

   DD ssss cossinsinsinsin

Consider now small phase deviations from the reference particle: 

and the corresponding linearized motion reduces to a harmonic oscillation: 

where s is the synchrotron angular frequency  
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Stability is obtained when s is real and so s
2 positive:  

Ws

2 =
e V̂RFhhw s

2p Rs ps

cosfs Þ Ws

2 > 0 Û hcosfs > 0

Stability condition for ϕs 


2




2

3


VRF 

cos (s) 

acceleration deceleration 

0 00 0
Stable in the region if 

 < tr             < tr             > tr             > tr            
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Large Amplitude Oscillations 

For larger phase (or energy) deviations from the reference the 
second order differential equation is non-linear: 

  0sinsin
cos

2




 s
s

s 


 (s as previously defined) 

Multiplying by   and integrating gives an invariant of the motion: 

  Is
s

s 


 



sincos

cos2

22

which for small amplitudes reduces to: 

 

f2

2
+ Ws

2 Df( )
2

2
= ¢I

(the variable is D, and s is constant) 

Similar equations exist for the second variable : DEd/dt 
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Large Amplitude Oscillations (2) 

      sss
s

s
s

s

s 






sincos

cos
sincos

cos2

222










    ssssmm  sincossincos 

Second value m where the separatrix crosses the horizontal axis: 

Equation of the separatrix: 

When  reaches -s the force goes 
to zero and beyond it becomes non 
restoring. 
Hence -s is an extreme amplitude 
for a stable motion which in the 

phase space(            ) is shown as 

closed trajectories.  
 

f

Ws

,Df

Area within this separatrix is called “RF bucket”. 
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Energy Acceptance 

From the equation of motion it is seen that    reaches an extreme 

when        , hence corresponding to        . 

Introducing this value into the equation of the separatrix gives:    



0 s 

 
fmax

2 = 2Ws

2 2 + 2fs - p( ) tanfs{ }
That translates into an acceptance in energy: 

This “RF acceptance” depends strongly on s and plays an important role 
for the capture at injection, and the stored beam lifetime. 

G
s

f( )= 2cos
s

f + 2
s

f -p( )sin
s

féë ùû
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RF Acceptance versus Synchronous Phase  

The areas of stable motion 
(closed trajectories) are 
called “BUCKET”. 

As the synchronous phase 
gets closer to 90º the 
buckets gets smaller.  

The number of circulating 
buckets is equal to “h”. 

The phase extension of the 
bucket is maximum for s 

=180º (or 0°) which 
correspond to no 
acceleration . The RF 
acceptance increases with 
the RF voltage. 
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Stationnary Bucket - Separatrix 

This is the case sins=0 (no acceleration) which means s=0 or  . The 
equation of the separatrix for s=  (above transition) becomes: 

 22

2

cos
2 ss 


2sin2
2

22

2


 s



Replacing the phase derivative by the (canonical) variable W: 







 
rs

ss

rs h
RpEW 22 D

and introducing the expression 
for s leads to the following 
equation for the separatrix: 

W = ±2
C

c

-eV̂ sE

2phh
sin

f

2
= ±Wbk sin

f

2
with C=2Rs 

W 

 
0   2 

Wbk 
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Stationnary Bucket (2) 

Setting = in the previous equation gives the height of the bucket: 

The area of the bucket is: 

bkA = 8Wbk = 16
C

c

-eV̂ sE

2phh





2

0
2 dWAbk

Since:  



2

0
4

2
sin d

one gets: 

 h
EVe

c
CW

s
bk 2

ˆ
2




8
A

W bk
bk 

DEmax =
w rs

2p
Wbk = bs 2

-eV̂RFEs

phh

This results in the maximum energy acceptance: 
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Effect of a Mismatch 

Injected bunch: short length and large energy spread 
after 1/4 synchrotron period:  longer bunch with a smaller energy spread. 

W W 

  

For larger amplitudes, the angular phase space motion is slower  
(1/8 period shown below)    => can lead to filamentation and emittance growth 

stationary bucket  accelerating bucket  

W.Pirkl 
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Bunch Matching into a Stationnary Bucket  

A particle trajectory inside the separatrix is described by the equation: 

W 

 0   2 

Wbk 

Wb 

 

m 2-m 

  I
s

s

s  



sincos

cos2

2
2 s=  

Is  


cos
2

2

2




mss coscos
2

22

2




  coscos2 
ms



W = ±Wbk
2

cos
m

j

2
- 2

cos
j

2

The points where the trajectory 
crosses the axis are symmetric with 
respect to s=  

cos(f) = 2cos2 f

2
-1

f̂
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Bunch Matching into a Stationnary Bucket (2) 

Setting    in the previous formula allows to calculate the bunch height: 

2
cos

8

mbk
b

A
W 

bW = bkW cos m
f

2
= bkW sin

f̂

2
or: 

b

DE

sE

æ

èç
ö

ø÷
=

RF

DE

sE

æ

èç
ö

ø÷
cos m

f

2
=

RF

DE

sE

æ

èç
ö

ø÷
sin

f̂

2

This formula shows that for a given bunch energy spread the proper 
matching of a shorter bunch (m close to ,   small) 
will require a bigger RF acceptance, hence a higher voltage 

f̂

W =
bkA

16
f̂2 -

2
Df( )

2

16W

bkA f̂

æ

è
ç

ö

ø
÷ +

2

Df

f̂

æ

èç
ö

ø÷
=1

bA =
p

16
bkA f̂2

For small oscillation amplitudes the equation of the ellipse reduces to: 

Ellipse area is called longitudinal emittance 
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Capture of a Debunched Beam with Fast Turn-On 
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Capture of a Debunched Beam with Adiabatic Turn-On 
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Potential Energy Function  

 


F
dt

d 2

2

 




 UF

    FdFU
s

s

s
00

2

sincos
cos

 







The longitudinal motion is produced by a force that can be derived from 
a scalar potential: 

The sum of the potential 
energy and kinetic energy is 
constant and by analogy 
represents the total energy 
of a non-dissipative system. 
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 Hamiltonian of Longitudinal Motion 

 sVe
dt

dW  sinsinˆ 

W
Rp

h
dt
d

ss

rs



2
1

Introducing a new convenient variable, W, leads to the 1st order 
equations: 

pREW s
rs

D




 D 


 22

The two variables ,W are canonical since these equations of 
motion can be derived from a Hamiltonian H(,W,t): 

W
H

dt
d







 H
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dW

     WpR
h

VetWH
ss

rs
sss

2

4
1sincoscosˆ,,




 
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Adiabatic Damping 

Though there are many physical processes that can damp the 
longitudinal oscillation amplitudes, one is directly generated by the 
acceleration process itself. It will happen in the synchrotron, even 
ultra-relativistic, when ramping the energy but not in the ultra-
relativistic electron linac which does not show any oscillation.  

As a matter of fact, when Es varies with time, one needs to be more 
careful in combining the two first order energy-phase equations in 
one second order equation: 

 

  0

0

2

2

2

D

D

D







ss
s

s

ssss

sss

E
E
E

EEE

EE
dt
d





The damping coefficient is 
proportional to the rate of 
energy variation and from the 
definition of  s one has: 

s

s

s

s

E
E







2
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Adiabatic Damping (2) 

  .constdWI 

  W
pR

hVetWH
ss

rs
s

22

4
1cos

2

ˆ
),,( 


 D

tWW s cosˆ

  tsDD sin̂

So far it was assumed that parameters related to the acceleration 
process were constant. Let’s consider now that they vary slowly with 
respect to the period of longitudinal oscillation (adiabaticity).  

For small amplitude oscillations the hamiltonian reduces to: 

with 

Under adiabatic conditions the Boltzman-Ehrenfest theorem states 
that the action integral remains constant: 

 (W,  are canonical variables) 

W
pR

h
W
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dt
d
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
2
1




  dtW
pR

h
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d

WI
ss

rs 2

2
1 




Since: 

the action integral becomes: 
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Adiabatic Damping (3) 

leads to: 





s

WdtW
ˆ

2
2 Previous integral over one period: 

.
ˆ

2

2

constW
pR

h
I

sss

rs 


 

From the quadratic form of the hamiltonian one gets the relation: 


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
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sss

h
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W

Finally under adiabatic conditions the long term evolution of the 
oscillation amplitudes is shown to be: 
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