
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN – AB DEPARTMENT

Werner.Herr@cern.ch CERN-AB-2004-027-ABP

A MAD-X Primer

W. Herr and F. Schmidt, AB Department, CERN, 1211-Geneva 23

Abstract

The purpose of this note is to serve as an introduction to MAD-X for the novice user. It
describes the basic building elements and the most important commands to define a machine
and perform the most important calculations. It cannot replace a reference manual for the
more advanced and demanding use of MAD-X, but should help starting up the design of a
new accelerator lattice and to understand existing MAD-X input. This note is a writeup of
a presentation given at a course on optics design at the CERN Accelerator School at DESY
Zeuthen, 2003.

Geneva, Switzerland
1 June 2004

1 Introduction

The MAD-X (Methodical Accelerator Design) program is a general purpose accelerator and lattice
design program. The main aim of this note is to allow the beginner to understand the main building
blocks of MAD-X and to set up and use a basic machine. The most important features are described and
discussed. Details and more advanced options must be left to the MAD-X reference manual [1, 2].

This note is a writeup of a presentation given at a course on optics design at the CERN accelerator
school [3].

The main objectives of an accelerator design program are:
• Read the elements and their sequence from a file.
• Calculate the optics parameters from a machine description.
• Define and compute (match) the desired properties of such a machine.
• Simulate and correct possible machine imperfections.
• Simulate the beam dynamics in the designed machine.

Both, circular and linear accelerators (or beam lines) are normally handled by such programs.

1.1 What is needed as input to design an accelerator lattice ?

The design of a machine requires the definition of the machine and the basic ingredients are:
• Definition of the properties of all machine elements.
• Strength of all active machine elements.
• Position of all machine elements in the machine, i.e. the order in which they appear in the acceler-

ator or beam line.
These definitions are helped by a well adapted and defined input language.

2 MAD-X language

For the definition of a machine and the execution of actions, an input language is used following a well
defined syntax and grammar.

2.1 Coordinate system

A circular or linear machine in MAD-X is a sequence of elements placed along the reference orbit which
is defined as the path through the ideal magnets of a charged particle with the reference momentum
(Fig. 1). This defines the coordinate system (x, y, s) where x is the transverse coordinate in the bending
plane (usually horizontal, positive values to the outside) and y is the orthogonal transverse coordinate
(usually vertical, positive values upward). The local variable s is the tangent to the reference orbit. The
coordinate system is therefore a local system moving along the reference path.

2.2 Conventions

Units:
For all computations MAD-X uses SI units, i.e. in particular metre and radian for length and angle.

Input:
The MAD-X input consists of a sequence of statements (commands, actions, or declarations etc.). All
statements are free format with ”,” as separators, can occupy any number of lines and are terminated by
a semicolon ”;”.

2

Reference orbit

Actual orbit

ρ

ρ

s

y

x

Figure 1: Local coordinate system as used by MAD-X.

Blank lines have no effect. All statements are not case sensitive with the exception of strings en-
closed in ” ”.
Commands or statements can be given a label which allows them to be used or re-used later on:
LAB01: mycommand;

Comments:
A single line (not a statement across several lines !) can be commented by ”!” or ”//”. A region of lines
can be commented by enclosing them between ”/*” and ”*/”.

2.3 Variables and expressions

Parameter values:
Integer or floating point numbers can be assigned to named parameters and can be used in further dec-
larations or commands, e.g.:
LENDIP = 8.0;
Various names (keywords used by MAD-X) are protected and cannot be used as variables or labels.
The numerical value of an assignment can be replaced by an expression, e.g.:
LNFX = 6912.00/(NCELL*(4*LBEND + 2*LQUAD));

Expressions:
Parameters and variables can be used in expressions, in particular to define dependent quantities. Stan-
dard arithmetic operations and functions such as SQRT(), EXP(), trigonometric functions etc. can be
used in the expressions as well as random number generators [1, 2].
E.g.: ANGLE = 2.0*PI/NBEND;
can compute the bending angle of a dipole, given the total number of bending magnets (nbend). The
constant PI is predefined in MAD-X, together with many other important constants and particle prop-
erties.

3

Deferred expressions:
The usual expressions are evaluated once when the parameter is used,
e.g. DX = GAUSS()*0.001;
assigns a random number following a Gaussian distribution with a width of 1 mm to the parameter DX.
This value is kept in all computations.
A deferred expression is declared by ”:=” instead of ”=” and is evaluated every time the parameter is
used, e.g.:
DX := GAUSS()*001;
assigns a different random number everytime the parameter DX is used in the program

The distinction between normal and deferred expressions becomes important for error assignment
and matching.

3 Machine description

3.1 Thick and thin elements

For the calculations, the elements can be defined either as so-called thick lenses with a finite length or
as so-called thin lenses with zero length. In the latter case, the effects of an element (e.g. a magnet) on
the beam are represented as impulses (kicks) at a fixed value s on the reference orbit. This simplifies
the treatment since it allows to treat the machine as a series of linear transformations separated by the
”kicks” at the positions of the thin elements. This method is very fast and symplectic by construction
and it is therefore best suited for particle tracking.

The disadvantage is the loss of precision when the magnets are very long (compared to the size of
the machine) or when fringe fields are important. Part of this precision can be recovered by sub-dividing
the magnets into slices, i.e shorter sections, each representing a thin lens.

3.2 Element definition

Elements are defined using the concept of element classes. All quadrupoles in a machine belong to the
class QUADRUPOLE. We can define subclasses with different properties with statements like:

MQL: QUADRUPOLE, L=5.0;
MQS: QUADRUPOLE, L=1.5;

where we define two classes (MQL and MQS) of quadrupoles of different length (thick elements).
The definitions can be used to define the real quadrupoles like e.g.:

QFL01: MQL; // Focusing quadrupoles
QFS01: MQS;
QDL01: MQL; // Defocusing quadrupoles
QDS01: MQS;

The quadrupoles defined like this inherit all properties of the class unless they are specified explicitly,
in which case they are overwritten. All numerical attributes in a class definition can be expressions.

Dipole magnets can be defined as rectangular (RBEND) or sector (SBEND) bending magnets. E.g.:

MBL: RBEND, L=14.3;
MBS: RBEND, L=5.0;

4

The length of a rectangular bending magnet is by default the arc length. All details on the definition of
bending magnets are found in the reference manual [1, 2].

3.3 Element strength definition

3.3.1 Dipoles

The strength of a bending magnet is specified by the bending angle or alternatively the dipole coefficient
k0:

k0 =
1

p/c
By [in T]

[

=
1

ρ
=

angle

l

]

[in rad/m]

In the latter case, a finite length must be specified.
The definition for a dipole magnet is:

MB001: RBEND, L=14.3, ANGLE=2*PI/1132; // Total number of dipoles is 1132

or, alternatively:

MB001: MBL, ANGLE=2*PI/1132; // Total number of dipoles is 1132

using the defined sub-class.

3.3.2 Quadrupoles

We define a quadrupole by its quadrupole coefficient k1:
which is defined as:
k1 =

1

p/c

δBy

δx
[in T/m]

[

=
1

l · f

]

We define quadrupoles as:

QF007: QUADRUPOLE, L=5.0, K1 = +0.00147235;
QD007: QUADRUPOLE, L=5.0, K1 = -0.00147235;

or using sub-classes:

QF007: QFL, K1 = +0.00147235;
QD007: QDL, K1 = -0.00147235;

3.3.3 Sextupoles

Higher order multipoles such as sextupoles we can define as:

SF007: SEXTUPOLE, L=1.4, K2 = +0.00147235;

with:
k2 =

1

p/c

δ2By

δ2x

[

in T/m2
]

5

3.3.4 Orbit correctors

Orbit correction dipoles are identified by the keyword KICKER. The strength of an orbit corrector is the
deflection angle (KICK) measured in rad. Valid definitions are:

LKICK = 0.1;
MCV01: VKICKER, L=0.1, KICK:=KCV01;
MCV02: VKICKER, L=LKICK, KICK:=KCV02;
MCH01: HKICKER, L=LKICK, KICK:=KCH01;
MC001: KICKER, L=0.1, VKICK:=KXV001, HKICK:=KXH001;

The class VKICKER or HKICKER refer to orbit correctors for the vertical and horizontal planes re-
spectively. The attribute KICK refers to the corresponding plane only. The single class KICKER can
be used to specify orbit correctors for both planes. In that case, two attributes HKICK and V KICK
are needed to separate the functions in the two planes.

In the above example, the correctors and their strengths are given individual names which allows
to set them explicitly to independent values. For the standard orbit correction with MAD-X this is
however not always necessary. The declarations of the kicks as deferred expressions allows the kicks to
be changed explicitly or by the program.

3.4 Multipoles

A special class of elements is defined with the keyword MULTIPOLE. These are general elements of
zero length (thin lenses) and can be used with one or more components of any order. All thin elements
can be written as multipoles in the form:

MPM: MULTIPOLE;
MPLE01: MPM, LRAD=0.0, TILT=angle,
KNL={kn0L, kn1L, kn2L, kn3L,....},
KSL={ks0L, ks1L, ks2L, ks3L,....};

The components KNL and KSL are the normal and skew components of the multipole multiplied by
the relevant magnetic length. Note that the strength definitions are position dependent, therefore leading
zeroes must be filled for components that do not exist. The attribute LRAD is a fictitious length, which
is only used to compute synchrotron radiation effects. For the computation of lattice functions etc., it
can be set to some dummy value.

Using multipoles, a thin quadrupole can be defined as:

QFT: MPM, LRAD=0, KNL={0, kn1L, 0, 0 };

The thin lens version of a dipole would be written as:

MBT: MPM, LRAD=0, KNL={kn0L, 0, 0, 0 };

3.5 Markers

The element class MARKER is used to insert an inactive element at a position s for later use, e.g. as
a reference. The syntax is:

START IP: MARKER, AT = 1839.872;

6

If present in a sequence, the lattice functions are calculated at their positions and they play an important
role for matching.

A complete list of keywords and pre-defined element classes is found in the reference manual [1, 2].

3.6 Element position in a SEQUENCE

The representation of the machine is called a sequence. It defines the order in which the elements ap-
pear in the accelerator or beam line. In a simple case, a sequence can be defined like:

seq name: SEQUENCE, REFER=CENTRE, LENGTH=6912.00;
...
...
MQF05 : MQL, AT = 256.0000;
BPMH05 : MONITOR, AT = 1.75, FROM=MQF05;
MCH05 : HKICKER, AT = 2.10, FROM=MQF05;
MBL05.002: MBL, AT = 265.9000;
MBL05.002: MBL, AT = 278.1000;
MQD05 : MQL, AT = 288.0000;
BPMV05 : MONITOR, AT = 1.75, FROM=MQD05;
MCV05 : VKICKER, AT = 2.10, FROM=MQD05;
MBL05.003: MBL, AT = 297.9000;
MBL05.004: MBL, AT = 310.1000;
...
...
ENDSEQUENCE;

The keywords SEQUENCE and ENDSEQUENCE define the beginning and end of the definition
and the sequence is assigned a name seq name.

The statements look familiar and the additional attribute AT defines the position relative to the
beginning of the sequence. A position relative to an existing element can be assigned with the FROM
attribute. The total LENGTH of the sequence is specified on the header line of the sequence. The
positions can be defined at the CENTRE, ENTRY or EXIT of an element, indicated by the REFER
attribute. The names given to the elements must be unique, i.e. must not appear twice in the same
sequence.

Several sequences with different names can be defined in the same file.
In the example above we have assigned the position to named elements. A second possibility is to

use class names like in:
...
MBL: MBL, AT = 278.1000;
MQD: MQD, AT = 288.0000;
BPM: BPM, AT = 1.75, FROM=MQD05;
MCV: MCV, AT = 2.10, FROM=MQD05;
MBL: MBL, AT = 297.9000;
MBL: MBL, AT = 310.1000;
...
assuming BPM, MCV etc. have been defined as classes before. In this case all elements have the same
name which is the name of the class and they cannot be distinguished by name.

Finally, a previously defined sequence can be inserted, allowing the possibility to nest sequences. In
the example 1 in the appendix I have defined a complete machine using the commands already discussed
up to now. The dipoles are defined as thin elements whereas the quadrupoles and sextupoles have a finite
length.

7

3.7 Using repetitive definition for periodic machines

The sequence of a periodic machine or the periodic part of a machine can be defined using the MAD-X
macro commands. After the usual definition of the cell length lcell, the half length of a quadrupole
lquad2 and the number of cells ncell, the whole machine can be defined with a while-loop:

n = 1;

while (n < ncell+1) {

qf: qf, at=(n-1)*lcell+lquad2;

lsf: lsf, at=(n-1)*lcell+lquad2+2.5;

ch: ch, at=(n-1)*lcell+lquad2+3.1;

bpm: bpm, at=(n-1)*lcell+lquad2+3.2;

mbsps: mbsps, at=(n-1)*lcell+lquad2+3.50;

mbsps: mbsps, at=(n-1)*lcell+lquad2+9.90;

mbsps: mbsps, at=(n-1)*lcell+lquad2+22.10;

mbsps: mbsps, at=(n-1)*lcell+lquad2+28.50;

qd: qd, at=(n-1)*lcell+lquad2+32.00;

lsd: lsd, at=(n-1)*lcell+lquad2+34.50;

cv: cv, at=(n-1)*lcell+lquad2+35.10;

bpm: bpm, at=(n-1)*lcell+lquad2+35.20;

mbsps: mbsps, at=(n-1)*lcell+lquad2+35.50;

mbsps: mbsps, at=(n-1)*lcell+lquad2+41.90;

mbsps: mbsps, at=(n-1)*lcell+lquad2+54.10;

mbsps: mbsps, at=(n-1)*lcell+lquad2+60.50;

n = n + 1;

}

The two types of sequence definitions are entirely equivalent.
A complete definition using this technique is given in example 2 in the appendix 1.2. The MAD-X

commands and the resulting output are identical to example 1.

4 MAD-X commands

In addition to the statements which are used to define a machine, the MAD-X commands are used to
define and execute actions on the machines, e.g. calculations of Twiss functions, I/O of the lattices,
particle tracking etc. An important part of the design procedure is lattice matching, i.e. to vary element
parameters to make machine properties (e.g. Twiss functions) assuming defined values at specified
positions (e.g. interaction points etc.). A complete description of all MAD-X commands is found in
[1, 2]. Here I shall list the most important commands which are necessary to do the basic calculations.

4.1 BEAM command

Some of the MAD-X actions require the knowledge of the beam properties. They are defined with the
BEAM command:

BEAM, PARTICLE=name, ENERGY=xxx, SEQUENCE=sname;

The name of the particle type can be given as well as the particle’s energy. The properties (e.g. mass and
charge) of the most important particles are known to MAD-X. Alternatively, the mass and charge can
be specified with MASS = and CHARGE = . When the SEQUENCE attribute is given, it will assign the

8

beam only to this particular sequence, otherwise to the active sequence. A complete list of all possible
beam quantities is found in [1, 2].

4.2 Input definition

MAD-X statements and commands can be given on the standard input or can be read from a file with:

CALL,FILE=”filename”;

This file can contain one or more sequences, part of a sequence or commands and is inserted at the
position of the call.

After a sequence has been read, it can be used with:

USE, PERIOD=sname;

This command will expand the specified sequence, insert the drift spaces and make it active.

4.3 MAD-X actions

MAD-X actions are executed to perform operations on the available machines. To calculate the linear
lattice functions (Twiss parameters) around the machine, the action:

TWISS;

must be executed, which operates on the sequence defined in the last USE command. However, a
sequence can be specified explicitly on the Twiss command. A summary table is given after execution.

4.4 MAD-X output

The TWISS command can be modified to specify the wanted output:

SELECT,FLAG=TWISS,COLUMN=NAME,S,MUX,BETX,MUY,BETY;
TWISS,FILE=”twiss.out”;

In the SELECT command the lattice functions wanted can be specified before TWISS is executed.
The full list of the lattice functions is given in [1, 2]. The lattice functions are written into the file
”twiss.out”.

The SELECT command can be used to restrict the output to only a range or type of elements:

SELECT,FLAG=TWISS,RANGE=beg/end;
or: SELECT,FLAG=TWISS,PATTERN=”̂Q.*”;

The first will output the lattice functions only within the specified range and the second would re-
strict the output to all elements starting with the specified pattern in the element name. The SELECT
commands act for the desired action (FLAG=) and can be accumulated or overwritten.

4.5 MAD-X graphical output

MAD-X has an builtin graphics package. To plot lattice functions for example, the command sequence:

SELECT,FLAG=TWISS;
TWISS,FILE=”twiss.beta”;
PLOT, HAXIS=S, VAXIS=BETX, BETY;

9

may be used to plot the horizontal and vertical β-functions as a function of the position s. The RANGE
attribute can be used with the PLOT command. An output file and a PS-file are written simultaneously.
For details and all options see [1, 2].

4.6 MAD-X example

In the second part of example 1 the necessary MAD-X commands are given to calculated the lattice
functions with the TWISS command, write them onto a file and plot them in postscript format. At the
eand of the execution of a TWISS command, a summary table is printed:

++++++ table: summ

length orbit5 alfa gammatr

6.9120000e+03 -0.0000000e+00 1.6807003e-03 2.4392418e+01

q1 dq1 betxmax dxmax

2.6580000e+01 -3.3561557e+01 1.0754431e+02 2.5680113e+00

dxrms xcomax xcorms q2

1.9304378e+00 0.0000000e+00 0.0000000e+00 2.6620000e+01

dq2 betymax dymax dyrms

-3.3598479e+01 1.0749730e+02 0.0000000e+00 0.0000000e+00

ycomax ycorms deltap

0.0000000e+00 0.0000000e+00 0.0000000e+00

The main parameters of the lattice are summarized in this table, such as horizontal and vertical tunes
(Q1, Q2), chromaticities (DQ1, DQ2), etc.

The lattice functions βx and Dx are plotted by the above command sequence as shown in Fig.2. The
functions are plotted between the 10th and 16th quadrupole of the class QD as specified in the RANGE
attribute.

As requested, the lattice functions are written to a file ”twiss.out” and its format is shown in the last
part of appendix 1. At the beginning of this file the basic parameters are summarized again.

10

600. 700. 800. 900. 1000.
s (m)

s

10.

20.

30.

40.

50.

60.

70.

80.

90.

100.

110.
βx

(m
),

βy
(m

)

600. 1000. 1400. 1800. 2200.
s (m)

s MAD-X 1.11 23/10/03 11.36.14

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Dx
(m

)

Figure 2: Lattice functions computed and plotted by MAD-X.

11

5 Matching with MAD-X

The adjustment of machine properties, i.e. matching, is a vital part of the design process and a detail
description is beyond the scope of this introduction. However some very basic features will be demon-
strated by some examples. A basic tutorial on some matching techniques is found in [4, 5].

5.1 Global matching

Some global machine parameters such as tune or chromaticity can be adjusted by global matching. The
following two example are used as a demonstration:

MATCH, SEQUENCE=CASSPS;
VARY,NAME=KQF, STEP=0.00001;
VARY,NAME=KQD, STEP=0.00001;
GLOBAL,SEQUENCE=CASSPS,Q1=26.58;
GLOBAL,SEQUENCE=CASSPS,Q2=26.62;
LMDIF, CALLS=10, TOLERANCE=1.0E-21;
ENDMATCH;

MATCH, SEQUENCE=CASSPS;
VARY,NAME=KSF, STEP=0.00001;
VARY,NAME=KSD, STEP=0.00001;
GLOBAL,SEQUENCE=CASSPS,DQ1=0.0;
GLOBAL,SEQUENCE=CASSPS,DQ2=0.0;
LMDIF, CALLS=10, TOLERANCE=1.0E-21;
ENDMATCH;

The matching attributes and commands are enclosed beteen the match and endmatch statements. The
desired sequence can be specified. In the first example the global horizontal and vertical tunes are
matched to the desired values. The strengths of the main quadrupoles (kqf and kqd) are varied in the
procedure. In the second example the global chromaticities are match to zero, by variation of the sex-
tupole strengths ksf and ksd. Other attributes control the method used and the quality of the procedure.
The new values of the strengths are now associated with the sequence. The following execution of the
TWISS command would therefore produce the new parameters.
NOTE: the latter is only true when the quadrupole strengths are defined using deferred expressions, i.e:

QF: QUADRUPOLE, K1:=KQF;

Otherwise the new strengths KQF and KQD are calculated all right, but not assigned to the elements.
I.e. they will not be used in subsequent calculations, e.g. computing lattice functions with the TWISS
command.

5.2 Local and insertion matching

Probably the most important matching procedures are those which are used to modify the lattice locally,
e.g. for inserting non-periodic regions for experiments, collimation systems etc. In order to avoid a
distortion of other parts of the machine, the matching must be restricted to the local region and additional
constraints must ensure the smooth continuation into the periodic part of the machine.

The example below is a simple matching of a symmetric low β-insertion using four independent
quadrupoles. The matching is restricted to the range between the elements left and right where the
normal lattice parameters are given as constraints. For more details on this example see [5].

12

MATCH, SEQUENCE=CASCELL5,RANGE=LEFT/RIGHT,BETX=28.2,BETY=87.0;
VARY,NAME=KQ1.L, STEP=0.00001;
VARY,NAME=KQ2.L, STEP=0.00001;
VARY,NAME=KQ3.L, STEP=0.00001;
VARY,NAME=KQ4.L, STEP=0.00001;
CONSTRAINT,RANGE=RIGHT,SEQUENCE=CASCELL5,BETX=28.2,BETY=87.0;
CONSTRAINT,RANGE=IP,SEQUENCE=CASCELL5,BETX=10.0,BETY=1.0;
LMDIF, CALLS=100, TOLERANCE=1.0E-21;
ENDMATCH;

5.3 Example: matching a vertical orbit bump

As an example I show the commands to match a vertical orbit bump of 5 mm at a monitor. Three verical
orbit correctors are used to create and close the bump.

// Match a vertical orbit bump of 5 mm at monitor BPMV8
MATCH,ORBIT;
CONSTRAINT,RANGE=BPMV5,Y=0.0,PY=0.0; // make sure bump is closed
CONSTRAINT,RANGE=BPMV8,Y=0.005; // bump is 5 mm vertical
CONSTRAINT,RANGE=BPMV11,Y=0.0,PY=0.0; // make sure bump is closed
VARY,NAME=KCV7,STEP=0.0001;
VARY,NAME=KCV9,STEP=0.0001;
VARY,NAME=KCV10,STEP=0.0001;
LMDIF,CALLS=100,TOLERANCE=1.0E-20;
ENDMATCH;
The complete example can be found as example 3 in the appendix. It uses the sequence as defined in
example 4 (macro definition, see later). The resulting vertical orbit is shown in Fig.3.

100. 300. 500. 700. 900.
s (m)

cassps MAD-X 1.11 03/03/04 11.39.03

-0.001

0.001

0.003

0.005

0.007

0.009

0.011

y (
m) y

Figure 3: Vertical orbit bump as example for local matching.

13

6 Error definition

During the design process of a machine it becomes important to test it against imperfections. For that
purpose, alignment and field errors can be assigned to all machine elements. The calculations will
take these imperfections into account and correction procedures (e.g. orbit correction) are available in
MAD-X to test possible correction strategies.

6.1 Alignment errors

The elements in a machine can be misaligned with the available MAD-X error actions. The command
sequence:

SELECT, FLAG= ERROR, CLASS=MQ;
EALIGN, DX:=GAUSS()*0.0005; DY:=GAUSS()*0.0002;

assigns alignment errors to all quadrupoles belonging to the class MQ with a r.m.s. value of 0.5 mm
in the horizontal and 0.2 mm in the vertical plane, both following a Gaussian distribution. In that case
again the use of deferred expressions is of utmost importance. To assign the errors, the program steps
through the sequence and for every element of the selected class the corresponding misalignments DX
and DY are evaluated each time. Using the standard expression, the misalignments DX and DY are
calculated once and all elements of the selected class get the same error. For a complete list of all
misalignment options see [1, 2].

6.2 Field errors

The program allows to assign field errors of any order to the machine elements with commands like:

SELECT, FLAG= ERROR, CLASS=MB;
EFCOMP, RADIUS:=0.017, ORDER:=0,
DKNR:={0,0,GAUSS()*7E-4,GAUSS()*1E-4,0,0},
DKSR:={0,0,GAUSS()*3E-4,GAUSS()*6E-4,0,0},

In this example normal and skew field errors (sextupole and octupole) are assigned to dipole magnets of
the class MB. It is possible to assign absolute or relative field errors, the latter normalized to the strength
of the corresponding element. The RADIUS (reference for the measurement) and ORDER control this
behaviour. For a detailed discussion see [1, 2].

7 Orbit correction

A misaligned machine can be corrected using the MAD-X orbit correction procedures [6]. The input
data is taken from the last TWISS table, i.e. TWISS must run before a correction can be executed.

Very basic closed orbit correction statements are of the form:

CORRECT, PLANE=X, NCORR=20, ERROR=1.0E-04;

or

CORRECT, MODE=SVD;

For all details and options see [1, 2, 6].

14

8 Advanced options and commands

MAD-X has many more features and commands for advanced design and evaluation of accelerator
lattices. Most prominent are the evaluation of beam parameters (in case of radiation), geometrical
survey, tracking and physical and dynamic aperture determination. However, a full description is well
beyond the scope of this simplified introduction. To get a flavor, I shall give two examples, one for a
simple tracking and another for the advanced use of macros.

8.1 Particle tracking

The example shown below demonstrates particle tracking in MAD-X. It shows the simultaneous tracking
of 20 particles in horizontal phase space where the particles are distributed on a circle in x-px phase
space. All commands are enclosed between the keywords track and endtrack. The initial coordinates
of the particles are assigned with the command start and the tracking is executed with run.

Tracking in MAD-X is possible using thin lenses. A lattice defined with thick elements has to be
converted to thin lenses with the command MAKETHIN before the tracking can be done. For details
on the command MAKETHIN consult the reference manual [1, 2].

MAKETHIN,SEQUENCE=CASSPS;

USE,SEQUENCE=CASSPS;

TRACK;

NSTEP = 20;

RAD = 100.0E-06;

ANGSTP = 2*PI/NSTEP;

N = 0;

WHILE(N <= NSTEP) {

ANG = N*ANGSTP;

XS = RAD*COS(ANG);

XPS = RAD*SIN(ANG);

VALUE, XS,XPS;

START,X=XS,PX=XPS;

N = N + 1;

}

RUN,TURNS=1024;

ENDTRACK;

STOP;

The use of tracking may require additional attributes in the BEAM command, e.g. in the case of beam-
beam elements required in the simulation. The above example shows the power of the input language.

8.2 Particle tracking with PTC

Tracking with PTC allows the use of thick elements. An example how to invoke PTC tracking and to
produce the output is shown below.

ptc_create_universe;

ptc_create_layout,model=2,method=6,nst=10,exact;

ptc_start, x= 3e-2, px=0, y= 3e-2, py=0;

ptc_start, x= 6e-2, px=0, y= 6e-2, py=0;

ptc_start, x= 9e-2, px=0, y= 9e-2, py=0;

15

ptc_start, x=12e-2, px=0, y=12e-2, py=0;

ptc_start, x=15e-2, px=0, y=15e-2, py=0;

ptc_start, x=18e-2, px=0, y=18e-2, py=0;

ptc_start, x=21e-2, px=0, y=21e-2, py=0;

ptc_start, x=24e-2, px=0, y=24e-2, py=0;

ptc_start, x=27e-2, px=0, y=27e-2, py=0;

ptc_track,icase=4,closed_orbit,dump,

turns=1000 ,ffile=1; //onetable, turns=1000, norm_no=4; norm_out

plot, file="PTC_TRACK",table=track,haxis=x,vaxis=px,

particle=1,2,3,4,5,6,7,8,9, colour=1000, multiple, symbol=3;

plot, file="PTC_TRACK",table=track,haxis=y,vaxis=py,

particle=1,2,3,4,5,6,7,8,9, colour=1000, multiple, symbol=3;

ptc_track_end;

ptc_end;

8.3 Use of macros

The power of the MAD-X input language is further enhanced by the use of macros. For illustration,
example 2 in the appendix has been modified.. For some cases, it is required that the elements have
distinct names, (e.g. where all elements must be treated as separate objects, such as orbit corrections).
This can be easily done by editing example 1, where every element is listed on a separate line. Editing
the example 2 with the while loop would fail because two elements must not have the same name. Using
the macro language, the while loop can be modified like in example 3 in appendix 1.3. The definition of
a cell is now done within the subroutine inst. This subroutine takes input parameters from the calling
MAD-input and most important, can change the names of the elements, using the input information. The
result of this scheme is the same as before, however the orbit correctors, their corresponding strength
parameters and the beam position monitors are now numbered sequentially. A MAD-X input file and
the corresponding Twiss output are shown in the second part of example 3. The increasing sequence
numbers as part of the element names are now clearly visible. In this example the quadrupoles have
been misaligned in the two planes following a Gaussian distribution with 0.1 mm and 0.2 mm r.m.s.
respectivly.

Therefore the horizontal and vertical orbit is distorted and the maximum and r.m.s. values can be
found in the Twiss summary table.

9 How to run MAD-X ?

MAD-X can be run either interactively or in batch mode.

9.1 Interactive mode

To run MAD-X interactively, one can execute MAD-X and input the commands and statements in the
command line of the standard input.

Alternatively, one or more files with commands and statements can be read using the command:
CALL,FILE=”filename”;

16

9.2 Batch mode

MAD-X can be run as a background of batch program by redirecting an input file into the MAD-X
standard input. For UNIX (LINUX) like:
madx < inputfile

The output is normally send to the standard output, unless it is redirected.

17

10 APPENDIX 1

In the following, I list a few examples which may be referenced in the text. For all cases the sequence
definition is found in the first part and a MAD-X input file to use the sequence is given in the second
part of each example. All examples can be found on the web in [7].

10.1 APPENDIX 1.1: Example 1, Simplest case

10.1.1 Sequence definition (spsall.seq)

// define the total length

circum=6912.00;

// define number of cells and therefore cell length

ncell = 108;

lcell = circum/ncell;

// define lengths of elements and half lengths

lquad = 3.085;

lmb = 6.260;

lsex = 1.0;

// forces and other constants;

// element definitions;

// define bending magnet as multipole

mbsps: multipole, lrad=dummy, knl={2.0*pi/(8*ncell)};

// define quadrupole and their strengths

qsps: quadrupole, l=lquad;

qf: qsps, k1:=kqf;

qd: qsps, k1:=kqd;

kqf = 1.4631475E-02;

kqd = -1.4643443E-02;

// define sextupoles for chromaticity correction

lsf: sextupole, l=lsex,k2:=ksf;

lsd: sextupole, l=lsex,k2:=ksd;

ksf = 2.0284442E-02;

ksd = -3.8394267E-02;

// define orbit correctors and beam position monitors

bpm: monitor, l=0.1;

ch: hkicker, l=0.1;

cv: vkicker, l=0.1;

cassps: sequence, refer=centre, l = circum;

start_machine: marker, at = 0;

qf, at = 1.5425;

lsf, at = 4.0425;

ch, at = 4.6425;

18

bpm, at = 4.7425;

mbsps, at = 5.0425;

mbsps, at = 11.4425;

mbsps, at = 23.6425;

mbsps, at = 30.0425;

qd, at = 33.5425;

lsd, at = 36.0425;

cv, at = 36.6425;

bpm, at = 36.7425;

mbsps, at = 37.0425;

mbsps, at = 43.4425;

mbsps, at = 55.6425;

mbsps, at = 62.0425;

qf, at = 65.5425;

lsf, at = 68.0425;

ch, at = 68.6425;

bpm, at = 68.7425;

mbsps, at = 69.0425;

mbsps, at = 75.4425;

mbsps, at = 87.6425;

mbsps, at = 94.0425;

qd, at = 97.5425;

lsd, at = 100.0425;

cv, at = 100.6425;

bpm, at = 100.7425;

mbsps, at = 101.0425;

mbsps, at = 107.4425;

mbsps, at = 119.6425;

mbsps, at = 126.0425;

qf, at = 129.5425;

lsf, at = 132.0425;

ch, at = 132.6425;

bpm, at = 132.7425;

mbsps, at = 133.0425;

mbsps, at = 139.4425;

mbsps, at = 151.6425;

mbsps, at = 158.0425;

qd, at = 161.5425;

lsd, at = 164.0425;

cv, at = 164.6425;

bpm, at = 164.7425;

mbsps, at = 165.0425;

mbsps, at = 171.4425;

...

...

...

mbsps, at = 6775.6425;

mbsps, at = 6782.0425;

qf, at = 6785.5425;

lsf, at = 6788.0425;

19

ch, at = 6788.6425;

bpm, at = 6788.7425;

mbsps, at = 6789.0425;

mbsps, at = 6795.4425;

mbsps, at = 6807.6425;

mbsps, at = 6814.0425;

qd, at = 6817.5425;

lsd, at = 6820.0425;

cv, at = 6820.6425;

bpm, at = 6820.7425;

mbsps, at = 6821.0425;

mbsps, at = 6827.4425;

mbsps, at = 6839.6425;

mbsps, at = 6846.0425;

qf, at = 6849.5425;

lsf, at = 6852.0425;

ch, at = 6852.6425;

bpm, at = 6852.7425;

mbsps, at = 6853.0425;

mbsps, at = 6859.4425;

mbsps, at = 6871.6425;

mbsps, at = 6878.0425;

qd, at = 6881.5425;

lsd, at = 6884.0425;

cv, at = 6884.6425;

bpm, at = 6884.7425;

mbsps, at = 6885.0425;

mbsps, at = 6891.4425;

mbsps, at = 6903.6425;

mbsps, at = 6910.0425;

end_machine: marker, at = 6912.00;

endsequence;

10.1.2 MAD-X directives

TITLE, s=’MAD-X test’;

// Read input file with machine description

call file="spsall.seq";

option,-echo;

// Define the beam for the machine

Beam, particle = proton, sequence=cassps, energy = 450.0;

// Use the sequence with the name: cassps

use, period=cassps;

// Define the type and amount of output for the action TWISS

select,flag=twiss,column=name,s,x,y,mux,betx,muy,bety,dx,dy;

20

// Execute the Twiss command to calculate the Twiss parameters

// Compute at the centres of the elements and write to: twiss.out

twiss,centre,file=twiss.out;

// Plot the horizontal and vertical beta function between the

// 10th and 16th occurence of a defocussing quadrupole

plot, haxis=s, vaxis=x, betx, bety,colour=100,

range=qd[10]/qd[16];

plot, haxis=s, vaxis=dx, colour=100,

range=qd[10]/qd[36];

stop;

10.1.3 TWISS summary table

++++++ table: summ

length orbit5 alfa gammatr

6.9120000e+03 -0.0000000e+00 1.6807003e-03 2.4392418e+01

q1 dq1 betxmax dxmax

2.6580000e+01 -3.3561557e+01 1.0754431e+02 2.5680113e+00

dxrms xcomax xcorms q2

1.9304378e+00 0.0000000e+00 0.0000000e+00 2.6620000e+01

dq2 betymax dymax dyrms

-3.3598479e+01 1.0749730e+02 0.0000000e+00 0.0000000e+00

ycomax ycorms deltap

0.0000000e+00 0.0000000e+00 0.0000000e+00

21

10.1.4 TWISS lattice functions written to the file ”twiss.out”

@ NAME %05s "TWISS"

@ TYPE %05s "TWISS"

@ SEQUENCE %06s "CASSPS"

@ PARTICLE %06s "PROTON"

@ MASS %le 0.938271998

@ CHARGE %le 1

@ ENERGY %le 450

@ PC %le 449.999021827

@ GAMMA %le 479.605062241

@ KBUNCH %le 1

@ BCURRENT %le 0

@ SIGE %le 0

@ SIGT %le 0

@ NPART %le 0

@ EX %le 1

@ EY %le 1

@ ET %le 1

@ LENGTH %le 6912

@ ALFA %le 0.00168070032886

@ ORBIT5 %le -0

@ GAMMATR %le 24.3924182122

@ Q1 %le 26.58

@ Q2 %le 26.62

@ DQ1 %le -33.5615573373

@ DQ2 %le -33.5984799903

@ DXMAX %le 2.5680113011

@ DYMAX %le 0

@ XCOMAX %le 0

@ YCOMAX %le 0

@ BETXMAX %le 107.544319159

@ BETYMAX %le 107.497305443

@ XCORMS %le 0

@ YCORMS %le 0

@ DXRMS %le 1.93043782638

@ DYRMS %le 0

@ DELTAP %le 0

@ TITLE %01s "s"

@ ORIGIN %16s "MAD-X 1.11 Linux"

@ DATE %08s "23/10/03"

@ TIME %08s "11.36.14"

* NAME S BETX DX

$ %s %le %le %le

"CASSPS$START" 0 103.8655173 2.523441048

"START_MACHINE" 0 103.8655173 2.523441048

"QF" 1.5425 107.5443192 2.568011301

"DRIFT_0" 3.11375 103.7300292 2.521784419

"LSF" 3.6425 101.2568359 2.491316849

"DRIFT_1" 4.5925 96.90195183 2.43657606

22

"MBSPS" 5.0425 94.87888064 2.410646213

"DRIFT_2" 8.2425 81.22989411 2.249527296

"MBSPS" 11.4425 68.87370326 2.08840838

"DRIFT_3" 17.5425 48.90078374 1.825635993

"MBSPS" 23.6425 33.62561103 1.562863606

"DRIFT_2" 26.8425 27.4909994 1.448286904

"MBSPS" 30.0425 22.64918345 1.333710202

"DRIFT_4" 31.02125 21.42644598 1.305783529

"QD" 33.5425 19.51348873 1.255914454

"DRIFT_0" 35.11375 20.35528979 1.278677181

"LSD" 35.6425 20.93741261 1.293764004

"DRIFT_1" 36.5925 22.07198555 1.320870352

"MBSPS" 37.0425 22.64918345 1.333710202

"DRIFT_2" 40.2425 27.4909994 1.448286904

"MBSPS" 43.4425 33.62561103 1.562863606

"DRIFT_3" 49.5425 48.90078374 1.825635993

"MBSPS" 55.6425 68.87370326 2.08840838

"DRIFT_2" 58.8425 81.22989411 2.249527296

"MBSPS" 62.0425 94.87888064 2.410646213

"DRIFT_4" 63.02125 99.31172846 2.467043631

"QF" 65.5425 107.5443192 2.568011301

"DRIFT_0" 67.11375 103.7300292 2.521784419

"LSF" 67.6425 101.2568359 2.491316849

"DRIFT_1" 68.5925 96.90195183 2.43657606

"MBSPS" 69.0425 94.87888064 2.410646213

"DRIFT_2" 72.2425 81.22989411 2.249527296

"MBSPS" 75.4425 68.87370326 2.08840838

"DRIFT_3" 81.5425 48.90078374 1.825635993

"MBSPS" 87.6425 33.62561103 1.562863606

"DRIFT_2" 90.8425 27.4909994 1.448286904

"MBSPS" 94.0425 22.64918345 1.333710202

"DRIFT_4" 95.02125 21.42644598 1.305783529

"QD" 97.5425 19.51348873 1.255914454

"DRIFT_0" 99.11375 20.35528979 1.278677181

"LSD" 99.6425 20.93741261 1.293764004

"DRIFT_1" 100.5925 22.07198555 1.320870352

"MBSPS" 101.0425 22.64918345 1.333710202

"DRIFT_2" 104.2425 27.4909994 1.448286904

"MBSPS" 107.4425 33.62561103 1.562863606

"DRIFT_3" 113.5425 48.90078374 1.825635993

"MBSPS" 119.6425 68.87370326 2.08840838

"DRIFT_2" 122.8425 81.22989411 2.249527296

"MBSPS" 126.0425 94.87888064 2.410646213

"DRIFT_4" 127.02125 99.31172846 2.467043631

"QF" 129.5425 107.5443192 2.568011301

.........

.........

.........

23

10.2 APPENDIX 1.2: Example 2, Use of WHILE command

10.2.1 Sequence definition (sps.seq)

// define the total length

circum=6912.0;

// define number of cells and therefore cell length

ncell = 108;

lcell = circum/ncell;

// define lengths of elements and half lengths

lquad = 3.085;

lquad2 = lquad/2.;

lsex = 1.0;

// forces and other constants;

// element definitions;

// define bending magnet as multipole

mbsps: multipole, lrad=dummy, knl={2.0*pi/(8*ncell)};

// define quadrupole and their strengths

qsps: quadrupole, l=lquad;

qf: qsps, k1:=kqf;

qd: qsps, k1:=kqd;

kqf = 1.4631475E-02;

kqd = -1.4643443E-02;

// define sextupoles for chromaticity correction

lsf: sextupole, l=lsex,k2:=ksf;

lsd: sextupole, l=lsex,k2:=ksd;

ksf = 2.0284442E-02;

ksd = -3.8394267E-02;

// define orbit correctors and beam position monitors

bpm: monitor, l=0.1;

ch: hkicker, l=0.1;

cv: vkicker, l=0.1;

// sequence declaration;

cassps: sequence, refer=centre, l:=circum;

start_machine: marker, at = 0;

// This defines ONE cell, repeat NCELL times

// to get the full machine

// SPS has 8 bending magnets per cell

n = 1;

while (n < ncell+1) {

qf: qf, at=(n-1)*lcell+lquad2;

lsf: lsf, at=(n-1)*lcell+lquad2+2.5;

24

ch: ch, at=(n-1)*lcell+lquad2+3.1;

bpm: bpm, at=(n-1)*lcell+lquad2+3.2;

mbsps: mbsps, at=(n-1)*lcell+lquad2+3.50;

mbsps: mbsps, at=(n-1)*lcell+lquad2+9.90;

mbsps: mbsps, at=(n-1)*lcell+lquad2+22.10;

mbsps: mbsps, at=(n-1)*lcell+lquad2+28.50;

qd: qd, at=(n-1)*lcell+lquad2+32.00;

lsd: lsd, at=(n-1)*lcell+lquad2+34.50;

cv: cv, at=(n-1)*lcell+lquad2+35.10;

bpm: bpm, at=(n-1)*lcell+lquad2+35.20;

mbsps: mbsps, at=(n-1)*lcell+lquad2+35.50;

mbsps: mbsps, at=(n-1)*lcell+lquad2+41.90;

mbsps: mbsps, at=(n-1)*lcell+lquad2+54.10;

mbsps: mbsps, at=(n-1)*lcell+lquad2+60.50;

n = n + 1;

}

end_machine: marker at=circum;

endsequence;

10.2.2 MAD-X directives

TITLE, s=’MAD-X test’;

// Read input file with machine description

call file="sps.seq";

option,-echo;

// Define the beam for the machine

Beam, particle = proton, sequence=cassps, energy = 450.0;

// Use the sequence with the name: cassps

use, period=cassps;

// Define the type and amount of output for the action TWISS

select,flag=twiss,column=name,s,x,y,mux,betx,muy,bety,dx,dy;

// Execute the Twiss command to calculate the Twiss parameters

// Compute at the centres of the elements and write to: twiss.out

twiss,centre,file=twiss.out;

// Plot the horizontal and vertical beta function between the

// 10th and 16th occurence of a defocussing quadrupole

plot, haxis=s, vaxis=x, betx, bety,colour=100,

range=qd[10]/qd[16];

plot, haxis=s, vaxis=dx, colour=100,

range=qd[10]/qd[36];

stop;

25

10.3 APPENDIX 1.3: Example 3, Matching a local orbit bump

10.3.1 MAD-X directives

// Read input file with machine description

// This machine is constructed with macro

// subroutine INST()

// Match a vertical orbit bump at monitor BPMV8

call file="spsmac.seq";

option,-echo;

// Define the beam for the machine

Beam, particle = proton, sequence=cassps, energy = 450.0;

// Use the sequence with the name: cassps

use, sequence=cassps;

// Match a vertical orbit bump of 5 mm at monitor BPMV8

match,orbit;

constraint,range=bpmv5,y=0.0,py=0.0;

constraint,range=bpmv8,y=0.005;

constraint,range=bpmv11,y=0.0,py=0.0;

vary,name=kcv7,step=0.0001;

vary,name=kcv9,step=0.0001;

vary,name=kcv10,step=0.0001;

lmdif,calls=100,tolerance=1.0E-20;

endmatch;

// Define the type and amount of output

select,flag=twiss,class=monitor,column=name,s,x,px,y,py;

select,flag=twiss,class=hkicker,column=name,s,x,px,y,py;

select,flag=twiss,class=vkicker,column=name,s,x,px,y,py;

// Execute the Twiss command to calculate the Twiss parameters

// Compute at the centre of the element and write to: twiss.out

twiss,save,centre,file=twiss.out;

// Plot the vertical orbit between the

// 1st and 20th beam position monitor

plot, haxis=s, vaxis=y,colour=100,

vmin=-0.001,vmax=0.011,

range=bpmv3/bpmv13;

stop;

26

10.4 APPENDIX 1.4: Example 4, Use of MAD-X macros and imperfections

10.4.1 Sequence definition (spsmac.seq)

// define a subroutine "inst" to insert elements

// with numbering

// all strings "nx" in the macro are replaced by

// the input value of nx.

inst(nx,n,lcell,lquad2): macro = {

qf: qf, at=(n-1)*lcell+lquad2;

lsf: lsf, at=(n-1)*lcell+lquad2+2.5;

chnx: hkicker,l=0.0,kick:=kchnx,

at=(n-1)*lcell+lquad2+3.1;

bpmhnx: monitor,l=0.0,

at=(n-1)*lcell+lquad2+3.2;

mbsps: mbsps, at=(n-1)*lcell+lquad2+3.50;

mbsps: mbsps, at=(n-1)*lcell+lquad2+9.90;

mbsps: mbsps, at=(n-1)*lcell+lquad2+22.10;

mbsps: mbsps, at=(n-1)*lcell+lquad2+28.50;

qd: qd, at=(n-1)*lcell+lquad2+32.00;

lsd: lsd, at=(n-1)*lcell+lquad2+34.50;

cvnx: vkicker,l=0.0,kick:=kcvnx,

at=(n-1)*lcell+lquad2+35.10;

bpmvnx: monitor,l=0.0,

at=(n-1)*lcell+lquad2+35.20;

mbsps: mbsps, at=(n-1)*lcell+lquad2+35.50;

mbsps: mbsps, at=(n-1)*lcell+lquad2+41.90;

mbsps: mbsps, at=(n-1)*lcell+lquad2+54.10;

mbsps: mbsps, at=(n-1)*lcell+lquad2+60.50;

n = n + 1;

}

// define the total length

circum=6912.0;

// define number of cells and therefore cell length

ncell = 108;

lcell = circum/ncell;

// define lengths of elements and half lengths

lquad = 3.085;

lquad2 = lquad/2.;

lquad3 = 0.0;

lmb = 6.260;

lmb2 = lmb/2.;

lsex = 1.0;

// forces and other constants;

// element definitions;

27

// define bending magnet as multipole

mbsps: multipole, lrad=dummy, l=lmb, knl={2.0*pi/(8*ncell)};

// define quadrupole and their strengths

qsps: quadrupole, l=lquad;

qf: qsps, k1:=kqf;

qd: qsps, k1:=kqd;

kqf = 1.4631475E-02;

kqd = -1.4643443E-02;

// define sextupoles for chromaticity correction

lsf: sextupole, l=lsex,k2:=ksf;

lsd: sextupole, l=lsex,k2:=ksd;

ksf = 2.0284442E-02;

ksd = -3.8394267E-02;

// define orbit correctors and beam position monitors

bpm: monitor, l=0.1;

ch: hkicker, l=0.1;

cv: vkicker, l=0.1;

// sequence declaration;

cassps: sequence, refer=centre, l=circum;

start_machine: marker, at = 0;

// This defines ONE cell, repeat NCELL times

// to get the full machine

// SPS has 8 bending magnets per cell

n = 1;

while (n < ncell+1) {

// here we call the macro, cell number n is argument

// and used for numbering the elements

exec inst($n,n,lcell,lquad2);

}

end_machine: marker at=circum;

endsequence;

10.4.2 MAD-X directives

TITLE, s=’MAD-X test’;

// Read input file with machine description

// This machine is constructed with macro

// subroutine INST()

call file="spsmac.seq";

option,-echo;

// Define the beam for the machine

Beam, particle = proton, sequence=cassps, energy = 450.0;

28

// Use the sequence with the name: cassps

use, sequence=cassps;

eoption,add=false,seed=62971100;

select,flag=error,pattern="q.*";

ealign,dx:=tgauss(3.0)*1.0e-4,dy:=tgauss(3.0)*2.0e-4;

eprint;

// Define the type and amount of output

select,flag=twiss,class=monitor,column=name,s,x,betx;

select,flag=twiss,class=vkicker,column=name,s,x,betx;

select,flag=twiss,class=hkicker,column=name,s,x,betx;

// Execute the Twiss command to calculate the Twiss parameters

// Compute at the centre of the element and write to: twiss.out

twiss,save,centre,file=twiss.out;

stop;

10.4.3 TWISS summary table

++++++ table: summ

length orbit5 alfa gammatr

6.9120000e+03 -0.0000000e+00 1.6804423e-03 2.4394290e+01

q1 dq1 betxmax dxmax

2.6580085e+01 -1.2827690e-04 1.0808509e+02 2.6296100e+00

dxrms xcomax xcorms q2

1.9361006e+00 3.1098580e-03 1.0489137e-03 2.6620213e+01

dq2 betymax dymax dyrms

-5.1039987e-04 1.0787781e+02 4.0349793e-01 1.5327251e-01

ycomax ycorms deltap

8.6691696e-03 2.8727246e-03 0.0000000e+00

29

10.4.4 TWISS lattice functions

@ NAME %05s "TWISS"

@ TYPE %05s "TWISS"

@ SEQUENCE %06s "CASSPS"

@ PARTICLE %06s "PROTON"

@ MASS %le 0.938271998

@ CHARGE %le 1

@ ENERGY %le 450

@ PC %le 449.999021827

@ GAMMA %le 479.605062241

@ KBUNCH %le 1

@ BCURRENT %le 0

@ SIGE %le 0

@ SIGT %le 0

@ NPART %le 0

@ EX %le 1

@ EY %le 1

@ ET %le 1

@ LENGTH %le 6912

@ ALFA %le 0.00168044235319

@ ORBIT5 %le -0

@ GAMMATR %le 24.3942904601

@ Q1 %le 26.5800856671

@ Q2 %le 26.6202187135

@ DQ1 %le -0.000128276909332

@ DQ2 %le -0.000510399876937

@ DXMAX %le 2.629610492

@ DYMAX %le 0.403497938523

@ XCOMAX %le 0.00310985806321

@ YCOMAX %le 0.0086691696294

@ BETXMAX %le 108.085099015

@ BETYMAX %le 107.877818541

@ XCORMS %le 0.00104891378772

@ YCORMS %le 0.0028727246142

@ DXRMS %le 1.93610068609

@ DYRMS %le 0.153272554514

@ DELTAP %le 0

@ TITLE %01s "s"

@ ORIGIN %16s "MAD-X 1.11 Linux"

@ DATE %08s "23/10/03"

@ TIME %08s "10.54.36"

* NAME S X BETX

$ %s %le %le %le

"CH1" 4.6425 7.270283965e-05 96.71513054

"BPMH1" 4.7425 7.074377128e-05 96.26414369

"CV1" 36.6425 -0.000609759073 22.16791457

"BPMV1" 36.7425 -0.0006136057601 22.29453352

"CH2" 68.6425 -0.001619774866 96.60029697

"BPMH2" 68.7425 -0.001616493006 96.15012782

30

"CV2" 100.6425 -0.0006806900062 22.20590744

"BPMV2" 100.7425 -0.0006809745368 22.33285114

"CH3" 132.6425 -0.0006702055164 96.69082398

"BPMH3" 132.7425 -0.0006672287746 96.23936818

"CV3" 164.6425 0.0002920301383 22.11019753

"BPMV3" 164.7425 0.0002953017665 22.23679301

"CH4" 196.6425 0.001157348134 96.6649292

"BPMH4" 196.7425 0.001154759396 96.21335536

"CV4" 228.6425 0.000373991881 22.08455422

"BPMV4" 228.7425 0.0003728320023 22.21117154

"CH5" 260.6425 1.317974197e-05 96.71965263

"BPMH5" 260.7425 1.236758651e-05 96.26877918

"CV5" 292.6425 -0.0002913559575 22.1823912

"BPMV5" 292.7425 -0.0002936789916 22.30912451

"CH6" 324.6425 -0.0009131218543 96.62975425

"BPMH6" 324.7425 -0.0009115133179 96.17889384

"CV6" 356.6425 -0.0004721562615 22.1454883

"BPMV6" 356.7425 -0.0004729356669 22.27221019

"CH7" 388.6425 -0.0006096356393 96.67763938

"BPMH7" 388.7425 -0.0006068161018 96.22676343

"CV7" 420.6425 0.0003186361334 22.16647139

"BPMV7" 420.7425 0.0003222988135 22.29331691

"CH8" 452.6425 0.001319551812 96.69719699

"BPMH8" 452.7425 0.001317680986 96.2448662

"CV8" 484.6425 0.0008399337545 22.0183191

"BPMV8" 484.7425 0.0008419042414 22.14474739

"CH9" 516.6425 0.00127367779 96.72628201

"BPMH9" 516.7425 0.001269314367 96.27522738

"CV9" 548.6425 -0.0001569946883 22.16736164

"BPMV9" 548.7425 -0.0001625635013 22.29406121

"CH10" 580.6425 -0.001695832426 96.63883761

"BPMH10" 580.7425 -0.001693540175 96.18855903

"CV10" 612.6425 -0.001134640886 22.21084481

"BPMV10" 612.7425 -0.001137909267 22.33761433

"CH11" 644.6425 -0.001891788389 96.60737231

"BPMH11" 644.7425 -0.001885758488 96.15696162

"CV11" 676.6425 2.602143671e-05 22.18437067

"BPMV11" 676.7425 3.164251283e-05 22.31133474

"CH12" 708.6425 0.001604718692 96.724361

"BPMH12" 708.7425 0.001603215697 96.27158303

"CV12" 740.6425 0.00126167154 21.98294563

"BPMV12" 740.7425 0.001264627726 22.10929259

"CH13" 772.6425 0.001934577849 96.74062223

.......

.......

.......

31

References

[1] F. Schmidt and H. Grote MAD-X – An Upgrade from MAD8, Proc. Part. Acc. Conference, Portland,
U.S.A., 12. - 16.5. 2003, page 3497.

[2] The MAD-X Home Page, version February 2003,
http://cern.ch/frank.schmidt/Xdoc/mad-X.html.

[3] W. Herr, MAD for pedestrian, Presentation at CERN Accelerator School
DESY Zeuthen, 15. - 26. 9. 2003.

[4] W. Herr, Course on optics design,
http://cern.ch/werner.herr/COURSE/.

[5] O. Brüning and W. Herr, Problems and solutions of the exercises in the optics course,
Course at CERN Accelerator School, DESY Zeuthen, 15. - 26. 9. 2003.

[6] W. Herr; Implementation of new orbit correction procedures in the MAD-X program, CERN-SL-
2002-48 (AP) (2002).

[7] Examples for MAD-X primer:,
http://cern.ch/werner.herr/MADP/.

32

