2012 PERFORMANCE OF THE LHC BEAM VACUUM SYSTEM DURING PROTON RUNS

G. Lanza, V. Baglin, G. Bregliozzi, J. M. Jimenez

CERN - TE

Vacuum, Surfaces and Coatings

LHC 2012

Boson discovery

ATLAS and CMS observed a new particle in the mass region around 125-126 GeV

LHC Luminosity

 $L = \frac{N^2 k_b f}{4\pi \sigma_x^* \sigma_y^*} F = \frac{N^2 k_b f \gamma}{4\pi \varepsilon_n \beta^*} F$

Ν	Number of particles per bunch
K _b	Number of bunches
f	Revolution frequency
σ_{y}	Beam size at interaction point
F	Reduction factor due to crossing angle
Е	Emittance
\mathcal{E}_n	Normalized emittance
$oldsymbol{eta}^*$	Beta function at IP

Aim: maximize peak luminosity

LHC 2012

LHC OPERATION 2012

LHC Efficiency and Availability

Mode: Proton Physics Fills: 2469 - 3378 [758 Fills] SB Time: 73 days 7 hrs 5 mins

Access - No beam : 13.73% Machine setup : 27.62% Beam in : 14.86%
Ramp + squeeze : 7.82% Stable beams: 35.97%

14.12.2012

Equilibrium surface coverage of the beam screen for a given set of beam parameter and BS temperature.

Cryogenic System

2

If the surface coverage exceeds its equilibrium value, pressure excursion or transient due to cryogenics appears when the beam is injected

The equilibrium surface coverage depends on:

- Beam screen temperature
- Beam current

V. Baglin, LHC Project Workshop – Chamonix XIII G. Bregliozzi, LBOC presentation, 31.05.2011

14.12.2012

Synchrotron Radíatíon and Electron Cloud

Synchrotron Radiation

Pressure increases due to synchrotron light irradiation

$$P_{ph} = \frac{\eta_{ph,g} \cdot \Gamma_{ph}}{S}$$

Synchrotron Radiation

After LS1 the proton energy will increase to

7 TeV

The photon flux will increase of one order of magnitude

Electron Cloud

Electron clouds in beampipes are generated by **electron multipacting** on the wall of the vacuum chamber. The electrons are accelerated by the electric field of the bunches.

Secondary Electro Yield

- Scrubbing at 50 ns Scrubbing has lowered δ_{max} to 1.7.
- During the 2011 operation with 50 ns the $\,\delta_{\text{max}}$ further decrease.
- Scrubbing with 25ns beam (~40h) has lowered δ_{max} to 1.35 !

No more electron cloud at 50 ns (up to 1.45 10¹¹ ppb at least)
 Requires further scrubbing to operate with 25 ns

From G.Rumolo, EVIAN 2011

14.12.2012

Vacuum Scrubbing

- For as received Cu, ~ 0.5 mC/mm2 is required to reach 1.3
- Pre-scrubbed material and exposed to air need 0.1 mC/mm2 to reach 1.3

LHC Performance Workshop - Chamonix 2012

Vacuum Scrubbing

Scrubbing Run 25 ns

14.12.2012

Scrubbing Overview 00 4 imeseries Chart between 2012-12-06 12:00:00.000 and 2012 03.000 (LOCAL TIME) Fills 3389 → 3407 N LHC.BCTDC.A6R4.B1:BEAM INTENSITY K LHC.BCTDC.A6R4.B2:BE 00 4 N 2.5E14 B1 **B2** 2E14 1.5E14 Charges 1E14 5E13 OEO 06/12 13:00 07/12 01:00 07/12 13:00 08/12 01:00 08/12 13:00 09/12 01:00 09/12 13:00 10/12 01:00 LOCAL TIME

- Fast intensity ramp-up and overall excellent machine availability
- Beam under control (damper, chromaticity, octupoles) in spite of the record intensities (up to 2.7x10¹⁴ p, 2748 bunches per beam)

LMC 12.12.12 - G. Arduini

Scrubbing Run 25 ns

Scrubbing Run 25 ns

• Clearer trend in terms of normalized pressure (pressure gauges used for the SEY analysis in the LSS).

Normalized pressure (mbar/p⁺)

Scrubbing Run 25 ns

Scrubbing Run 25 ns

LHC LOCAL INTERVENTIONS

2012 Vacuum Intervention

Christmas Break 2011

- BSRT
- BGI left
- CMS
- Upgrade ZDC (VMTS repair) Pt2-8

TS n.3

- MKI
- BSRT left (Ne)
- BSRT right (BO)

TS n.4

- Wire scanner
- BSRT left (Ne)
- BSRT right (Ne)

2012 Vacuum Intervention

N2 Venting and Bake out

Typical of Christmas Breaks or Long Shutdown

2012 MKI Exchange

Venting & Bake out

- 5 days of Technical Stop with shifts days and nights
- The MKI arrived in the tunnel already baked and validated.
- Bakeout of the interconnection modules

• The conditioning of the new MKI

"slowed down" the machine for ca. 1

week

Neon venting

2012 Vacuum Interventions BSRT right (sector D5R4.B)

Gauge	P before	P after	P 1week after
Left	1.7x10-10	1.8x10-9	1.0x10-9
Right	1.1x10-10	5.2x10-9	2.1x10-9
Ion Gauge	5.5x10-11	3.6x10-9	1.0x10-9

Neon trolley Bake Out

3 days intervention

CMS pressure spikes

- CMS background suffered from pressure rise localized around 18 m from the IP
- The CMS magnetic field ensure the multipacting suppression, it was not ecloud!

Fill 2251 at **25 ns** bunch spacing, small pressure rise were detected

Winter Technical Stop 2011-12 : X-Ray

Bake Out

CMS

Neon venting

Bake Out

16 m & 18 m flanges were opened while Ne flushing

Forward chamber

CMS

Neon venting

Bake Out

Bake Out

Partial NEG chambers saturation

G. Bregliozzi, T. Porcelli - IPAC 2012

Bake Out

Forward chamber

RF insert and CMS

The neon injection and flushing helped preserving the NEG properties and avoided the need of a full bake of the CMS beam pipe.`

X-ray campaign

Started in January 2011

- 1800 X-rays
- 95 non conformities (~ 5 %)
- 58 vacuum sector concerned out of 190 at room temperature (88 sectors at cryogenic temperature)

LHC: end of 2012 physics period

	Fibre move					e optic e [CCC] Injector TS [12h]				Ions available again Dec				End physics				
Wk	40	41	42	43	44	45		46		47	Ŷ	, 48	49	50		51	5	2
Мо	1		15	22	29		5	1	12	19			3	Scrubbing	*	17		24
Tu					¥		1					MD4 [84.b]		25 ns set-up		op	Xm	ias
We		MD3		High beta*								[out n]		25 ns MD [36 h]		ical #		
Th				[24 N]									Set-up and	25 ns physics		Techn		DBY
Fr													ramp-up			_		IAN
Sa													Scrubbing					
Su																		

<u>LHC machine</u> - Schedules and Coordination: <u>https://espace.cern.ch/en-dep-mef-lpc/default.aspx</u>

LHC: 2013 proton-ion period and LS1

LS1 starts on February 12th, 2013

	Apr				May				June					
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26	
Мо	Easter 1	8	15	22	29	6	13	Whit 20	27	3	10	17	24	
Tu														
We]]		

<u>LHC machine</u> - Schedules and Coordination: <u>https://espace.cern.ch/en-dep-mef-lpc/default.aspx</u>

Long Shutdown 1: the Magnets splices consolidation

Despite correct splice resistance between SC cables, in case of bad bonding between the SC cable and the copper bus, a 13 kA joint can burn-out when a <u>quench occurs.</u>

Resistance measurements and γ -ray pictures have shown the presence of many of such defective joints with discontinuity in the copper stabilizer in the machine, limiting the safe operating current

Long Shutdown 1

22 months of shutdown

Warm up of all the cryogenic sectors

Long Shutdown 1

Long Shutdown 1: beam vacuum activities

- NEG coating inserts in experimental areas
 - Increase the pumping speed
 - Suppress the e-cloud
 - Reduce background pressure level for the Experiments

- NEG cartridge Installation
 - Increase the pumping speed
 - Presence of a fast, easy to

- re-activate pump to ensure a minimum pumping speed in highly saturated areas
- Long Straight Section opening
 - RF insert exchange
 - Bake out and activation of the opened sectors

Long Shutdown 1: main beam vacuum activities

- Installation of fast valve in Point 4
- MKI consolidation
- TDI sectorisation
- Electron cloud pilot sector installation
- NEG pilot sector installation
- Experimental area vacuum upgrade (coating of the RF insert)

Long Shutdown 1: Machine upgrade

- Collimators exchange
- Upgrade of the TCDQ
- Repair BI equipment (BTV, BSRT, BGI, ...)
- Installation of new BI equipment
- TDI exchange
- DFBA consolidation
- New experimental beam pipe

After the Long Shutdown 1

Conclusions

Synchrotron Radiation and e-cloud effect challenged the machine as expected.

Beam scrubbing remains the solution for vacuum cleaning and beam pipe conditioning

Conclusions

The Machine **Development at 25ns** bunch spacing has been run before the long shutdown of 2013-2014 and the following data analysis will give indication on how to run the LHC in 2015

The next shutdown is not a stop, it's an ADVANCEMENT towards new challenging limits of the LHC.

Enjoy your holiday and get ready to be part of this ADVANCEMENT of the LHC Thanks all the LBV section for the great work of this year

Thanks to V.Baglin and G.Bregliozzi for their analysis, slides and patience

...THANK YOU FOR YOUR ATTENTION.

14.12.2012