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N = 2 theories

In 4d N/ = 2 gauge theories have a non trivial RG-flow in the coupling constants and
an exactly solvable moduli space of order parameters.

The IR effective dynamics of AF-theories can be computed from some spectral data
(Seiberg-Witten curve & differential) defining an integrable system.

We concentrate on superconformal theories. AF ones can be obtained by scaling
away dimensionfull parameters (see later).

The SW data materialize once the theory is geometrically engineered in M-theory via
5-branes.

Let’s consider the example of SU(2) with Ny = 4 (being super conformal, this looks
more stable, but we will comment further on this)
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N = 2 theories

M-Theory lift

O

This is the SW curve of the gauge theory!
With some more elaboration we can get also the SW differential for free!
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N = 2 theories

Double cover structure

Actually the SW curve for SU(2) and N; = 4 is a double cover of the Riemann sphere
with 4 punctures (which we denote as Cg 4).
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N = 2 theories

The M-theory geometry hosts the double covering in the total space T*Cy 4. [That's a
local K3!!!] The equation of the SW curve (in appropiate coordinates) is
X2 = ¢o(2)

where x is a coordinate on the fiber and z on Cp 4.
The gauge theory data are encoded in the structure of the quadratic differential ¢, and
in the complex structure modulus of Co 4.

@ gauge coupling — complex structure
@ masses — double pole residues of ¢, at the punctures
@ Coulomb modulus — remnant part of ¢,

The SW differential is simply Asw = xdz = \/¢2(z)dz and encodes all the geometry of
the Coulomb branch (Prepotential).
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N = 2 theories

One can play again this game in the SU(2) A = 2* theory. (That's an elliptic quiver!)

=5 &
£

The SW curve is
xX* = MPP(r,z) + u
where x is the fiber coordinate on T*Cs 1 and the SW-differential is Asy = xdz.

(M =mass of the hyper in the adjoint, = =gauge coupling and u = Coulomb modulus)
(The Weierstrass function P has a double pole on the torus!)
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N = 2 theories

One can reverse the logic above and use M-theory 5-branes to engineer N' = 2 d=4
gauge theories by wrapping N of them on a two cycle in a K3 geometry, the local
geometry being uniquely fixed to be that of T*Cg .

For SU(2) gauge theories one uses 2 M5-branes and the SW curve is a double cover
X2 = ¢o(2).

All the data of the gauge theory are encoded in the moduli space of the curve Cg4,, and
in the quadratic differential ¢».

Higher rank SU(N) theories can be generated by wrapping N M5-branes over the
cycle, the SW curve being

N xN 2 + xN B4+ dv =0 and Agw = xdz

where ¢; are j — differentials on the curve with prescribed polar structure at the n
punctures.
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N = 2 theories

@ If the curve is a punctured sphere, then one possibly get’s linear quivers.
@ If the curve is a punctured torus, then one possibly gets an elliptic quiver.
@ If the genus is higher than one, one calls the quiver generalized.
To analyze the gauge theory spectrum one needs to shrink to a perturbative corner:

decompose the curve Cgy,, in pair of pants and squeeze all necks. (Let’s concentrate
on the SU(2) case for the sake of simplicity) Then

@ the theory in the sphere with 3 puncture is the building block: it has no gauge
group, SU(2)® (manifest) flavour symmetry, four free hypers
@ each neck is an SU(2) gauge group: gluing is gauging a flavour SU(2).
So, the theory engineered on Cgy , has SU(2)" flavor symmetry and SU(2)"39~2
gauge symmetry
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N = 2 theories

Each pant decomposition (marking) defines a generalized quiver
The generic theory is non lagrangean!!!!

Large diffeos of Cy,» make the S-duality group of the gauge theory
For example, the Ny = 4 and A/ = 2* theories read

&
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N = 2 theories

Link to integrable system: why is all this working? The SW-curve can be interpreted
as the spectral curve of the Hitchin system on Cgy ».

@ Consider the internal part of the M5-branes geometry, that is the part sitting in
T* Cg,n

@ BPS configurations are described by the reduction to Cy,, of the self-dual
connections
Ff=0 — D:d,=0 and Fy; =[P, d3]

up to SU(N) gauge transformations

@ (modulo stability) it is like considering solutions to D;®, = 0 up to SL(N, C)
gauge transformations

@ the eigenvalues of ®, are the displacements w.r.t. the base curve in T*Cg,, of
the M5-brane strata

@ therefore the SW-curve is identified with the spectral curve
det(x1 —®)=0

of the Hitchin system. For 2 M5-branes, we get holomorphic SL(2, C) bundles
over Cg,n.
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AGT correspondence

[Suppose we knew the M5-brane theory exists] Consider then a system of N
Mb5-branes on a product geometry Cy.» x Ms and some observable quantity

independent on volume parameters X (Cgy,n x Ms). This same object can be
interpreted from the points of view of the two factors as

XCFT(M4)(Cg n) — X4d—gauge(cg,n)(M4)

Now let’s forget the M5-branes, and try to guess for My = R*.

@ on the right we might have a conformal 4d N = 2 gauge theory with quiver
structure dictated by the curve Cy,n.

@ on the left a simple CFT; on Cgy,n.

[in view of the previous analysis] to each puncture we associate matter: mass
parameters are continuous implies that the CFT has to be non rational! The easiest
(interacting) is Liouville field theory!
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AGT correspondence

Indeed, it has been checked in a remarkable paper by Alday-Gaiotto-Tachikawa that
an equality holds between

CFT __ —quiver—gauge—th.
BCM(A,a,C,Q) = ZNek (m, a, 61,62,7’)

where
@ (conformal dimensions A ) = [hypers masses m)]
@ (intermediate momenta «) = [Cartan moduli ]

@ (central charge ¢ ) =[1 — 6Q° where Q = ,/Z—; + z—f]

@ (period matrix Q) = [gauge couplings 7]

There are analytic proofs for N' = 2* and N; = 4, the general case for the instanton
part has been solved by Maulik-Okounkov but not the identification of the three point
functions in general.

Actually, there is more than that! And much more to check....
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AGT correspondence

There’s a full correspondence of the Liouville correlation functions with the full partition

function of the V' = 2 gauge theory on S* in the Omega background of Pestun.
One compares (with positive result!) [consider Ny = 4 for simplicity]

4
oz Ny=4 (o4
< H e 1) > ouite= Zi (S ) .
=1

@ The CFT side evaluates to conformal blocks x three-point functions integrated
over the intermediate momentum

/ 0alC: 2.4Cas.4F|Boy o (B, 2, 0, )

@ The gauge theory side has two contributions from the north and south patches
(localized instantons), glued at the equator of S*

[ da|#Zp0zin] (20028
and one can check that the perturbative part of the gauge theory also matches the
three point function term!

(So, the match is not with an abstract CFT, but indeed with Liouville)
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AGT correspondence

The AGT correspondence has been extended to the higher rank cases

The Nekrasov partition function of the SU(N) gauge theory corresponds to the Ay_+
Toda CFT along th above lines.

Since higher Toda CFTs are not fully solved yet, one has many partial checks, but not
a full proof.

One can consider the classical limit and realize the classical Toda field theory as the
manifestly unitary form of the Hitchin system at fixed SW-curve.

On top of it, one can match the gauge theory moduli space with Hitchin’s one

SL(N, C) holomorphic bundles over Cgy .

The SW-curve xN + x"V=2¢, + xN 3¢5 + - - - 4+ ¢y = 0 is defined by holomorphic
i-differentials ¢; with a certain polar structure at the punctures. This implies Wy_1
classical symmetry.

One can match also the conformal anomaly! Reduce the N M5-brane anomaly
eight-form polynomial to the product geometry C x R, ., and match the Toda central
charge with the gauge theory relevant anomaly (a and c¢ coeff.)

More checks later...
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A check of AGT for arbitrary Cy »: generalized matrix
models

The correspondence among the conformal blocks and the Nekrasov partition function
can be checked by using the Coulomb gas realization of the conformal blocks.

On a side we know that in the ¢; — 0 limit, the Nekrasov partition function reproduces
the SW prepotential, that is it encodes the data of the SW curve.

Znek = € G2 ‘162 [F+O(e1,€2)ll

This means that the conformal blocks should encode the SW data too in the classical
limit (large momenta and large background charge).

Coulanb gas (W) Background charge
Bg,, =<1]e

can be written as a generalized matrix model

The building block is the prime form on Cy: that's an holomorphic bidifferential
E(z, w)(dz)"/2(dw)'/? with vanishing A-periods and local singularity £(z, w) ~ .
(It is the Green function of the d-operator on Cy.)
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A check of AGT for arbitrary Cy »: generalized matrix
models

The relevant integral form of the conformal block for the chiral boson with background
charge insertions is

Cg,n
ZNg’ (Wa m, P, V) =
[1 Ez.z)* [ £z 27y me

N
/H dz; W(Zi)prb2 H E(z, 5/)714’2
i1 i 1<i<j<N

N n g X
b E(Z,',Wk) /z,
xexp | — 2mglog ———= +4r w ,
p(gz<kz 190 E G z) TATLPe | s

i

a=1

The large N limit amounts to take gs — 0 keeping gsN, b, my and p; finite. In the large
N (background charge) and momenta (scaling limit), we can compute the spectral
curve of the singular part of the generalized resolvent

_ / E(z,7) _ _ 1
R(z) = /Za . p(z")d; log (E(L z*)) , Vo = bgsN. = ot J. R(z).

expanding R = %dW + Rsing, one finds that F?ﬁ,»,,g = ¢» which equals the SW-curve.
[This is also expected by the mirror topological string! ]
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Generalized M. M. and quantization of Hitchin systems

The integrals we just discussed define a generalization of matrix models:

(diagonalized) Hermitean m.m. — B-deformed generalized m.m.

[Teal]@-2e= —  [T]dantz) [JiE@ - z) 6™
i i ij

i

The scaling limit describes the classical integrable system (Hitchin system).

We can study an intermediate limit 2 — 0 with N and all other parameters finite.
(Nekrasov — Shatashvili limit).

In the NS limit the 5-deformed generalized matrix model describes the wave-function
of the corresponding quantum Hitchin system.

The loop equations for the generalized resolvent ¥(z) =< R(z) >gum can be written
in a closed form in the NS limit

o2+ of 7w =0

where ¢S = ¢o + O(er).
It is a deformation/quantization of the SW curve x? + ¢, = 0.
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Generalized M. M. and quantization of Hitchin systems

The above differential equation is the quantization of the associated Hitchin system.
This has been checked directly in the g = 0, 1 cases. (Gaudin models and elliptic
Calogero-Moser models resp.). [Higher genus cases are just more involved

technically, but interesting since they define higher genus integrable systems and their
quantization].

For example for N' = 2* one finds
[-éaﬁ + MM + e1)P(2) — u] =0
In general

@ the above equation can be seen as the null state equation for a resulting null
state insertion which in the generalized M.M. generates the resolvent.

@ the quantum SW-curve is solved in the semiclassical expansion by
v — eﬁ I xsw(z)+m.

@ it describes the quantum geometry behind instanton counting in the NS limit.
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mini-AGT: vortex counting and degenerate fields

Classical limit (ungauging) with surface operators.

SU(N) x SU(N) 4d superconf. — SU(N) 2d N = (2,2) with Ny = N.
Instanton counting — Vortex counting.

(@CERN)
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mini-AGT: vortex counting and degenerate fields

When we reduce 4d to 2d, the super conformality condition becomes the saturation of
the flavor/color locking in the vortex solution.

The Vortex moduli space is a Lagrangean submanifold of the ADHM Instanton moduli
space

One might compare the vortex counting to which the instanton counting reduces with
the string engineered Nekrasov partition function.

The corresponding toric diagram (over which one has to evaluate the string theory
contribution) is the strip with b.c. corresponding to the surface operators. This gives
the 5d theory on a further twisted S' of radius 8.

The result is given in closed form by a suitable combination of basic-Hypergeometric
functions (where g = e~ ") — y®n_1 — and matches the (equivariant) vortex counting.
In the 4d limit, the combination of Hypergeometrics yFn_1 reproduces the degenerate
field conformal blocks of Toda theory.

[There’s a correspondence among fusion channels of degenerate fields in the CFT ,
boundary conditions for the topological string on the strip and particular sectors in the
Vortex counting.]

It is an higher rank check of the AGT conjecture.
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AGT on ALE spaces

One can generalize the AGT correspondence by
R4 — M4

and ask
@ if it still holds
@ how does the M, geometry affects the CFT, (the other half dictionary!!!!)

Only partial answers by now

It was noted that a Z, quotient of the Nekrasov instanton counting for the pure SU(2)
gauge theory reveals to compute the conformal blocks of the NS sector of N’ = 1
superCFT in 2d in the Wittaker limit.

Actually the relevant gauge theory computation is that of the theory on ALE space and
corresponds to the SuperLiouville A" = 1 CFT in 2d for the C2/Z, case.
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AGT on ALE spaces

More specifically one can show that

@ Instanton counting on resolved Z, quotients matches with the conformal blocks
in the NS sector of V' = 1 sCFT in 2d. Explicit check for Ny =2, ' = 2" and a
linear SU(2) x SU(2) quiver.

@ The exact three point functions of the N = 1 sLiouville theory match the
perturbative parts of the full partition function in the Q background on C2?/Z,.

Higher rank , i.e. SU(N), gauge theories can be computed, as well as higher rank
quotients, i.e. C?/Z, and there are some proposals for their duals....
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Toric singularities and resolution

General toric singularities are C2/I 4, where I, 4 is the Z, action
(Z1 R 22) — (wZ1 s 0qu2)

where w = €™/, p > g and coprime.
The Hirzebruch-Jdung resolution of the above singularity X, 4 is prescribed as follows.
Letp/g=1e1,...,ec_1] = €1 — - ! be the continuous fraction expansion of the

ratio p/q in terms of the finite sequencé of positive integers {e1,...,e—1}. The
minimal HJ resolution divisors are L — 1 rational curves with intersection matrix
— €1 1 0 R 0
1 —e
Tog=1| o
: 1
0 1 —er1

The resolved geometry is spanned by L copies of C2 patched together.
Examples:

— the resolved I'p 1 is the Op1 (—p) space (L =2, e; = p)

—the resolved ', ,—1 is ALE Ay (L = p and e, = 2 since
p/(p—1)=2-1/[(p—1)/(p—2))).



Nekrasov partition function on toric singularities

Using equivariant localization and the geometry of the resolved space, we computed

L—1
2.0 (0 Z e
qull (a E1762) — Z HZfEII(eS )76(2)7a(£))£e1 5

{k(é)} =0

where @ = {a.},a=1,..., N are the vev’s of the scalar field of the N/ = 2 vector
multiplet,

a0 = a, + KO 1 KO
(wnth k © = kB =), ¢! = 3N S Comk(™ and the local equivariant weights
(e1 € )) are approprlate linear comblnatlons of €1 and e, dictated by the dual fan.
This can be decomposed as classical, one-loop and instanton parts as

fof:*"(euez,é,{fe}):ch*“’e1,ez,a)Z Sz, CIEEYPAS CRERATAY

=0 InN=0
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CFT, counterpart

The blow-up formula for the full partition function implies a CFT, symmetry algebra
given by

An(Xp.q) = Do (H & “Wh)
where the central charge of * Wy

L 3
()% + ()
(&) _(£)

€y €

Ce:(Nf1)(1+Q§N(N+1)) , Q= +2

This proposal passes several tests:
@ M-theory compactification reproduces the small es lim. and central charges

@ Abelian case and counting of point-like instantons (Hilbert scheme of points)
agree: for ¥ = T? (M = 4), and g = p — 1 character expansion for su(p);.

@ A,_ case is well understood: Z, parafermionic Wy algebra plus p copies of
Heisenberg algebrae

Caveat: the non hyperkaler case is not done out of Kac-Moody’s because Mac Kay
correspondence doesn’t hold anymore.
Problem: full interpretation as a CFT; in the general X, 4 case.
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Wild Quiver Gauge Theories

To extend from conformal to asymptotically free gauge theories : integrate out some
massive d.o.f.

Geometric description: example Ny = 4 to pure SYM SU(2).

29

(@&=31\)]

January 22, 2013

27/34



Wild Quiver Gauge Theories

Ny=4

(After redefining the dynamical scale) ¢," = — ¢5"° The resulting SW curve is

The corresponding CFT dual is now the (normalization of the) two point function of the
operators corresponding to the cubic poles. This is a Wittaker states such that

L1|Gy >=N%|Gy > and Ln|Gy >=0 forn>1

The state is a perturbation in A of a primary normalized state of weight A = o(Q — «)
One can show that

< Gy ‘G1 >= Zﬁ:,r(e

after we identify the parameters as above.
The news here are that

@ The AGT correspondence still holds in the AF cases too.

@ Higher singularities should be allowed to the quadratic differential. More
specifically: primary fields insertions correspond to lagrangian matter, higher
ones generically to strongly coupled sectors.
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Wild Quiver Gauge Theories

The pure SU(2) curve, can be seen as the gauging of two Riemann Spheres with a
cubic puncture and a regular one! The SW curve for each sphere comes from
ungauging, that is A — 0 with z = A?w and x = A~2X [fixed by the T*P' geometry]

2 2 2
2 N u N ~2 1 u N — ..2_1 u
X =—=4+—+—— — X:m+ﬁ+w Aso X =—4%+—

which is the SW curve associated to the state |Gy >.

So, we learn that in other to extend to AF theories one has to extend the order of the
poles of the quadratic differential to higher ones.

The underlying Hitchin field is therefore allowed to have higher singularities too.

The counting of the moduli is always the counting of SL(N, C) holomorphic bundles
over the M-theory curve with specified singularities and matches the gauge theory
moduli and couplings.

This situation is called wild ramifications. The associated quiver gauge theory, wild
ramified.

The curve above, is the first of a series, named by Cecotti and Vafa D,-theories, which
arise as strongly coupled limits of SU(n — 1) gauge theories with Ny = 2. These have
an SU(2) flavor symmetry.
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Wild Quiver Gauge Theories

By gauging the diagonal SU(2) of the D, and the Dy, theories, one can define the
theory corresponding to the SW-curve

A
X2 _ ¢2n,m

with a quadratic differential ¢;™" with
@ apoleofordern+2atz=0
@ apoleoforderm+2atz= o
These are called A, m theories and are generically non-lagrangean. (The first ones
are anyway, A 1 is pure SU(2), A2 is Nr =1, Az 2 is Ny = 2)
We can apply the AGT correspondence to compute the Nekrasov partition function of

the An,m theories if we compute the corresponding Wittaker states, that is the states
corresponding to the operator ¢,(z) with OPE with the stress-energy tensor

A2 (w)

A+ O(N)
(w— z)n2

(w—2z)?

where the |.s.t’s and O(A) contain all the moduli of the strongly coupled theory.

T(w)P,(z) ~ + Ls.t. + + Ls.t.
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Wild Quiver Gauge Theories

The closed form of the Wittaker state |G, > for the D, theory can be explicitly

computed in terms of the Shapovalov matrix of the reference primary state
OA(Y, Yl) =< A|£Y,C_y/|A >,

the moduli and the dynamical scale A in the Verma module of |A >.
The Nekrasov partition function can be computed from the CFT correspondent
construction as

Zinm —< Go|Gn >
extending to the non-lagrangean cases the computations for the low (n, m)’s.
Of course, by picking the ¢; — 0 limit one can obtain the prepotential of the theory

An,m __ : An,m
F = — lim E1621HZNek .

€;—0
As a check, the correct quadratic differential
= lim ete2 < Go|T(2)|Gim > / < Gl Gim >~ ¢ (z2)
€j—
is reproduced in the classical limit.

Generically V¢, , (2) =< ®2,1(2)|Cg,np > is the wave function of the corresponding
quantum Hitchin system with wild ramifications.
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Conclusions

RECAP:

@ AGT correspondence has been checked and generalized in several ways

@ In doing that, one reinterprets the gauge theory data in the language of
integrable systems and their quantization (Quantum Hitchin System). Here the
links to generalized matrix models [and topological strings] are important (mirror
pictures)

@ Extension to toric singularities: incomplete dictionary!

@ Extension to asymptotically free theories implies considering a well defined
generalization of the above named Wild quiver gauge theories (Quantum Hitchin
System with Wild Ramifications)

@ M-theory engineering sheds some light on the nature of the correspondence
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Open Issues

@ Prove AGT in the general case (a Phys proof!)

@ Generalize AGT to more general 4d space-times (other than X, 4) [give the full
4d-cft dictionary!]

@ Understand the geometry behind the |G, > Wittaker states and generalize to
more generic irregular states

@ What's the role of integrable hierarchies in all that? (Which hierarchy?)

@ Who is the (quantum) integrable system corresponding to Xy 4? And more in
general?

@ e Extend these techniques along breaking A’ =2 — N = 1:is it possible?
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Thank you!
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