

Acknowledgments

- Roberto Divia` (Alice)
- Niko Neufeld (LHCb)
- Wainer Vandelli (Atlas)

Outline

- Overview of event builders after LS1
- Event builders after LS1
 - LHCb
 - Alice and Atlas
 - CMS

Event builders after LS1 in a nutshell

Ready

• For 2015 physics data

Maintenance

 Networks replacement (10 Gigabits Ethernet)

Re-factoring

 Use Infiniband and 10/40 GE for EB networks

LHCb: event builder upgrades in LS1

No changes: ready for physics data

LHCb: Event builder upgrades in LS1

No changes in the event builder

- Keep the same PCs and networks
- Keep the same DAQ software

- Extend the existing HLT farm due to the increase of luminosity
- Deferred event filtering see Markus Frank's talk

"HLT infrastructure evolution in LS1"

Alice and Atlas: event builders upgrades in LS1

 Maintenance: networks replacement (10 Gigabits Ethernet)

Requirements for the event building after LS1

ALICE

 Two new detectors (CPV and DCal) no sensible impact on event rates and data rates

- Increase the readout bandwidth in the TRD detector
- Upgrade of the TPC (under evaluation) considerable impact on event rates and data rates

ATLAS

 L1 rate goes to 100 kHz (subject to various changes at the detector level)

- Depending on the LHC scenarios, in particular 50ns operation, peak event size can be >2MB
- Event building rate will be significantly higher
 - The trigger strategies for the new architecture are still being considered
 - The new ROS system and the new network will allow for more readout

Alice event builder changes (I)

- New D-RORC card to increase the readout bandwidth, see Filippo Costa's talk ("<u>Future of the DAQ readout links</u>")
- Planning to increase bandwidth between DAQ and HLT farm (new H-RORC) due to the increment of the readout bandwidth in the TRD (between 5 to 8 %) and other future sub-detectors upgrade
- Network replacement
 - EVB network replace Force10 with Brocade/HP (CERN IT contract)
 - Change network topology from point to point to tree. The tree topology allows to maximize Price/Performance
- Replacement cycle of PCs (new PC more powerful than current)
- Run more then one GDC per physical machine through virtualization (under evaluation)
 - Due to new machines trying to maximize the hardware resources usage in the GDCs with virtualization and the goal is to reduce the number of GDCs of factor between 4 and 10

Alice event building changes (II)

Atlas event building changes (I)

- Merge L2, EB and EF within a single system
 - L2 (processing & data collection based on ROIs), EB and EF (processing on the full event)
 functionalities in each HLT node
 - Automatic system to balance the CPU load (additional flexibility for HLT strategies)
 - Less connections to the ROS PCs
 - Implicit handling of HLT farm heterogeneity
- The event builder as a separate and well defined entity is disappearing
 - Incremental event building will be performance on each HLT node under the drive of the trigger code and/or based on data-flow optimization algorithms
- Changes in the DAQ software
 - Less DAQ applications
 - Look for common solutions & avoid code duplication
 - A single framework for HLTSV, DCM, HLTPU and SFO?
 - Developing a new message passing library based on asynchrouos I/O
 - Ease maintenance and scalability

CMS: event builder upgrades in LS1

 Re-factoring: use Infiniband and 10/40 GE for EB networks

Requirements for the event building after LS1

- Accommodate sub-detectors
 - Some sub-detector new back-end electronics in μTCA standard with serial link to cDAQ
 - Some sub-detectors will be replaced which lead to higher data volumes
- Inputs (custom electronics)
 - About 500 2-4 Gbps "Legacy" FEDs
 - About 20-100 6-10 Gbps New FEDs
- Aging of existing hardware (PCs and Networks at least 5 years old)

Event builder changes

- Re-implementation with up-to-date technology
 - Typically 10x less nodes with 10x more performance
- Considering 10/40 GE technologies to replace myrinet-based fedbuilder (2x 2 Gbps)
- Taking into account the 40 GE or Infiniband to change the event builder network (3x1GE)
- Single event builder (no need for 8 slices)
- New architecture between Event Builder and Filter Farm
 - see Markus Frank's talk "HLT infrastructure evolution in LS1"

Event builder changes

Current architecture

Commercial hardware

Upgrade of CMS DAQ system (I)

Upgrade of CMS DAQ system (II)

20

FEROL aggregation into one RU

Aggregation n-to-1, for example

- 16 FEROLs each sending 2 Gbps TCP/IP stream over 10 GE link
- Concentrated in one 40 GE NIC into RU PC
- Reliability and congestion handled by TCP/IP
 Filippo Costa's talk "<u>Future of the DAQ readout</u>"

USC - SCX 180m

- with OM3 fibers up to 200 m
- 40 GE max. is 150 m NOT feasible

Network useful to re-configure when fault with optic, PC, etc

Upgrade of CMS DAQ system (III)

Upgrade of CMS DAQ system (IV)

Feasibility studies

- Networking technologies
- Event builder software
- Measurements

Networking technologies

Our feasibility studies are focused in two network technologies

Ethernet

- 10/40 Gigabit Ethernet (different vendors)
- iWARP (RDMA) TCP/IP full offload (Chelsio T4 Unified Wire Adapters)
- performance measurements using TCP/IP and DAPL (Direct Access Programming Library- OpenFabrics)

Infiniband

- 4x quad data rate (QDR)
 - 40 Gb/s 8B/10B encoding -32 Gb/s data rate
- 4x fourteen data rate (FDR)
 - 56 Gb/s 64B/66B encoding 54.54 Gb/s data rate
- performance measurements using DAPL (Direct Access Programming Library-OpenFabrics) and IPoIB (IP over InfiniBand)

The OFED Stack (source: OpenFabrics Alliance)

A unified, cross-platform, transport-independent software stack for RDMA and kernel bypass

http://www.openfabrics.org/

Event builder software

Test setups

Setup 1 (LHCb)

- Initial software development environment (ptuDAPL)
- first tests with Infiniband (QDR) and 10 GE (TCP, iWARP)

Setup 2 (FEROL test)

- Front-End Readout Optical link merger
- 16 Streams inputs to 1 x 40 GE

Setup 3 (Event builder)

- DAQ Event building
- Scalability
- N inputs to M outputs (IB or 40 GE)

FEROL Measurements (setup 2)

2 TCP/IP streams for each FEROL/MOL

• Cope with NUMA architecture, CPU and IRQ affinities in 10/40 GE

Performance

- 150 kHz with fragment size of 2kB (40 GE)
- 165 kHz with fragment size of 1kB (22 GE)

Stability

No backpressure for 125 hours at 100 kHz with 2kB fragment size

Infiniband Measurements (setup 3)

Fragment size - Bytes	100 kHz MB/s	mstreamio2g	gevb2g	gevb2g no tuning
16384	1638	4894	4715	4510
32768	3277	5098	4983	4829

Detailed presentation about Experience with IB and Ethernet with Mellanox:

https://indico.cern.ch/getFile.py/access?contribId=14&sessionId=2&resId=0&materialId=slides&confId=218156

Pending Issues

Simultaneous input/output on RU

Simultaneous input/output on BU

Scaling of EVB from 15x15 to 72x48

Summary

Ready

For 2015 physics data

Maintenance

 Networks replacement (10 Gigabits Ethernet)

Re-factoring

 Use Infiniband and 10/40 GE for EB networks

Thank you for your attention

• Are there any questions?

Setup 1 (LHCb)

	Setup 1		
Nodes	8		
Туре	DELL R710		
CPU	Xeon E5530 2x 4-core at 2.27 GHz		
Memory	3 GB		
Network	Ethernet	Infiniband	
Adapter	Chelsio T420-CR 10GBASE-SFP RNIC (iWarp)	Qlogic HCA, qle7340 4x QDR PCle	
Switch	Voltaire Vantage 6048, 48 ports, 10 GbE	Qlogic 12300- BS01, 36 ports, 4x QDR	

DELL R310/R620

 Operating System: Scientific Linux CERN SLC release 5.3 (Boron)

Linux version: 2.6.18-164.6.1.el5

OFED version: OFED.1.5.2.x.x

• XDAQ version: release 11

Setup 2 (Hardware)

	Setup 2		
Nodes	4	4	1
Туре	FEROLs	MOLs	DELL R620
CPU	1	-	Xeon E5-2670 2x 8-core at 2.6 GHz
Memory	-	-	32 GB
Network	10 GE		40 GE
Adapters	-		Mellanox - ConnectX-3 VPI MCX353A-FCBT
Switches	Mellanox 36 - QSFP40 GbE - MSX1036B-1SFR		

Setup 2 (Firmware/Software)

DELL R620

- Operating System: Scientific Linux CERN SLC release
 6.2 beta (Carbon)
- Linux version: 2.6.32-220.2.1.el6.x86_64
- OFED version: OFED.1.5.3.3.1.0
- Ethernet driver: mlx4 en version 1.5.8.3
- XDAQ version: release 11
- TCP test: sock application <u>http://www.icir.org/christian/sock.html</u>

Mellanox - ConnectX-3 VPI

• Firmware version: 2.11.500

Mellanox 36 – MSX1036B-1SFR

Firmware version: 9.1.6294

Mellanox MLNX-OS™ version: 3.2.0506

Setup 3 (Hardware)

	Setup 3		
Nodes	32		
Туре	DELL C6220		
CPU	Xeon E5-2670 2x 8-core at 2.6 GHz		
Memory	32 GB		
Network	IB FDR 4x/40 GE		
Adapters	Mellanox - ConnectX-3 VPI MCX353A- FCBT (# 4)	DELL mezzanine Mellanox FDR CX3 (# 24)	
Switches	Mellanox 36 - QSFP FDR based Infiniband - MSX1036F-1SFR Mellanox 36 - QSFP40 GbE - MSX1036B-1SFR		

Setup 3 (Firmware/Software)

DELL C6220

- Operating System: Scientific Linux CERN SLC release 6.2 beta (Carbon)
- Linux version: 2.6.32-220.2.1.el6.x86 64
- OFED version: OFED.1.5.3.3.1.0
- Ethernet driver: mlx4_en version 1.5.8.3
- XDAQ version: release 11
- TCP test: sock application <u>http://www.icir.org/christian/sock.html</u>

Mellanox - ConnectX-3 VPI

Firmware version: 2.11.500

DELL mezzanine Mellanox FDR CX3

Firmware version: 2.10.4492

Mellanox 36 – MSX1036F-1SFR

Firmware version: 9.1.3190

Mellanox MLNX-OS™ version: 3.2.0300

Mellanox 36 – MSX1036B-1SFR

Firmware version: 9.1.6294

Mellanox MLNX-OS™ version: 3.2.0506