DAQ Systems
configuration

ALICE, ATLAS, CMS & LHCb joint workshop on DAQ@LHC
12.03.2012

DAQ Systems Configuration

Detector
[veol st H ot HRrichH Ecal H Heal H{ Muon

Trljéger ‘

» A lot of subsystems need to o vipgr

be configured for DAQ o ekt | g g 1
> Front-end electronics Fro

© Readout UnltS I_M_E_P_quye_st____\A\RE})WTTNH{:RK//

o Trigger]

- Event Builder // / \9\\
o HLT, L ‘ SWITCHHSWITCHH SWITCHHSWITCHHSWITCHHSWITCH

» DAQ has to run with T el el el
different configurations for W HLT farm

Event data
- Timing and Fast Control Signals
Control and Monitoring data

several types of run

- Calibration runs, technical runs
Cosmics,

o Sub—detector stand-alone runs
> Physics

» There needs to be an easy, reliable and fast way to configure
the different subsystems according to the different run types

DAQ Systems Configuration

» Each Experiment implemented the DAQ
systems differently
- Different technologies
- Web based
- PVSS based, ...
» Each Experiment implemented DAQ
configuration differently
- XML Descriptions
- Named datasets in DB

- Object Persistent DB

ALICE

» Architecture summary:
- Global DAQ configurations stored under a Name
- Specific machine configurations stored under a Role Name
- Configurations are stored in a MySQL Database
- Configurations are retrieved via C SQL API

» Databases

- MySQL DB
- More static DAQ configuration settings defined by Name
- Streams
- Timeouts, ...
- Configurations for each machine defined by Role Name (e.qg.
“LDC-TPC-17)

» The MySQL DB is populated by system experts
> Via Run Control Human Interface
> Via a tool developed to insert configurations - editDb

ALICE

» The ALICE Run Control is based on a central Run Control
and distributed Run Control Servers (RCServer)
- The RCServers are responsible for starting and configuring the
DAQ processes
- An RCServer runs on each machine and has a Role Name defined
» Upon start of the Run Control, a DAQ configuration, stored
with the name “DEFAULT”, is loaded from the database

» Another configuration can be selected and loaded from the
database, by configuration Name

» Before starting a run, other parameter settings can be
performed. The new parameters are not saved
automatically in the DB.

» The configuration is retrieved from the database by the

RCServers

> The confi%uration is loaded into shared memory which will be
accessed by the processes started by the RCServers

ALICE

» The RCServer processes communicate with
the central Run Control via SMI++
- Certain configuration parameters are transmitted
via SMI++ parameters
» The DAQ processes configuration is also
done via other mechanisms:
> Local configuration files
> Access to the MySQL DB
- Configurations in the [

DB are accessed by
Role Name

DB

Run Coordination - Configure Partition 'PHYSICS_1'

ALICE

» Trigger configurations are stored
on another MySQL DB (ACT DB)
- A tool “ALICE Configuration Tool” (ACT)

was developed to manage the
configurations on the DB

- At the start of Run, the Trigger system
downloads the active configuration

» HLT configuration:

> On the ECS (Experiment Control System) some parameters are sent to
the HLT System

HLT mode

List of active links
List of Trigger Classes
- The configuration is then handled by the HLT system

» Front-end configuration is done via the DCS
> Using PVSS

ATLAS

» Architecture summary
- Based on object approach
- Configuration is a graph of linked objects
- Classes and objects are stored as XML files
- XML Schema files - define object classes
- XML Data files - store database objects

- XML information is stored in a protected file repository and
archived on a relational database

- Home made object database is used to access XML
information - OKS

» Databases

- OKS DB provides overall DAQ system description for
Control, Monitoring and Data flow

- Trigger, HLT and detector configurations are partially
covered by OKS

ATLAS

» Configuration objects structure is defined by the
database schema

- Common database schema was agreed with trigger and
detector groups

> Groups can extend the schema to introduce properties
for their configuration objects

- OKS classes support inheritance with polymorphism
» The OKS database is populated by the relevant
experts

o GUIs are available to create XML schemas and data

- A tool is available to generate automatic configurations
with minimal user input

- Partition Maker (Python based and with Python interface)

ATLAS

» Access to the OKS database is provided via
Remote Database servers (RDB)

> Provides access to the OKS Db from different clients
without a common file system

- Caches results of OKS queries
» RDB is developed on top of CORBA

» To address scalability requirements RDB
servers are setup as a balanced tree

» Current deployment of the
RDB Servers

o XML repository —> RDB Master
—-> Pool of RDBs -> RDBs

wlgning on the Racks -> RDB

ProXyseging on the nodes

10

text editor

» ATLAS applications
do not use the OKS or ..
RDB APIs directly

- Avoid dependencies on ., ¢,

: i oksconfig
DB implementations Heb el okeconts
- 2 layers
. anfigs — abstract interface to work with DBs and the configuration
objects

- Available as plugins:
- OKS XML Files
- OKS Relational archives
- RDB Server

- Data Access Libraries (DALs) - uses configs to map database

schema on the relevant language class and instantiates their
configuration objects from DB data

» Data Access Libraries are automatically generated from the
OKS schema for C++, Python and Java

11

ATLAS

» Only one configuration is loaded at a given
time in the OKS DB

» On start, Run Control reads information from
OKS
- Applications to start
- Where should they be started
- Application parameters
- Each application loads the appropriate config plugin

» On the configure transition

- Applications instantiate their configuration objects
using the corresponding DAL

12

CMS

» Architecture summary
Configurations are stored in a relational schema
- As XML Descriptions for DAQ software processes
Configurations are stored in ORACLE DB
Run Control queries the DB via JDBC
XML configurations are passed to the online software processes
via SOAP
» Databases
- Resource Service DB
- Stores all the information for the dynamic configuration of the hosts
DAQ Configurations based on the templates from other databases

- Stores all the parameterized XML descriptions to configure XDAQ
executives

- Configuration Template DB

- Stores slowly changing information templates (e.g. composition of
Functional Units)

- DAQ Hardware and Configuration DB
- Stores frequently changed information

High level configuration layout (e.g. location, mutiplicity and connectivity
nctional Units)

(o]

o

o

o

13

CMS

» How to populate the Resource Service DB

0 DAQ Configurator tool

Reads configurations templates and high level layout from the
Configuration Template DB and DAQ Hardware and
Configuration DB

- Computes and sets the parameters from the templates
- Allows ad-hoc user input
Creates XDAQ Executives XML configuration documents

Oth er GUIs
. . = ” High-Level
} C O n fl g u rat I O n S I n t h e ‘[.E. DAgQ Configuration Layout
Resource Service DB e
- Versioned o DAQ Configurator N

— —

- Tree like structure —)
= 3‘:;‘_‘;2??:‘;:)3“‘(’;"0" J Resource Service
- Used by Run Control and all %3 | be

Configuration
sub-systems

Template

Configuration
Template DB

14

CMS

» DAQ online software is based on the XDAQ
framework

- XDAQ Executives (processes)

- e.g. Builder Units, Filter Units, Event Managers, ...
- XDAQ Applications

- One or more per Executive

- Perform actions
- Setting front-end parameters

0 XDAd Executives are highly configurable through XML
Documents

- Determines the role of the executive
- Sets up software environment

- Contains applications and parameters to be loaded by the
executive

- Determines collaborating applications

15

CMS

» At the start of a session, the Run control configures the DAQ
cluster dynamically

- The currently registered configuration gets loaded from the Resource
Service DB

Holds the info about the Function Managers to be loaded
- Holds hierarchical information for the FMs
» The started Function Managers (FMs) load all the XDAQ
executives according to the configuration currently registered for
each sub-system
- Job Control Service (XDAQ Executive) runs on all hosts in the cluster
> Job Control Service reads the XML Document from the configuration

- XML Documents contain the information about XDAQ executives and
applications to be started on the hosts

» XDAQ configuration determines:
> Configuration of custom hardware

> Configuration of Super-Fragment r,'_‘-‘-‘-‘-‘-‘-‘-‘-‘-‘-‘-‘-‘-‘- ‘‘‘‘‘ y
Builder S (o
- Event data flow topology in Event service | XDAQ executive

. JDBC Run Control SOAP| | >=TF=) /
Builders PR :

: Java / Tomcat ! .
Resource Service | XDA w e |
(Oracle database) 4 Q executive !

16

CMS

» Trigger and HLT configuration

- Trigger and HLT configuration can be selected on
the Run control

- Default configurations are registered in the FMs

- The Function Managers load the different
configuration settings for the Trigger and HLT
accordingly

- Configurations for Trigger and HLT are stored in
different databases

- Configurations can be changed at runtime, which
triggers FM reloading requests

- Configuration changes in the DBs will be detected
by Run Control immediately

.....
A A\

17

LHCb

» Architecture summary

- Configurations are stored as named Recipes

- Recipe types define for each configurable device type
which settings are to be stored in a Recipe

- Recipes implement the Recipe types with the valued
parameters

- Configurations are stored in ORACLE DB and in
PVSS Cache

- Configurations are accessed by name from PVSS, via
an RDB Manager

» The Recipe names follow a convention
- Hierarchy of activity type (e.g. “PHYSICS|pA|VdM”)

18

LHCb

» Databases

- All the configurations are stored in an Oracle DB -
Configuration DB

» Configuration DB

> |s populated mainly outside running periods by the
relevant experts

> |s populated using PVSS tools
» Cache

- Each PVSS project where a configuration will be
used can have a cache with the relevant Recipes

19

LHCb

» Run Control is based on the PVSS Scada software

» PVSS Run Control integrates all the systems:
o Trigger
> Front-end hardware control
- Readout Supervisors
o HLT
- Event Builder control

» Configuration of all the sub-systems is treated in a similar
manner

» The Recipes are applied according to the currently set activity in
the Run Control
- Recipes to be loaded are matched by name to the set activity
- Recipes loaded follow the activity type hierarchy

e.g. If the set activity name is “PHYSICS|pA|VdM”, the devices to be
configured will check if a recipe that matches the name and apply it, if there
isn’t, they’ll check if there’s a “PHYSICS|pA”, if there isn’t they’ll proceed to
check for one named “PHYSICS”

- “Default” named Recipes for non Activity dependent configurations.

In c?_s%lno match is found for the given activity, default settings will be
applie

20

LHCb

» Dataflow Processes configuration

- Based on Offline Gaudi FW
- Are configured via job options files (python)

- There are static job options (changed with new
releases of the Online SW)

- There are job options files dynamically created from
the run control
- According to the set Activity
- According to the Partitioning Mode

Conf. data (DIM)

21

LHCb

» Trigger configuration
- Uses an additional Trigger Configuration Key (TCK)

- The Recipe loaded for current Activity contains the
TCK of the HLT Recipe to be loaded

- Can be changed at Runtime without major
reconfiguration

22

Conclusions

» Different philosophies and technologies for DAQ
implementations dictated different approaches for the
system configuration

» Some similarities
> The experiments implemented a 2 step approach
- Define the schema of configurations
- Define the parametrized configurations
- ATLAS and CMS implemented XML files to store configuration data

> LHCb and ALICE store the configurations as named sets of
parameters

- Usage of dbs is pervasive
- Configuration values direct storage
- XML files storage
- Configuration objects storage
- Trigger handled slightly differently
- Change trigger settings without whole DAQ system reconfiguration

23

Acknowledgements

» A thank you to Clara Gaspar, Hannes Sakulin,
Igor Soloviev and Vasco Barroso for the
information provided and patience explaining
it.

24

