
ALICE, ATLAS, CMS & LHCb joint workshop on DAQ@LHC

12.03.2012

 A lot of subsystems need to
be configured for DAQ
◦ Front-end electronics
◦ Readout Units
◦ Trigger
◦ Event Builder
◦ HLT, …

 DAQ has to run with
different configurations for
several types of run
◦ Calibration runs, technical runs,

Cosmics, …
◦ Sub-detector stand-alone runs
◦ Physics

2

SWITCH

HLT farm

Detector

TFC

System

SWITCHSWITCH SWITCH SWITCH SWITCH SWITCH

READOUT NETWORK

L0 trigger

LHC clock

MEP Request

Event building

Front-End

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

C

P

U

Readout

Board

E
xp

er
im

en
t

C
o

n
tr

o
l S

ys
te

m
 (

E
C

S
)

VELO ST OT RICH ECal HCal Muon

L0
Trigger

Event data

Timing and Fast Control Signals

Control and Monitoring data

SWITCH

MON farm

C
P
U

C
P
U

C
P
U

C
P
U

Readout

Board

Readout

Board

Readout

Board

Readout

Board

Readout

Board

Readout

Board

FE

Electronics

FE

Electronics

FE

Electronics

FE

Electronics

FE

Electronics

FE

Electronics

FE

Electronics

 There needs to be an easy, reliable and fast way to configure
the different subsystems according to the different run types

 Each Experiment implemented the DAQ
systems differently
◦ Different technologies

 Web based

 PVSS based, …

 Each Experiment implemented DAQ
configuration differently
◦ XML Descriptions

◦ Named datasets in DB

◦ Object Persistent DB

3

 Architecture summary:
◦ Global DAQ configurations stored under a Name
◦ Specific machine configurations stored under a Role Name
◦ Configurations are stored in a MySQL Database
◦ Configurations are retrieved via C SQL API

 Databases
◦ MySQL DB

 More static DAQ configuration settings defined by Name
 Streams
 Timeouts, …

 Configurations for each machine defined by Role Name (e.g.
“LDC-TPC-1”)

 The MySQL DB is populated by system experts
◦ Via Run Control Human Interface
◦ Via a tool developed to insert configurations - editDb

4

 The ALICE Run Control is based on a central Run Control
and distributed Run Control Servers (RCServer)
◦ The RCServers are responsible for starting and configuring the

DAQ processes
◦ An RCServer runs on each machine and has a Role Name defined

 Upon start of the Run Control, a DAQ configuration, stored
with the name “DEFAULT”, is loaded from the database

 Another configuration can be selected and loaded from the
database, by configuration Name

 Before starting a run, other parameter settings can be
performed. The new parameters are not saved
automatically in the DB.

 The configuration is retrieved from the database by the
RCServers
◦ The configuration is loaded into shared memory which will be

accessed by the processes started by the RCServers

5

 The RCServer processes communicate with
the central Run Control via SMI++
◦ Certain configuration parameters are transmitted

via SMI++ parameters

 The DAQ processes configuration is also
done via other mechanisms:
◦ Local configuration files

◦ Access to the MySQL DB

 Configurations in the

DB are accessed by

Role Name

6

Run
Control

RCServer

Shared
Memory

DAQ Process

Environment

Local Files

MySQL
DB

 Trigger configurations are stored
on another MySQL DB (ACT DB)
◦ A tool “ALICE Configuration Tool” (ACT)

was developed to manage the
configurations on the DB

◦ At the start of Run, the Trigger system
downloads the active configuration

7

 HLT configuration:

◦ On the ECS (Experiment Control System) some parameters are sent to
the HLT System

 HLT mode

 List of active links

 List of Trigger Classes

◦ The configuration is then handled by the HLT system

 Front-end configuration is done via the DCS
◦ Using PVSS

 Architecture summary
◦ Based on object approach

 Configuration is a graph of linked objects
◦ Classes and objects are stored as XML files

 XML Schema files – define object classes
 XML Data files – store database objects

◦ XML information is stored in a protected file repository and
archived on a relational database

◦ Home made object database is used to access XML
information - OKS

 Databases
◦ OKS DB provides overall DAQ system description for

Control, Monitoring and Data flow
◦ Trigger, HLT and detector configurations are partially

covered by OKS

8

 Configuration objects structure is defined by the
database schema
◦ Common database schema was agreed with trigger and

detector groups
◦ Groups can extend the schema to introduce properties

for their configuration objects
 OKS classes support inheritance with polymorphism

 The OKS database is populated by the relevant
experts
◦ GUIs are available to create XML schemas and data
◦ A tool is available to generate automatic configurations

with minimal user input
 Partition Maker (Python based and with Python interface)

9

 Access to the OKS database is provided via
Remote Database servers (RDB)
◦ Provides access to the OKS Db from different clients

without a common file system
◦ Caches results of OKS queries

 RDB is developed on top of CORBA
 To address scalability requirements RDB

servers are setup as a balanced tree

10

RDB

RDBp1

RDBp10

.

.

.

.

.

.

RDB1,1

RDB1,10

.

.

. RDB10,10

RDB10,1

 Current deployment of the
RDB Servers
◦ XML repository -> RDB Master

-> Pool of RDBs -> RDBs
running on the Racks -> RDB
Proxy running on the nodes

Proxy N

Proxy N

ProxyN

Proxy N

 Configs - abstract interface to work with DBs and the configuration
objects

 Available as plugins:

 OKS XML Files

 OKS Relational archives

 RDB Server

 Data Access Libraries (DALs) – uses configs to map database
schema on the relevant language class and instantiates their
configuration objects from DB data

 Data Access Libraries are automatically generated from the
OKS schema for C++, Python and Java

11

Repository of
OKS XML files

OKS

RDB

OKS Archive
(RDBMS)

user

OKS data
editor

text editor

Web GUI

DAL
DAL

DAL

config

oksconfig
rdbconfig
roksconfig

genconfig

Partition
Maker

developer

online
process online

process online
process

 ATLAS applications
do not use the OKS or
RDB APIs directly
◦ Avoid dependencies on

DB implementations
◦ 2 layers

 Only one configuration is loaded at a given
time in the OKS DB

 On start, Run Control reads information from
OKS
◦ Applications to start
◦ Where should they be started
◦ Application parameters
◦ Each application loads the appropriate config plugin

 On the configure transition
◦ Applications instantiate their configuration objects

using the corresponding DAL

12

 Architecture summary
◦ Configurations are stored in a relational schema

 As XML Descriptions for DAQ software processes
◦ Configurations are stored in ORACLE DB
◦ Run Control queries the DB via JDBC
◦ XML configurations are passed to the online software processes

via SOAP

 Databases
◦ Resource Service DB

 Stores all the information for the dynamic configuration of the hosts
 DAQ Configurations based on the templates from other databases
 Stores all the parameterized XML descriptions to configure XDAQ

executives
◦ Configuration Template DB

 Stores slowly changing information templates (e.g. composition of
Functional Units)

◦ DAQ Hardware and Configuration DB
 Stores frequently changed information

 High level configuration layout (e.g. location, mutiplicity and connectivity
of Functional Units)

13

 How to populate the Resource Service DB
◦ DAQ Configurator tool

 Reads configurations templates and high level layout from the
Configuration Template DB and DAQ Hardware and
Configuration DB

 Computes and sets the parameters from the templates
 Allows ad-hoc user input
 Creates XDAQ Executives XML configuration documents

◦ Other GUIs

14

 Configurations in the
Resource Service DB
◦ Versioned

◦ Tree like structure

◦ Used by Run Control and all
sub-systems

 DAQ online software is based on the XDAQ
framework
◦ XDAQ Executives (processes)

 e.g. Builder Units, Filter Units, Event Managers, …
◦ XDAQ Applications

 One or more per Executive
 Perform actions

 Setting front-end parameters
 …

◦ XDAQ Executives are highly configurable through XML
Documents
 Determines the role of the executive
 Sets up software environment
 Contains applications and parameters to be loaded by the

executive
 Determines collaborating applications

15

 At the start of a session, the Run control configures the DAQ
cluster dynamically
◦ The currently registered configuration gets loaded from the Resource

Service DB
 Holds the info about the Function Managers to be loaded
 Holds hierarchical information for the FMs

 The started Function Managers (FMs) load all the XDAQ
executives according to the configuration currently registered for
each sub-system
◦ Job Control Service (XDAQ Executive) runs on all hosts in the cluster
◦ Job Control Service reads the XML Document from the configuration
◦ XML Documents contain the information about XDAQ executives and

applications to be started on the hosts

16

 XDAQ configuration determines:
◦ Configuration of custom hardware
◦ Configuration of Super-Fragment

Builder
◦ Event data flow topology in Event

Builders

 Trigger and HLT configuration
◦ Trigger and HLT configuration can be selected on

the Run control
◦ Default configurations are registered in the FMs
◦ The Function Managers load the different

configuration settings for the Trigger and HLT
accordingly

◦ Configurations for Trigger and HLT are stored in
different databases

◦ Configurations can be changed at runtime, which
triggers FM reloading requests

◦ Configuration changes in the DBs will be detected
by Run Control immediately

17

 Architecture summary
◦ Configurations are stored as named Recipes

 Recipe types define for each configurable device type
which settings are to be stored in a Recipe

 Recipes implement the Recipe types with the valued
parameters

◦ Configurations are stored in ORACLE DB and in
PVSS Cache

◦ Configurations are accessed by name from PVSS, via
an RDB Manager

 The Recipe names follow a convention
◦ Hierarchy of activity type (e.g. “PHYSICS|pA|VdM”)

18

 Databases
◦ All the configurations are stored in an Oracle DB –

Configuration DB

 Configuration DB
◦ Is populated mainly outside running periods by the

relevant experts

◦ Is populated using PVSS tools

 Cache
◦ Each PVSS project where a configuration will be

used can have a cache with the relevant Recipes

19

 Run Control is based on the PVSS Scada software
 PVSS Run Control integrates all the systems:

◦ Trigger
◦ Front-end hardware control
◦ Readout Supervisors
◦ HLT
◦ Event Builder control

 Configuration of all the sub-systems is treated in a similar
manner

 The Recipes are applied according to the currently set activity in
the Run Control
◦ Recipes to be loaded are matched by name to the set activity
◦ Recipes loaded follow the activity type hierarchy

 e.g. If the set activity name is “PHYSICS|pA|VdM”, the devices to be
configured will check if a recipe that matches the name and apply it, if there
isn’t, they’ll check if there’s a “PHYSICS|pA”, if there isn’t they’ll proceed to
check for one named “PHYSICS”

◦ “Default” named Recipes for non Activity dependent configurations.
 In case no match is found for the given activity, default settings will be

applied

20

 Dataflow Processes configuration
◦ Based on Offline Gaudi FW

◦ Are configured via job options files (python)

◦ There are static job options (changed with new
releases of the Online SW)

◦ There are job options files dynamically created from
the run control

 According to the set Activity

 According to the Partitioning Mode

21

 Trigger configuration
◦ Uses an additional Trigger Configuration Key (TCK)

◦ The Recipe loaded for current Activity contains the
TCK of the HLT Recipe to be loaded

◦ Can be changed at Runtime without major
reconfiguration

22

 Different philosophies and technologies for DAQ
implementations dictated different approaches for the
system configuration

 Some similarities
◦ The experiments implemented a 2 step approach

 Define the schema of configurations
 Define the parametrized configurations

◦ ATLAS and CMS implemented XML files to store configuration data
◦ LHCb and ALICE store the configurations as named sets of

parameters
◦ Usage of dbs is pervasive

 Configuration values direct storage
 XML files storage
 Configuration objects storage

◦ Trigger handled slightly differently
 Change trigger settings without whole DAQ system reconfiguration

23

 A thank you to Clara Gaspar, Hannes Sakulin,
Igor Soloviev and Vasco Barroso for the
information provided and patience explaining
it.

24

