

SYSTEM ADVINISTRATION ALICE, ATLAS, CMS & LHCB JOINT WORKSHOP ON DAOGLEIC

- **Introduction**
- **Configuration**
- **D** Monitoring
- **Virtualization**
- □ Security and access
- □ Support
- □ Next steps and conclusions

Diana Scannicchio on behalf of ALICE, ATLAS, CMS, LHCb System Administration

Introduction: run efficiency

The usage of big farms of computers is needed to take data (run)

- □ ALICE: ~450 PCs
- ATLAS:~3000 PCs, ~150 switches
- CMS:
 ~2900 PCs, ~150 switches
- □ LHCb: ~2000 PCs, ~200 switches

Achieve a good efficiency within the limits of available hardware, manpower, cost, ...

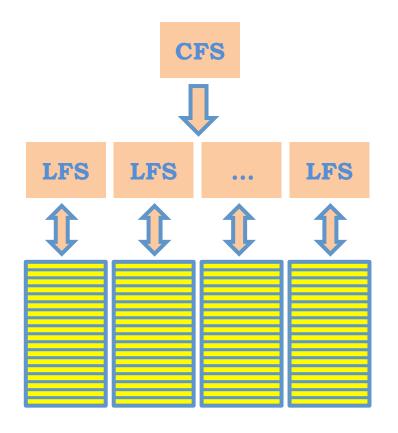
- High availability, from the system administration (not DAQ) point of view:
 - ★ minimize the number of single points of failure
 - critical systems are unavoidable
 - have a fast recovery to minimize the downtime
 - usage of configuration management tools and monitoring systems
- Complementing DAQ capability of adapting to the loss of nodes

The common goal is Run Efficiency

□ The farms are composed by nodes fulfilling various functions

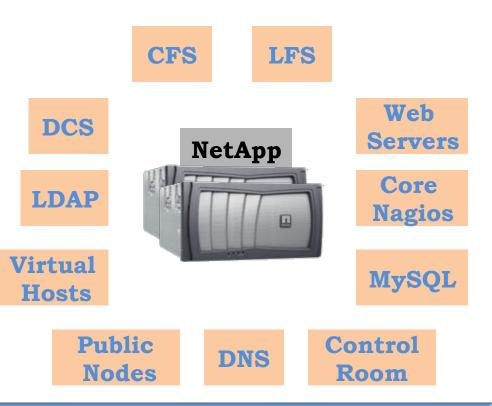
- ★ Trigger and Data Acquisition
- ★ Detector Control Systems
- ★ Services
 - ➢ monitoring, authorization, access, LDAP, NTP, MySQL, Apache, …
- ★ Control Rooms

Run should survive GPN disconnection


- ★ any vital IT service is duplicated (DNS, NTP, DHCP, LDAP, DC)
- **\star** event data can be locally stored for 1-2 days
 - ➢ ATLAS and CMS

Farm Architecture - ATLAS

Hierarchical structure


ATLAS

- ★ Central File Server (CFS)
- ★ Local File Server (LFS)
- \star netbooted nodes

□ Flat structure

- ★ local installed
- ★ NetApp: centralized storage
 - home directories and different project areas
 - ➢ 84 disks (6 spares), ~10 TB

Farm Architecture

CMS

Flat structure

- \star all nodes are local installed
- ★ NetApp: centralized storage
 - ✓ home directories and different project areas
 - ✓ ~17 TB

ALICE

- Flat structure
 - ★ all nodes are local installed

- Hierarchical structure
 - ★ all nodes are netbooted

Efficiency

□ Single points of failure are impossible to avoid

- ★ ATLAS: DCS, ROS, NetApp (but it is redundant)
- ★ CMS: during LS1 DCS will move to blades for a large portion, with failover to a blade on surface

□ Core services: DNS/DHCP/kerberos, LDAP, LFS are redundant

□ Fast recovery

- ★ needed especially to recover a "single point of failure" system
- ★ monitoring is a fundamental tool
 - ➤ to get promptly informed about failure or degradation
- \star configuration management
 - > to quickly (re-)install a machine as it was, e.g. on new hardware (20~40 min.)
- ★ moving DNS alias (~15 min., due to propagation, caches)
- ★ diskless nodes have no re-install downtime (~5 min.) (ATLAS, LHCb)
 - Ilexible system designed in-house to configure diskless nodes
 - ➤ redundant boot servers to serve boot images, NFS shares, ...
- Efficiency loss due to hardware failures has been negligible compared to operator errors or detector failures

- □ Central configuration management is needed to speed up and keep under control the installation (OS and other software) on
 - \star local installed nodes
 - \star netbooted nodes
- Various configuration management tools are available, the ones used are:
 - ★ Quattor
 - CERN IT standard Configuration Management Tool
 - ✓ being dismissed in favour of Puppet
 - tight control on installed packages
 - Iack of flexibility for complex configuration and service dependencies
 - ★ Puppet
 - high flexibility
 - active development community

Quattor

- ★ CMS
- ★ LHCb
- ★ ATLAS
 - still nodes configured by mixing with Puppet
 - finalizing the dismissing of Quattor in the next months

Puppet

- ★ ALICE
 - \succ the first configuration is done through kickstart, then puppet
- ★ ATLAS
 - ➢ in use for ~3 years, ~15000 LOC
 - complicated servers have been the first to be managed by Puppet
 - \succ on the HLT farm is complementing Quattor

Packages and updates

□ Software distribution and package management

- \star SLC and other public RPMs from CERN repositories
 - > ALICE, ATLAS and CMS also have repositories mirrored in P2, P1 and P5
- ★ Trigger and DAQ software packaged as RPMs
 - ALICE and CMS: installed locally on each node
 - > ATLAS: installed from CFS, synchronized to LFS, NFS-mounted on clients
 - > LHCb: in-house package distribution systems (Pacman, same as for GRID)

□ Update policy

- ★ ATLAS
 - snapshot of yum repositories, versioned test/production/... groups
 - Quattor clients receive version list based on repository group
 - Puppet clients pull directly from assigned repository group
- ★ CMS
 - Quattor/SPMA controlled, updates are pushed as needed
- ★ ALICE
 - updates are propagated at well-defined moments
- ★ LHCb
 - ➢ updates are deployed at well-defined moments

Diana Scannicchio

for detailed news

See next Thursday

Monitoring

Monitoring and alerting

□ Large infrastructure must be monitored automatically

- \star proactively warned of any failure or degradation in the system
- \star avoid or minimize downtime

□ What does monitoring mean?

- \star data collection
- ★ visualization of collected data (performance, health)
- ★ alert (sms, mail) on collected data

□ Various monitoring packages are available, the ones in use are:

- ★ Icinga
- ★ Ganglia
- ★ Lemon
- ★ Nagios
- ★ Zabbix

Current monitoring tools

Lemon is used by Alice for metrics retrieval and display, and alerting
 * monitoring Linux generic hosts and remote devices using SNMP
 * retrieving DAQ-specific metrics (rates, software configuration, etc)
 * reporting/alerting

Nagios (v2) was used by CMS and is used by ATLAS
 * problem with scaling in growing cluster

 \star configuration is distributed over more servers in order to scale

 Ganglia is used by ATLAS to provide detailed performance information on interesting servers (e.g. LFS, virtual hosts, ...)
 * no alert capabilities

□ Icinga is already being used by CMS and LHCb

- ★ configuration is compatible with the Nagios one, so it is "easy" to migrate
- ★ data collection is performed using Gearman/mod_gearman (queue system) to distribute the work load

□ ALICE will replace Lemon with Zabbix

- □ ATLAS will complete the migration to Icinga complementing the information with GANGLIA
 - ★ Gearman/mod_gearman to reduce workload on the monitoring server and improve scaling capabilities
- LHCb will also use GANGLIA

Virtualization

ALICE

none

ATLAS

- gateways
- domain controllers
- few windows services
- development web servers
- core Nagios servers
- Puppet and Quattor servers
- one detector machine
- public nodes

CMS

- domain controllers
- Icinga workers and replacement server
- few detector machines

- web services
- infrastructure services
 - ★ DNS, Domain Controller, DHCP, firewalls
 - ★ always a tandem for critical systems: one VM, one real
- few control PCs

Virtualization in the future

- □ Virtualization is a very fertile playground
 - \star Everyone thinking how to exploit
- Offline software (analysis and simulation) will run on virtual machines on the ATLAS and CMS HLT farms
 - ★ OpenStack is used for management

ALICE

- Control Room PCs
- Event Builders

LHCb

- general login services
 - ★ gateways and windows remote desktop
- all control PCs
 - ★ PVSS, linux, windows, specific HW issues (CANBUS)

ATLAS

DCS windows systems

CMS

- servers
 - ★ DNS, DHCP, kerberos, LDAP slaves
- DAQ services

Security and Access Management

Authentication

ALICE

- internal usernames/passwords used for detector people
 - ★ no sync with NICE users/ passwords
- RFID/Smartcard authentication after LS1
 - still no access to/from outside world

ATLAS

- local LDAP for account information
 - ★ usernames and local password if needed (e.g. generic accounts)
- NICE authentication using the CERN Domain Controllers mirrors inside P1

CMS

- local kerberos server
 - ★ same usernames and userID as in IT
- LDAP is used to store user info and user to group mappings

- Local LDAP
- Local Domain Controllers
- UIDs, usernames and user info are in sync with the CERN LDAP

Security and Access Restriction

□ Web pages and Logbooks are

- \star accessible from outside CERN and secured through CERN SSO
- \star firewalls and reverse proxies also used

The networks are separated from GPN and TN (for ATLAS, CMS, LHCb)
 ★ exceptions are implemented via CERN LanDB Control Sets

ALICE

no external/GPN access to any DAQ services

- no external/GPN access to any DAQ services
 - ★ access is possible only with an LHCb account through the linux gateways or windows terminal servers

Security and Access Restriction

ATLAS

- access to the ATLAS network is controlled
 - ★ RBAC (Role Based Access Control) mechanism in place to restrict user access to nodes and resources (i.e. Access Manager)
 - during Run Time the access is only authorized by ShiftLeader, and it is time limited
 - ★ sudo rules define limited administration privileges for users
- two steps for a user to login on a P1 node
 - ★ first step on the gateway where roles are checked before completing the connection
 - ★ second step to the internal host, managed by login script

CMS

- access to the CMS network via boundary nodes (user head nodes) is not blocked at any time, any valid account can login
 - nodes are not restricted either (anyone can log into any machine)
 - ★ sudo rules are restrictive to the types/uses of nodes
 - ★ access is through password authentication only for the peripheral nodes (SSH keys not allowed)
- The boundary nodes are fully fledged nodes similar to general nodes on the network

Workload and requests management

□ Ticket systems are used to track issues and requests

- ★ ALICE and CMS use Savannah and will move to Jira
- * ATLAS uses Redmine for 3 years (before Jira availability)
- ★ LHCb uses OTRS and has installed Redmine

Urgent matters are managed via on-call with different philosophies

- ★ ALICE: DAQ on-call and the other DAQ experts as needed
- ★ ATLAS: direct call to TDAQ SysAdmins
- ★ CMS and LHCb: DAQ on-call is the first line, then SysAdmins

Next Steps and Conclusions

A lot of work is planned by all experiments during LS1

Updating the Operating Systems to

- ★ SLC6 on both local installed and netbooted nodes
- ★ Windows Server 2008 or later

• Complete the migration to new configuration management tool

Upgrading and improving the monitoring systems

Looking more and more at virtualization
 * HLT Farms will be used as virtual machines to run offline software

Conclusions

- □ Systems are working: we happily ran and took data
 - ★ complex systems
 - ★ 24x7 support
- □ Interesting and proactive "Cross Experiment" meetings to
 - \star share information
 - \star compare solutions and performances
- Converging on using the same or similar tools for "objective" tasks
 ★ e.g. for monitoring and configuration management
- □ Appropriate tools are now available to deal with big farms
 - \star big farms are now available outside in the world
 - ★ CERN is no more a peculiarity
- Differences observed for "subjective" tasks
 - \star restrict access or not
 - ★ uniformity (netbooted) vs. flexibility (local installed)
- □ Improvement is always possible... unfortunately it depends on costs, time and manpower

□ ALICE

- ★ Adriana Telesca
- ★ Ulrich Fuchs

CMS

★ Marc Dobson

- ★ Enrico Bonaccorsi
- ★ Christophe Haen
- ★ Niko Neufeld