Software Development and Life
Cycle

Reiner Hauser

Many thanks to:
Luciano Orsini, Andrea Petrucci (CMS) Sylvain
Chapeland, Barthelemy von Haller (ALICE), Marco
Clemencic (LHCDb),

Why this talk ?

« Almost everything beyond the detector read-out buffers consists
of commercial hardware and software:

- X386 based PCs
— Linux as standard operating system

e Occasional custom driver...

— (mostly) standard network technologies and protocols.
— Open source and widely available compilers (GCC)

> The DAQ/HLT area is basically a large software project.

« How do we organize, develop, debug, deploy this
software 1n our various experiments ?

Software Life Cycle

e Buzzword list
— Analysis
- Requirements
— Design
— Implementation
— Testing, Integration

— Deploymen
cployment We are all here and possibly

— Maintenance / Start another major cycle in LS1

Online Software

e Emphasis here on “online” software (but mostly ignoring details
of trigger)

e Each experiment structures their software in a different way

- How many different "projects’ are there ?
— Are they rather integrated or strictly separated ?
— Even the choice of main language can differ by project.

e Rather interesting to sort this out at the beginning of our
discussions...

ALICE

DAQ+Run Control (C, Tcl/Tk, php+mySQL)

— Plus “detector algorithms” for subdetectors

— Static linking 1s used to avoid runtime dependencies —
different projects can use their preferred version.

DQM (C++, uses offline code — AliRoot)

HLT (remember: running before event building — quite different
from other experiments)

Strong emphasis on logbook for sharing and presenting
monitoring data.

ATLAS

All online and off-line software 1s based on a common set of
external software (LCGCMT), compiler version/flags.

Structured into logical projects with a small common base
- TDAQ project (C++, Java, Python)

— Offline project (including trigger code) (C++, Python,
Java for event display)

— AtlasHLT project brings the two together.

Releases of TDAQ and off-line are done separately but
coordinated.

— Typically all projects are rebuild together.

CMS

RCMS - run control (Java)
XDAQ — data acquisition

— Dynamically links to off-line CMSSW for the filtering
algorithms.

— Implies common externals, compiler versions etc.

Online software talks to each other using web services (SOAP).

Plan is to have a stricter separation between DAQ and filter tasks
after LS1.

LHCDb

* Run control tightly integrated with PVSS

« All other software organized as a set of projects, even using the
same framework (Gaudi) for online and offline software. (C++,
Python); can talk to DIM, SMI++ etc.

* Projects can be build separately, e.g. stable base components like
Gaudi are changing less frequently than analysis projects.

Environment for Software

OS**** Main Languages HW
ALICE SLC5 C, C++ x86
ATLAS SLCS C++, Java, Python x86
CMS SLCS, (MacOS) C++, Java x86
LHCb SLC5, C++, C, Python***** x86
(Windows™**)

Cross
compilation

PowerPC*

ARM**

Plus: whatever web browser you use...including its JavaScript interpreter

* detector software, also part of TDAQ project
** Initial investigation

*** until 2011, mostly for developers (Visual Studio); may come back.

**** everybody plans to move to SLC6
**&xk framework configuration is done in Python.

GCC is the main compiler, icc, clang are tested by various experiments

Version Control

ALICE

— Subversion, CVS (self hosted)
ATLAS

— Subversion (different off-line and TDAQ repos)
« CMS

— Subversion (multiple repos), some subdetectors on CVS

LHCb

— Subversion

— (it for Gaudi (self hosted — now there 1s IT service) and

small independent projects.
10

Build Systems

e ATLAS and LHCb use CMT for the bulk of their software;
detector software usually also uses this.

— LHCb will move to CMake; there 1s also a discussion in
ATLAS on changing the build system.

e ALICE use make for the DAQ software, CMake for the DQM
project.

e CMS uses make, different from their off-line build system, ant for
Java based project.

11

Nightly Builds and Testing
ATLAS and LHCb are doing nightly builds

— ATLAS: 2 branches right now, default + new compiler

— LHCb: 3 nightly “slots™ (head versions against stable
LCG sw, against LCG nightly, etc).

Unit tests: Some, universally not considered to be in good state:
test should be written from the beginning, not added afterwards.

Integration tests: Some, often makes more sense for framework
oriented code.

— LHCb: qm_test => ctest, nosetest

ALICE uses a homemade continuous integration system for DQM

ALICE and LHCb are looking into continuous integration for the
future (maybe based on Jenkins: http://jenkins-ci.org) 12

Releases

All groups have the concept of a (major) release

— But different ways to handle minor release/bug
fixes/patches, 1.e. how to handle the maintenance of the
running system.

The differences are coming from the way a given piece of
software depends on others, or has to provide binary compatibility
to others.

Release notes about major changes for users are provided.

13

Release Frequencies

 ALICE: few dependencies between software

— 1-2/month for DAQ, 40-50/y for DQM, ~100/year for
detector algorithms.

« ATLAS & CMS: dependency on off-line software version,
provide stable binary API to detectors

- CMS: 1-2 main releases/year, “update release” every few
months.

- ATLAS: 1 main release/year, “patches” on a per package
basis as required (typically deployed ~once per week)

e [LHCb: common software environment

- e.g. framework 1/month, but on-line uses separate branch
and diverged for a while at the end of running.

— Separate 'patch project' for each major project. 14

Deployment

Format Installer Granularity Remote Site

installation

ALICE RPM Sysadmin, system DB 1 RPM/DAQ Yes

1 RPM/DQM
ATLAS RPM swinstaller role, 1 RPM/package Yes, also CVMFS
private DB

CMS RPM Sysadmin, system DB 1 RPM/package Yes, requires root
privileges.

LHCb “tar ball” Cronjob, non-root Per project Yes,going to
RPM; looking at
CVMES for

on-line as well

The installation method at the detector site is driven by the way the machines
are setup, e.g. all with local disks => local copy of software, netbooted => installation
on file server etc.

15

Patches and Bug Fixes

ALICE has frequent release updates (few dependencies on other
projects, no need for binary compatibility for some)

LHCb has "patch projects' for each major CMT project.

CMS has 'update releases' which contain RPMs for a subset of the
full 'main release’; they are binary compatible with older versions.

ATLAS updates RPMs for single packages as required

— Note: AFS installation can be different from P1, since
patches can be cherry-picked by importance and
urgency.

— Note: HLT code uses single "‘patch project ' similar to

LHCb, about 1/week with occasional full release.
16

Issue Tracking

ALICE: Jira (IT hosted, private instance for their own plugins,
work flows), Logbook

ATLAS: Savannah for bug reports, feature requests, patches.

— Patches require a bug# for justification.

CMS: Trac interfaced to Subversion

— Any commit requires an open issue in Trac, either for a
bug or a new feature.

LHCb: Savannah

All Savannah users plan to move to IT supported Jira.

17

Documentation

e Web, (t)wikis, EDMS, internal notes.

e doxygen for documentation generated from code (ATLAS, CMS,
LHCb)

e Nightly build and test results shown on web pages.

18

Changes for LS1/LS2 ?

Most foreseen changes are incremental

— Switch from tool A to B

ALICE plans major changes for LS2, basically a major rewrite:

more commonality with off-line, all tools are under
re-consideration. Working groups are starting now.

Several experiments looking into GIT.

19

Use of Formal Software
Development Processes

20

Use of Informal Software
Development Processes

Nobody admits to using any of the hot and important software
processes that were in vogue about 10-15 years ago.

Also nobody explicitly mentions any of the agile methodologies
that are in vogue for the last 5-10 years.

Mostly ad-hoc steps (write-up a list of requirements, draw some
diagram to explain your solution etc.)

CMS has a detailed document describing their procedure for
getting changes into the DAQ software — mostly to protect the
existing running system.

Other experiments let the developer free hand and go through a
release integration/testing/validation step.

21

Summary

 Wide agreement on basic tools, as expected (languages, compilers,
operating systems, hardware)

— People seem to converge on tools that are supported and
“g00d enough” - e.g. Subversion even if it's not the latest
and hottest thing.

e But convergence also in places where I personally didn't expect it (e.g.
use of RPMs, handling of binary compatibility)

e The overall organization of every experiment specific software seems
to lead to certain solutions, with its own set of constraints.

— If you switch from one mode to another (ALICE?) seeing the
experience of the other experiments might be very useful.

22

Future

Is there a move to even more commonality, e.g. CMake ?

In deploying user software via RPM, see e.g. RedHat Software
Collections:

— https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Developer_Tools
et/1/html/Software_Collections_Guide/

It would be interesting to learn about the experience of others in
pushing their current process to the next steps

- E.g. going from nightly builds to continuous integration

There are cross-experiment software meetings at CERN, mostly
focused on frameworks, parallel processing etc.

— Should there be the occasional online software meeting ?

The fact that we are doing very similar things means that we can
also easily profit from each other much more easily... 23

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

