
Lorenzo Moneta
root.cern.ch

New Developments in ROOT
Math Libraries

1

ROOT Users Workshop
11-15 March 2013

L. Moneta, I. G. Bucur, PH-SFT

http://root.cern.ch
http://root.cern.ch

ROOT Users Workshop 11-14 March 2013

Outline

• Introduction
• New developments in core mathematical libraries

–Fitting and Minimization
• Improvements in Histogram Library

–new classes (TEfficiency, TKDE, TKDTreeBinning)
• Vectorization

–integration of Vc library in matrix and vector classes
• Future developments
• Conclusions

2

ROOT Users Workshop 11-14 March 2013

 ROOT Math/Stat Libraries

TMinuitTFumili

Minuit2

Fitting and Minimization

Linear Fitter

Quadp

FFTW

Extra Libraries

Unuran
FoamMLP

Linear Algebra
SMatrix

TMatrix

GenVector
Physics Vectors

TVector3/TLV

RooFit TMVA
High Level Analysis Libraries

3

MathMore
 Algorithms and functions

GSL

Core
libraries

Histogram Library

TH1 TF1 TGraph

uses

plug-ins

RooStats

• Large set of mathematical libraries and tools needed for event
reconstruction, simulation and statistical data analysis

ROOT Users Workshop 11-14 March 2013

Numerical Integration

• Single entry point for multiple implementation:
ROOT::Math::Integrator

4

• Different implementation can be selected at run-time using ROOT plug-in
manager

• Integration algorithm and its options can be set using the class
ROOT::Math::IntegratorOneDimOptions (or
IntegratorMultiDim)

• Example: this is used in RooStats::BayesianCalculator

ROOT Users Workshop 11-14 March 2013

New Fitting Classes

• New fitting classes replacing TVirtualFitter/TFitter
classes (since v. 5.20)
– Separate interfaces for fitting and minimization

• Fitter class and Minimizer interface (multiple implementations)
• possible to use (and mix) the various minimization engines

– Decouple fitting from data source (BinData and UnBinData classes)
• same fitting code for all ROOT objects (TH1,TGraph,TTree,...)

– Fit result object which can be stored and retrieved (FitResult)
• keep full result information (parameter, errors, covariance matrix, etc..)

– Minimal and generic function interfaces
• for model functions (pdf) and objective (minimization) functions
• easier for user to plug-in their functions (i.e. pdf classes from RooFit)

– Support for parallel fits (usable in a multi-threads environment)
• no more static TVirtualFitter objects

5

ROOT Users Workshop 11-14 March 2013

Function Minimization

• Common interface class (ROOT::Math::Minimizer) for function
minimization

• Existing implementations available as plug-ins:
– Minuit (based on class TMinuit, direct translation from Fortran code)

• with Migrad, Simplex, Minimize algorithms
– Minuit2 (new C++ implementation with OO design)

• with Migrad, Simplex, Minimize and Fumili2
– Fumili (only for least-square or log-likelihood minimizations)
– GSLMultiMin: conjugate gradient minimization algorithm from GSL (Fletcher-Reeves, BFGS)
– GSLMultiFit: Levenberg-Marquardt (for minimizing least square functions) from GSL
– Linear for least square functions (direct solution, non-iterative method)
– GSLSimAn: Simulated Annealing from GSL
– Genetic: based on a genetic algorithm implemented in TMVA

• Easy to extend and plug-in new implementations
– e.g. minimizer based on NagC exists in the development branch

(see https://root.cern.ch/svn/root/branches/dev/mathDev/math/mathnag)

• See tutorial fit/NumericalMinimization.C on how to use the Minimizer interface

6

https://root.cern.ch/svn/root/branches/dev/mathDev/math/mathnag
https://root.cern.ch/svn/root/branches/dev/mathDev/math/mathnag
http://root.cern.ch/root/html/tutorials/fit/NumericalMinimization.C.html
http://root.cern.ch/root/html/tutorials/fit/NumericalMinimization.C.html

ROOT Users Workshop 11-14 March 2013

Function Minimization

• Minimizer interface used for fitting in ROOT (by ROOT::Fit::Fitter)
and also RooFit/RooStats (via class RooMinimizer)

• Control of minimization options and type of minimizer using the
ROOT::Math::MinimizerOptions class
– to change the minimizer for fitting:

• ROOT::Math::MinimizerOptions::SetDefaultMinimizer(“Minuit2”);

– e.g. to change the tolerance:
• ROOT::Math::MinimizerOptions::SetDefaultTolerance(1.E-6);

– several other options also available:
 (some specific to the minimizer)

• Possible to combine minimizers
– e.g. use first Genetic and then

Minuit to find the global minimum

7

ROOT Users Workshop 11-14 March 2013

Minuit2

• Object-Oriented version of Minuit introduced in ver. 5
–same functionality but with fixes and improvements

• single side parameter limits
• added Fumili algorithm
• better tools to debug minimization with capability to retrieve (if

needed) all information at each iteration
– added in 5.34 a trace object which can be customized by user and

produce histograms and graphs to monitor iterations
• support parallelization in gradient calculation with multi-threads

(OpenMP) or multi-process (OpenMPI)

• Used now for complex fits in RooFit/RooStats (e.g.
Higgs combination fits with 400 parameters)
–found to be more robust and able to converge faster (with

less function calls)

8

ROOT Users Workshop 11-14 March 2013

Fit Result class

• New TFitResult class available since 5.26
– returned from the TH1::Fit or TGraph::Fit using TFitResultPtr

• need to use option “S” otherwise just the fit status (int) is returned
– TFitResult contains all fit result information:

• parameters, error, covariance matrix, Minos errors, minimizer status, etc..

9

// return a smart pointer to TFitResult using option “S”
TFitResultPtr r = h1->Fit("gaus","L S");
double fmin = r->MinFcnValue(); // minimum of fcn function

const double * par = r->GetParams(); // get fit parameters
const double * err = r->GetErrors(); // get fit errors
TMatrixDSym covMat = r->GetCovarianceMatrix();
TMatrixDSym corMat = r->GetCorrelationMatrix();

r->Print(“V”); // full printout of result

**
Minimizer is Minuit / Migrad
MinFCN = 21.9837
Chi2 = 32.3656
NDf = 47
Edm = 1.54911e-11
NCalls = 63
Constant = 79.3879 +/- 3.07479
Mean = 0.0118002 +/- 0.0317826
Sigma = 1.00505 +/- 0.0224758 (limited)

Covariance Matrix:
 Constant Mean Sigma
Constant 9.4544 -4.299e-06 -0.039903
Mean -4.299e-06 0.0010101 5.4604e-08
Sigma -0.039903 5.4604e-08 0.00050517

Correlation Matrix:
 Constant Mean Sigma
Constant 1 -4.3991e-05 -0.57739
Mean -4.3991e-05 1 7.644e-05
Sigma -0.57739 7.644e-05 1

ROOT Users Workshop 11-14 March 2013

Other Fitting Improvements

• Support for likelihood fits of weighted histograms (Option “LW”)
– correct error estimation in weighted likelihood fits

• Support for extended un-binned likelihood fits
– need to deploy as a new option in TTree::UnbinnedFit
– could be used also to fit histogram with buffer (information on all

entries is available)
• Support for Pearson Chi-square fit of histograms (Option “P”)

– using expected errors instead of observed ones
• Ability to create complex fitting function objects (TF1) using

functors
• Add Chebyshev polynomials to list of pre-defined functions

(cheb0,1,....9)
– orthogonal polynomial (better parametrization for fitting)

10

ROOT Users Workshop 11-14 March 2013

Fit Panel GUI

• Possible to fit ROOT objects using GUI

11

ROOT Users Workshop 11-14 March 2013

Improvements in Histogram Library

• Improve histogram classes
– improved support for weighted histogram

• support negative weights
• can perform likelihood fits of weighted histograms
• automatic enable storage of weight square (Sumw2) when filling with

weights (from ROOT ver. 6)

• Ability to plot Poisson errors (asymmetric errors:
standard for low statistics)
–TH1::GetBinErrorLow and
TH1::GetBinErrorUp

–to enable call
SetBinErrorOption(kPoisson)

12

ROOT Users Workshop 11-14 March 2013

Histogram Improvements

• Fix in TAxis::SetRange to correctly deal with
underflow/overflows

• Various fixes in labels histograms
• Support independent axis extensions
• Improve performances of many histogram functions

and operations (e.g. TH1::Merge)
• Dedicated class for division of histograms

(TEfficiency) to compute correct statistical errors
available since ROOT version 5.28
–statistics on histogram resulting from division described

by Binomial distributions

13

ROOT Users Workshop 11-14 March 2013

0 2 4 6 8 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

68.3%

95%

Different Confidence Levels

0 2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

0.9

1

kFAC 68%

kFNormal 68%

Different Statistic Options

• TEfficiency provides possibility to estimate and draw
intervals at different confidence level and statistics option

• Support also for 2D and 3D
• Can be created from 2 TH1’s
• Possible to fill directly
TEfficiency
– eff.Fill(true, x);

– eff.Fill(false, x);

• TEfficiency::Fit : binned maximum likelihood fit
using a binomial probability for each bin

TEfficiency

14

maxL(ki|Ni, pi) =

Y

i

ni!

(ni � ki)!ki!
fki

i (1� fi)
ni�ki

with fi = f(✏i, ~p)

ROOT Users Workshop 11-14 March 2013

New Class for Kernel Estimation

• Class TKDE: non-parametric density estimation using kernels

– support for various kernel (default is Gaussian) but also Epanechnikov,
Bi-weight and Arc-cosine kernels

– support for adaptive bandwidth (better for multi-modal distribution and
for describing peaks and tails)

– can provide both full result or interpolated one for fast evaluation
– can support data binning for efficient bandwidth computation in the

adaptive case
– can compute error and bias on the estimate density

• Plan to extend to multi-dimensions using kd-tree as data storage
(TKDTree)

15

b
fh(x) =

1
nh

nX

i=1

K(
x� xi

h

)

ROOT Users Workshop 11-14 March 2013

Examples of TKDE

• Example: gaussian, bi-gaussian and log-normal

16

Gaussian
Log-normal

Log-normal
(log-scale)

Bi-Gaussian

ROOT Users Workshop 11-14 March 2013

•Class for binning multi-
dimensional data using a kd tree
(TKDTreeBinning)

•Automatic binning of data
•every bin will have same entries or
same weight (content)

•Efficient multi-dimensional
histogram

•Can be used to compare MC and
data (make bins with MC and
compare with the data)

•Could be used for non-parametric
density estimation using kernels

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

8

50

100

150

200

250

300

350

400

KDTree binning

 TKDTreeBinning

17

ROOT Users Workshop 11-14 March 2013

New Histogram Classes

• THnSparse
–multidimensional histograms when only a small fractions

of bins are filled
–memory allocated only for bins which are filled
–more efficient already than a TH3 when not all-bins are

filled
–implement projections and fitting

• THn
–multidimensional histogram when a large fraction of bins

are filled
–use lots of memory (often better to use a TTree)

18

ROOT Users Workshop 11-14 March 2013

Vectorization

• SIMD processing for performing many operation in parallel
– size of registers depending on architectures

• SSE : 128 bits : 2 double’s or 4 float’s
• AVX: 256bit : 4 double’s or 8 float’s)

• Input data must be organized in vectors to perform operations
simultaneously

• Automatically compiler can auto-vectorize loops
– possible if no iteration dependency and no branching

• Alternatively use of intrinsic (but code will look like assembly)
19

ROOT Users Workshop 11-14 March 2013

Vc Library

• C++ wrapper library around intrinsic for using SIMD
– developed by M. Kretz (Goethe University Frankfurt)
– used at GSI and BNL, STAR experiment (J. Lauret)
– minimal overhead by using template classes and inline functions

• Provides vector classes (Vc::float_v, Vc::double_v) with
semantics as built_in types
– one can use double_v as a double
– all basic operations between doubles are supported (+,-,/,*)
– provides also replacement for math functions

 (sqrt, pow, exp, log, sin,...)
• Possible to exploit vectorization without using intrinsic and with

minimal code changes
– e.g. replace double ➞ double_v in functions
– easy to do in classes or functions templated on the value type

• e.g ROOT classes in GenVector (3D or Lorentz vectors) or in SMatrix

20

ROOT Users Workshop 11-14 March 2013

Evaluation of Vc in ROOT

• Try to use Vc in ROOT to vectorize operation on a list of object (physics
vectors, matrices, ...) and not within the object
– LorenzVector<PxPyPzE4D<double> > ➞ LorenzVector<PxPyPzE4D<Vc::double_v> >
– SMatrix<double, N1, N2 > ➞ SMatrix<double_v, N1,N2>

• Loop on list of objects (vectors, matrices) is reduced by size of
double_v (NITER = NITER / double_v::Size)
– do not attempt parallelization within objects

• Tested on some basic operation (using double types)
– Addition of vectors, scaling, invariant mass
– matrix operations, matrix inversions
– Kalman filter test

• Test using different compilation flags and Vc implementations
– VC_IMPL = Scalar, SSE, AVX

• Compare results with auto-vectorization
– compiling using gcc 4.7.2 with -mavx -O3 -fast-math
– reference is code compiled with -O2

21

ROOT Users Workshop 11-14 March 2013

• Measure speed-up versus scalar version (-O2)

• Auto-vectorization works well in simple operations, but not for more
complex ones (e.g. when one needs to call math. functions)

• Vector lists must be not too large to avoid cache effects (used N=100)

Sp
ee

d-
up

0

1

2

3

4

5

6

7 Autovec.
Vc scalar
Vc SSE
Vc AVX

Additon
v3=v1+v2

Scaling
v2=a*v1

Inv. Mass
M(v1,v2)

Boost
B(v)

LorentzVector Operations

22

Larger speed-up
probably due to some
extra compiler
optimizations

ROOT Users Workshop 11-14 March 2013

SMatrix Operations

• Perform operations in SMatrix/SVector using Vc::double_v
instead of double
– speed-up obtained for processing operations on a list of 100
SMatrix<double,5,5> and SVector<double,5>

23

Sp
ee

d-
up

0

0.5

1

1.5

2

2.5
Autovec.
Vc scalar
Vc SSE
Vc AVX

 v•v M×v M×M M vTv M ATA
-1

 M

ROOT Users Workshop 11-14 March 2013

Kalman Filter Test

• Typical operation in track reconstruction
– very time consuming

• inversion + several matrix-vector multiplications

–

24

Sp
ee

d-
up

0

0.5

1

1.5

2

2.5

3
Autovec.
Vc scalar
Vc SSE
Vc AVX

 5 matrix×2 5 matrix×5

• Clear advantage with Vc
– SMatrix code can works

using double_v as
value_type

– good boost in performance
in an already performant
code (5-10 times faster than
CLHEP)

ROOT Users Workshop 11-14 March 2013

Vectorization in Fitting

• Vectorize chi-square calculation in fitting ROOT histograms
– work performed by M. Borinsky (summer student 2012)

• Required change in data set layout and in functions
– from array of structure to structure of arrays for input data
– vectorized function interface (TF1)

25

ROOT Users Workshop 11-14 March 2013

ROOT Fitting

• Observed performance gain from new data structure and
from vectorization using VDT library

• Test also using Vc: similar speed-up results (~ 3.5x) but with less
code changes
– would be easy if fit function interfaces are templated

26

Fi
tti

ng
 ti

m
e

old

implementation

new implementation

new vectorized
implementation

Performance gains on AVX
(E5-2690), gcc 4.7
old ⇒ new : 2.7x
new ⇒ vec: 1.5x
Total speed-up: 4.0x

ROOT Users Workshop 11-14 March 2013

Fitting Parallelization

• Parallelization in Minimization (Minuit) in the gradient
calculation (independent of user code)

• Log-likelihood parallelization (splitting the sum)
–more efficient but it is at lower level (often in user

provided code)

Example: unbinned fit
with 20 parameters

OpenMP (multi-threads)
MPI for multi-process in
a cluster

27

ROOT Users Workshop 11-14 March 2013

Future Developments

• New TFormula class based on Cling
• Improve building of complex fit functions:

–make it easier for fitting
–add capability of using models from RooFit (saved in

workspaces)
–use C++11 capabilities (e.g. std::function, lambda,...)

• Implement auto-differentiation using Cling/LLVM

28

ROOT Users Workshop 11-14 March 2013

Future Developments

• Minimization:
– improve support for problems with large number of

parameters (case of sparse hessian matrix)
–constraint minimization

• Deploy multi-threads for fitting
–need to decide on the technology (OpenMP / Intel TBB)
– investigate also parallel numerical integration

• Improve histogram and function (TF1) classes
– investigate having a better inheritance hierarchy
–need to evaluate if possible and how to maintain backward

compatibility
• TH1 is the most used class in ROOT

29

ROOT Users Workshop 11-14 March 2013

Conclusions

• Large collection of math and stat tools available in ROOT
– improved overall quality

• more tests, studied and improved performance whenever possible
– improving modularity

• common interfaces for functions and algorithms
– improve usability (e.g. new classes like TFitResult)
– new classes useful for data analysis (TEfficiency, TKDE)
– need to update now the user documentation

• Investigating parallelization and vectorization of Math libraries
– deploy vectorization using Vc for matrix and vector classes
– implement multi-threads for fitting

• Developed advanced tools for physics analysis
– complex fitting (RooFit)
– multivariate analysis (TMVA)
– framework for statistical calculations (RooStats)

➡see separate presentations
30

Lorenzo Moneta
root.cern.ch

Back-up Slides

31

• Statistical Functions in ROOT Math
• Description of numerical algorithm
• Extra classes introduced recently in ROOT

–ROOT::Math::DistSampler
–ROOT::Math::GoFTest

• More on parallelization and vectorization
• Documentation

http://root.cern.ch
http://root.cern.ch

ROOT Users Workshop 11-14 March 2013

ROOT::Math Statistical Functions

32

• Statistical Functions are provided in a
coherent naming scheme

• probability density functions (pdf)
• i.e. normal distribution:

• normal_pdf(x, sigma, mu)

• cumulative distributions (cdf)
• lower tail: normal_cdf (x, sigma, mu)
• upper tail: normal_cdf_c (x, sigma, mu)

• inverse of cumulative distributions (quantiles)
• inverse of lower cumulative

• normal_quantile (z, sigma)

• inverse of lower cumulative
• normal_quantile_c (z, sigma)

• All major statistical distributions available
• normal, lognormal, Landau, Cauchy, χ2, gamma,

 beta, F, t, poisson, binomial, etc..

• Defined as free functions in ROOT::Math
namespace

ROOT Users Workshop 11-14 March 2013

Numerical Algorithms in Math Libraries

33

ªNumerical algorithms (in the MathCore, MathMore or other libraries):
ªNumerical Derivation

ªcentral evaluation (5 points rule) and forward/backward
ªNumerical Integration

ªgauss integration method
ªone dim. adaptive integration for finite and infinite intervals, singular

functions and with Cauchy principal value.
ªmulti-dimensional adaptive integration
ªmultidimensional MC integration based on PLAIN, VEGAS and MISER

ªRoot Finders
ªvarious bracketing (e.g. Brent) and polishing algorithms using derivatives

ªMinimization (one-dim)
ªGolden section and Brent algorithm for 1D

ªMinimization (Multi-dim)
ªMinuit and Minuit2 (with Migrad and Simplex)
ªconjugate gradient and BFGS algorithms (from GSL)
ªsimulated annealing and genetic algorithms
ªFumili and Fumili2
ªnon linear least square solver with Levenberg-Marquardt algorithm

ª Interpolation
ª linear, polynomial, cubic and Akima spline

ROOT Users Workshop 11-14 March 2013

Example of Fitting

• Example of fitting via new classes
– BinData class

• fillable from ROOT objects (i.e. TH1) or
simple data arrays

– Fitter class configurable via the
FitConfig class

– Fit model functions in a defined
interface (IParamFunction)

– Have also interface for objective
functions and used by the minimizer
(IMultiGenFunction)

– Produce FitResult class
• keep all fit result information
• provide methods for retrieving it

fitresult.Parameters();
fitresult.Errors();
fitresult.CovMatrix(i,j);

34

// fit inputs
TH1 * h1 =
TF1 * f1 =

ROOT::Fit::BinData data;
// fill the data set from the histogram
ROOT::Fit::FillData(d,h1);

// create wrapped parametric function for
// requested model function interface
ROOT::Math::WrappedTF1 func(*f1);

// create fitter class
ROOT::Fit::Fitter fitter;

// set minimizer and configuration
fitter.Config().SetMinimizer(“Minuit2”);

//perform the fit using least square
bool ret = fitter.Fit(data,func);

//retrieve optionally the fit results
if (ret) fitter.Result().Print();

// fit using a user defined objective
// function implementing required
interface
ROOT::Math::IGenFunction mySumSquare(d,f);

ret = fitter.FitFCN(mySumSquare);

ROOT Users Workshop 11-14 March 2013

DistSampler class

• New interface class in version 5.28 for random
generation of data according to a generic distribution
– implemented using UNU.RAN and Foam

• can also generate directly a data sets (binned or unbinned)
– plan to use it in RooFit for implementing
RooAbsPdf::generate

35

using namespace ROOT::Math;
....
DistSampler * sampler = Factory::CreateDistSampler(“Unuran”);
// set the sampling distribution
sampler->SetFunction(user_function);
// init with algorithm name
sampler->Init(“TDR”);
for (int i = 0; i< n;++i) {

// sample 1D data
double x = sampler->Sample1D();
// sample for multi-dimensional data
const double * xx = sampler->Sample()
.......

}

ROOT Users Workshop 11-14 March 2013

New GoF Test Class
• New class for goodness of fit tests:
ROOT::Math::GoFTest in libMathCore
–1-sample test

• test if data are compatible with a reference distribution
• user provided distributions or standard ones (normal, log-normal,etc..)

–2-sample test
• test if two data sets are compatible

–working on un-bin data sets
• we have already the Pearsonχ2	 test on the bin data sets (histograms)

–Kolmogorov-Smirnov test
• was already existing in ROOT for the 2-sample and bin data
• add 1 sample test

–Anderson-Darling test
• much more sensitive to detect tails variation

36

ROOT Users Workshop 11-14 March 2013

Example of using GoFTest

• 1 sample test

• 2 sample test

37

using namespace ROOT::Math;
// create gof test class on data x[n]={....}
GoFTest gof(n,x,GoFTest::kLogNormal);
// set a user distribution object
// which must implement operator ()(x)
gof.SetUserDistribution(user_dist);

double pValueAD = gof.AndersonDarlingTest();
double pValueKS = gof.KolmogorovSmirnovTest();

// create GoF test for data x1[n1] and x2[n2]
GoFTest gof2(n1,x1,n2,x2);

double pValueAD = gof2.AndersonDarling2SamplesTest();
double pValueKS = gof2.KolmogorovSmirnov2SamplesTest();

data 2 quantiles

da
ta

 1
 q

ua
nt

ile
s

da
ta

 q
ua

nt
ile

s

theoretical quantiles

ROOT Users Workshop 11-14 March 2013

Vectorization of Mathematical Functions

• Compare performances in evaluating Math Functions
• Use also VDT Mathematical library (by D. Piparo)

– transcendental mathematical functions which can be auto-vectorized
– but require a different interface: std::sin(double x)
– ⇒ void vdt::fast_sinv(int n,const double *x, double *r)

38

Speed-up auto-vect.
-Ofast -mavx

Vc scalar
(auto-vec.)

Vc SSE Vc AVX VDT AVX

sqrt (x)

exp(x)

log(x)

sin(x)

atan(x)

2.4 2.4 2.3 2.4 2.4

1.0 1.0 2.1 4.9 4.1

1.0 1.0 3.8 4.9 5.4

1.0 1.0 0.4 1.2 1.6

1.0 1.0 1.5 1.3 1.6

ROOT Users Workshop 11-14 March 2013

Parallelization in Histogram Operations

• Speed-up operation on ROOT histograms like scaling or
merging (add) using multi-threads (openMP)
–good speed-up observed
–degradation for large number of bins due to cache effects

• Improve also performances by using more efficient serial code in
several other histogram functions (work by I.G. Bucur)

39

ROOT Users Workshop 11-14 March 2013

Documentation

• Online reference documentation (most up-to date)
– class description with THtml (and also Doxygen)

• see http://root.cern.ch/root/htmldoc/MATH_Index.html

– see TEfficiency doc as example of a very well documented class

• Math library documentation on Drupal
–see http://root.cern.ch/drupal/content/mathematical-libraries
– document most of the recent developments (numerical algorithm, fitting, etc..)

• ROOT User guides: see http://root.cern.ch/root/doc/RootDoc.html

– not been updated with latest developments
• ROOT Talk Forum (for support, requests and discussions)

✦ a thread is available for only Math and Statistical topics
✦ bugs should be reported to Savannah

40

http://root.cern.ch/root/htmldoc/MATH_Index.html
http://root.cern.ch/root/htmldoc/MATH_Index.html
http://root.cern.ch/root/htmldoc/TEfficiency.html
http://root.cern.ch/root/htmldoc/TEfficiency.html
http://root.cern.ch/drupal/content/mathematical-libraries
http://root.cern.ch/drupal/content/mathematical-libraries
http://root.cern.ch/root/doc/RootDoc.html
http://root.cern.ch/root/doc/RootDoc.html
http://root.cern.ch/phpBB2/%0Dhttp://root.cern.ch/phpBB2%0Dhttp://root.cern.ch/phpBB2%0D
http://root.cern.ch/phpBB2/%0Dhttp://root.cern.ch/phpBB2%0Dhttp://root.cern.ch/phpBB2%0D
http://savannah.cern.ch/bugs/?func=additem&group=savroot
http://savannah.cern.ch/bugs/?func=additem&group=savroot

