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Outline

• Introduction
• New developments in core mathematical libraries

–Fitting and Minimization
• Improvements in Histogram Library

–new classes (TEfficiency, TKDE, TKDTreeBinning)
• Vectorization 

–integration of Vc library in matrix and vector classes
• Future developments 
• Conclusions
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• Large set of mathematical libraries and tools needed for event 
reconstruction, simulation and statistical data analysis
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Numerical Integration

• Single entry point for multiple implementation: 
ROOT::Math::Integrator
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• Different implementation can be selected at run-time using ROOT plug-in 
manager

• Integration algorithm and its options can be set using the class 
ROOT::Math::IntegratorOneDimOptions (or 
IntegratorMultiDim)

• Example: this is used in RooStats::BayesianCalculator
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New Fitting Classes

• New fitting classes replacing TVirtualFitter/TFitter 
classes (since v. 5.20)
– Separate interfaces for fitting and minimization 

• Fitter class and Minimizer interface (multiple implementations)
• possible to use (and mix) the various minimization engines

– Decouple fitting from data source (BinData and UnBinData classes)
• same fitting code for all ROOT objects (TH1,TGraph,TTree,...)

– Fit result object which can be stored and retrieved (FitResult)
• keep full result information (parameter, errors, covariance matrix, etc..)

– Minimal and generic function interfaces 
• for model functions (pdf) and objective (minimization) functions
• easier for user to plug-in their functions (i.e. pdf classes from RooFit)

– Support for  parallel fits (usable in a multi-threads environment)
• no more static TVirtualFitter objects
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Function Minimization

• Common  interface class (ROOT::Math::Minimizer) for function 
minimization 

• Existing implementations available as plug-ins: 
– Minuit  (based on class TMinuit, direct translation from Fortran code) 

• with Migrad, Simplex, Minimize algorithms
– Minuit2 (new C++ implementation with OO design) 

• with Migrad, Simplex, Minimize and Fumili2 
– Fumili (only for least-square or log-likelihood minimizations)
– GSLMultiMin: conjugate gradient  minimization algorithm from GSL (Fletcher-Reeves, BFGS)
– GSLMultiFit:  Levenberg-Marquardt (for minimizing least square functions) from GSL
– Linear for least square functions (direct solution, non-iterative method)
– GSLSimAn: Simulated Annealing from GSL
– Genetic:   based on a genetic algorithm implemented in TMVA 

• Easy to extend and plug-in new implementations
– e.g. minimizer based on NagC exists in the development branch 

(see https://root.cern.ch/svn/root/branches/dev/mathDev/math/mathnag)

• See tutorial  fit/NumericalMinimization.C on how to use the Minimizer interface
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Function Minimization 

• Minimizer interface used for fitting in ROOT (by ROOT::Fit::Fitter) 
and also RooFit/RooStats (via class RooMinimizer)

• Control of minimization options and type of minimizer using the 
ROOT::Math::MinimizerOptions class 
– to change the minimizer for fitting: 

• ROOT::Math::MinimizerOptions::SetDefaultMinimizer(“Minuit2”);

– e.g. to change the tolerance:
• ROOT::Math::MinimizerOptions::SetDefaultTolerance(1.E-6);

– several other options also available:
 (some specific to the minimizer) 

• Possible to combine minimizers 
– e.g. use first Genetic and then

Minuit to find the global minimum
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Minuit2

• Object-Oriented version of Minuit  introduced in ver. 5
–same functionality but with fixes and improvements

• single side parameter limits
• added Fumili algorithm 
• better tools to debug minimization with capability to retrieve (if 

needed) all information at each iteration
– added in 5.34  a trace object which can be customized by user and 

produce histograms and graphs to monitor iterations
• support parallelization in gradient calculation with multi-threads 

(OpenMP) or multi-process (OpenMPI)

• Used now for complex fits in RooFit/RooStats (e.g. 
Higgs combination fits with 400 parameters)
–found to be more robust and able to converge faster (with 

less function calls)
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Fit Result class 

• New TFitResult class available since 5.26 
– returned from the TH1::Fit or TGraph::Fit using TFitResultPtr 

• need to use option “S” otherwise just the fit status (int) is returned
– TFitResult contains all fit result information:

• parameters, error, covariance matrix, Minos errors, minimizer status, etc.. 
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// return a smart pointer to TFitResult using option “S” 
TFitResultPtr r = h1->Fit("gaus","L S");
double fmin =  r->MinFcnValue(); // minimum of fcn function

const double * par = r->GetParams();  // get fit parameters
const double * err = r->GetErrors();  // get fit errors
TMatrixDSym covMat = r->GetCovarianceMatrix();   
TMatrixDSym corMat = r->GetCorrelationMatrix();   

r->Print(“V”);  // full printout of result

****************************************
Minimizer is Minuit / Migrad
MinFCN                    =      21.9837
Chi2                      =      32.3656
NDf                       =           47
Edm                       =  1.54911e-11
NCalls                    =           63
Constant                  =      79.3879   +/-   3.07479     
Mean                      =    0.0118002   +/-   0.0317826   
Sigma                     =      1.00505   +/-   0.0224758      (limited)

Covariance Matrix:
                 Constant        Mean       Sigma
Constant           9.4544  -4.299e-06   -0.039903
Mean           -4.299e-06   0.0010101  5.4604e-08
Sigma           -0.039903  5.4604e-08  0.00050517

Correlation Matrix:
                 Constant        Mean       Sigma
Constant                1 -4.3991e-05    -0.57739
Mean          -4.3991e-05           1   7.644e-05
Sigma            -0.57739   7.644e-05           1
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Other Fitting Improvements

• Support for likelihood fits of weighted histograms (Option “LW”)
– correct error estimation in weighted likelihood fits 

• Support for extended un-binned likelihood fits 
– need to deploy as a new option in TTree::UnbinnedFit
– could be used also to fit histogram with buffer (information on all 

entries is available)
• Support for Pearson Chi-square fit of histograms (Option “P”)

– using expected errors instead of observed ones
• Ability to create complex fitting function objects (TF1) using 

functors 
• Add Chebyshev  polynomials to list of pre-defined functions 

(cheb0,1,....9 )
– orthogonal polynomial (better parametrization for fitting)
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Fit Panel GUI

• Possible to fit ROOT objects using GUI 
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Improvements in Histogram Library

• Improve histogram classes
– improved support for weighted histogram

• support negative weights
• can perform likelihood fits of weighted histograms
• automatic enable storage of weight square (Sumw2) when filling with 

weights (from ROOT ver. 6)

• Ability to plot Poisson errors (asymmetric errors: 
standard for low statistics)
–TH1::GetBinErrorLow and
TH1::GetBinErrorUp

–to enable call
SetBinErrorOption(kPoisson)
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Histogram Improvements

• Fix in TAxis::SetRange to correctly deal with 
underflow/overflows

• Various fixes in labels histograms
• Support independent axis extensions
• Improve performances of many histogram functions 

and operations (e.g. TH1::Merge)
• Dedicated class for division of histograms 

(TEfficiency) to compute correct statistical errors 
available since ROOT version 5.28
–statistics on histogram resulting from division described 

by Binomial distributions
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Different Statistic Options

• TEfficiency provides possibility to estimate and draw 
intervals at different confidence level and statistics option 

• Support also for 2D and 3D 
• Can be created from 2 TH1’s
• Possible to fill directly 
TEfficiency
– eff.Fill(true, x);

– eff.Fill(false, x);

• TEfficiency::Fit  : binned maximum likelihood fit 
using a binomial probability for each bin  

TEfficiency
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New Class for Kernel Estimation

• Class TKDE: non-parametric density estimation using kernels

– support for various kernel (default is Gaussian) but also Epanechnikov, 
Bi-weight and Arc-cosine kernels

– support for adaptive bandwidth (better for multi-modal distribution and 
for describing peaks and tails)

– can provide both full result or interpolated one for fast evaluation
– can support data binning for efficient bandwidth computation in the 

adaptive case
– can compute error and bias on the estimate density

• Plan to extend to multi-dimensions using kd-tree as data storage 
(TKDTree)
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Examples of TKDE 

• Example: gaussian, bi-gaussian and log-normal
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•Class for binning multi-
dimensional data using a kd tree 
(TKDTreeBinning)

•Automatic binning of data
•every bin will have same entries or 
same weight (content)

•Efficient multi-dimensional 
histogram

•Can be used to compare MC and 
data (make bins with MC and 
compare with the data) 

•Could be used for non-parametric 
density estimation using kernels 

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

8

50

100

150

200

250

300

350

400

KDTree binning

 TKDTreeBinning

17



ROOT Users Workshop                     11-14 March 2013

New Histogram Classes

• THnSparse 
–multidimensional histograms when only a small fractions 

of bins are filled
–memory allocated only for bins which are filled
–more efficient already than a TH3 when not all-bins are 

filled
–implement projections and fitting 

• THn
–multidimensional histogram when a large fraction of bins 

are filled
–use lots of memory (often better to use a TTree)
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Vectorization  

• SIMD processing for performing many operation in parallel
– size of registers depending on architectures 

• SSE : 128 bits : 2 double’s or 4 float’s
• AVX:  256bit  : 4 double’s or 8 float’s)

• Input data must be organized in vectors to perform operations 
simultaneously

• Automatically compiler can auto-vectorize loops
– possible if no iteration dependency and no branching

• Alternatively use of intrinsic (but code will look like assembly) 
19
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Vc Library

• C++ wrapper library around intrinsic for using SIMD
– developed by M. Kretz (Goethe University Frankfurt)
– used at GSI and BNL, STAR experiment (J. Lauret)
– minimal overhead by using template classes and inline functions

• Provides vector classes (Vc::float_v, Vc::double_v) with 
semantics as built_in types
– one can use double_v as a double
– all basic operations between doubles are supported (+,-,/,*)
– provides also replacement for math functions

 (sqrt, pow, exp, log, sin,...)
• Possible to exploit vectorization without using intrinsic and with 

minimal code changes
– e.g.  replace double ➞  double_v in functions
– easy to do in classes or functions templated on the value type 

• e.g ROOT classes in GenVector (3D or Lorentz vectors) or in SMatrix
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Evaluation of Vc in ROOT

• Try to use Vc in ROOT to vectorize operation on a list of object (physics 
vectors, matrices, ...) and not within the object
–  LorenzVector<PxPyPzE4D<double> > ➞ LorenzVector<PxPyPzE4D<Vc::double_v> >
–  SMatrix<double, N1, N2 >   ➞   SMatrix<double_v, N1,N2>

• Loop on list of objects (vectors, matrices) is  reduced by size of 
double_v (NITER = NITER / double_v::Size)
– do not attempt parallelization within objects

• Tested on some basic operation (using double types)
– Addition of vectors, scaling, invariant mass
– matrix operations, matrix inversions
– Kalman filter test 

• Test using different compilation flags and Vc implementations
– VC_IMPL = Scalar, SSE, AVX

• Compare results with auto-vectorization
– compiling using gcc 4.7.2 with -mavx -O3 -fast-math 
– reference is code compiled with -O2
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• Measure speed-up versus scalar version (-O2)

• Auto-vectorization works well in simple operations, but not for more 
complex ones (e.g. when one needs to call math. functions)

• Vector lists must be not too large to avoid cache effects (used N=100)
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SMatrix Operations

• Perform operations in SMatrix/SVector using Vc::double_v 
instead of double
– speed-up obtained for processing operations on a  list of 100  
SMatrix<double,5,5> and SVector<double,5> 
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Kalman Filter Test

• Typical operation in track reconstruction 
– very time consuming 

• inversion + several matrix-vector multiplications

–

24
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Vectorization in Fitting

• Vectorize chi-square calculation in fitting ROOT histograms
– work performed by M. Borinsky (summer student 2012)

• Required change in data set layout and in functions
– from array of structure to structure of arrays for input data
– vectorized function interface (TF1)
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ROOT Fitting 

• Observed performance gain from new data structure and 
from vectorization using VDT library

• Test also using Vc:   similar speed-up results (~ 3.5x) but with less 
code changes 
– would be easy if fit function interfaces are templated
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Fitting Parallelization 

• Parallelization in Minimization (Minuit) in the gradient 
calculation ( independent of user code) 

• Log-likelihood parallelization (splitting the sum) 
–more efficient but it is at lower level (often in user 

provided code) 

Example: unbinned fit 
with 20 parameters

OpenMP (multi-threads)
MPI for multi-process in 
a cluster 
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Future Developments

• New TFormula class based on Cling
• Improve building of complex fit functions:

–make it easier for fitting 
–add capability of using models from RooFit (saved in 

workspaces)
–use C++11 capabilities (e.g. std::function, lambda,...)

• Implement auto-differentiation using Cling/LLVM
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Future Developments

• Minimization: 
– improve support for problems with large number of 

parameters (case of sparse hessian matrix)
–constraint minimization

• Deploy multi-threads for fitting 
–need to decide on the technology (OpenMP / Intel TBB)
– investigate also parallel numerical integration

• Improve histogram and function (TF1) classes
– investigate having a better inheritance hierarchy 
–need to evaluate if possible and how to maintain backward 

compatibility
• TH1 is the most used class in ROOT 
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Conclusions

• Large collection of math and stat tools available in ROOT
– improved overall quality 

• more tests, studied and improved performance whenever possible
– improving modularity 

• common interfaces for functions and algorithms 
– improve usability (e.g. new classes like TFitResult)
– new classes useful for data analysis (TEfficiency, TKDE )
– need to update now the user documentation

• Investigating parallelization and vectorization of Math libraries 
– deploy vectorization using Vc for matrix and vector classes
– implement multi-threads for fitting

• Developed advanced tools for physics analysis 
– complex fitting (RooFit)
– multivariate analysis (TMVA)   
– framework for statistical calculations (RooStats)

➡see separate presentations 
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• Statistical Functions in ROOT Math
• Description of numerical algorithm 
• Extra classes introduced recently in ROOT

–ROOT::Math::DistSampler
–ROOT::Math::GoFTest

• More on parallelization and vectorization
• Documentation

http://root.cern.ch
http://root.cern.ch
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ROOT::Math Statistical Functions

32

• Statistical Functions are provided in a 
coherent naming scheme  

• probability density functions (pdf)
• i.e. normal distribution: 

• normal_pdf( x, sigma, mu)

• cumulative distributions (cdf)
• lower tail:  normal_cdf (x, sigma, mu)
• upper tail: normal_cdf_c (x, sigma, mu)

• inverse of cumulative distributions (quantiles)
• inverse of lower cumulative

• normal_quantile (z, sigma)

• inverse of lower cumulative
• normal_quantile_c (z, sigma)

• All major statistical distributions available
• normal, lognormal, Landau, Cauchy, χ2, gamma,

 beta, F, t, poisson, binomial, etc..

• Defined as free functions in ROOT::Math 
namespace 
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Numerical Algorithms in Math Libraries 
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ªNumerical algorithms (in the MathCore, MathMore or other libraries):
ªNumerical Derivation 

ªcentral evaluation (5 points rule) and forward/backward 
ªNumerical Integration 

ªgauss integration method
ªone dim. adaptive integration for finite and infinite intervals, singular 

functions and with Cauchy principal value.
ªmulti-dimensional adaptive integration   
ªmultidimensional MC integration based on PLAIN, VEGAS and MISER

ªRoot Finders 
ªvarious bracketing (e.g. Brent) and polishing algorithms using derivatives

ªMinimization (one-dim)
ªGolden section and Brent algorithm for 1D

ªMinimization (Multi-dim)
ªMinuit and Minuit2 (with Migrad and Simplex)
ªconjugate gradient and BFGS algorithms (from GSL)
ªsimulated annealing and genetic algorithms
ªFumili and Fumili2 
ªnon linear least square solver with Levenberg-Marquardt algorithm

ª Interpolation 
ª linear, polynomial, cubic and Akima spline
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Example of Fitting

• Example of fitting via new classes
– BinData class

• fillable from ROOT objects (i.e. TH1)  or 
simple data arrays

– Fitter class configurable via the 
FitConfig class

– Fit model functions in a defined 
interface (IParamFunction)

– Have also interface for objective 
functions and used by the minimizer 
(IMultiGenFunction)

– Produce FitResult class 
• keep all fit result information
• provide methods for retrieving it 

fitresult.Parameters(); 
fitresult.Errors(); 
fitresult.CovMatrix(i,j);
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// fit inputs 
TH1 * h1   = .....
TF1 * f1   = .....

ROOT::Fit::BinData data; 
// fill the data set from the histogram
ROOT::Fit::FillData(d,h1);

// create wrapped parametric function for 
// requested model function interface
ROOT::Math::WrappedTF1 func(*f1);

// create fitter class
ROOT::Fit::Fitter fitter;

// set minimizer and configuration
fitter.Config().SetMinimizer(“Minuit2”);

//perform the fit using least square
bool ret = fitter.Fit(data,func);

//retrieve optionally the fit results
if (ret) fitter.Result().Print();

// fit using a user defined objective 
// function implementing required 
interface
ROOT::Math::IGenFunction mySumSquare(d,f);

ret = fitter.FitFCN(mySumSquare); 
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DistSampler class

• New interface class in version 5.28 for random 
generation of  data according to a generic distribution 
– implemented using UNU.RAN and Foam

• can also generate directly a data sets (binned or unbinned) 
– plan to use it in RooFit for implementing 
RooAbsPdf::generate
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using namespace ROOT::Math; 
....
DistSampler * sampler = Factory::CreateDistSampler(“Unuran”);
// set the sampling distribution
sampler->SetFunction(user_function);
// init with algorithm name
sampler->Init(“TDR”);  
for (int i = 0; i< n;++i) {

// sample 1D data
double x = sampler->Sample1D();
// sample for multi-dimensional data
const double * xx = sampler->Sample()
.......

}
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New GoF Test Class
• New class for goodness of fit tests: 
ROOT::Math::GoFTest in libMathCore
–1-sample test

• test if data are compatible with a reference distribution 
• user provided distributions or standard ones (normal, log-normal,etc..)

–2-sample test
• test if two data sets are compatible

–working on un-bin data sets
• we have already the Pearsonχ2	 test on the bin data sets (histograms) 

–Kolmogorov-Smirnov test 
• was already existing in ROOT for the 2-sample and bin data
• add 1 sample test 

–Anderson-Darling test 
• much more sensitive to detect tails variation

36
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Example of using GoFTest

• 1 sample test

• 2 sample test

37

using namespace ROOT::Math; 
// create gof test class on data x[n]={....} 
GoFTest  gof(n,x,GoFTest::kLogNormal); 
// set a user distribution object
// which must implement operator ()(x) 
gof.SetUserDistribution(user_dist);

double pValueAD = gof.AndersonDarlingTest();
double pValueKS = gof.KolmogorovSmirnovTest();

// create GoF test for  data x1[n1] and x2[n2] 
GoFTest  gof2(n1,x1,n2,x2); 

double pValueAD = gof2.AndersonDarling2SamplesTest();
double pValueKS = gof2.KolmogorovSmirnov2SamplesTest();
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Vectorization of Mathematical Functions

• Compare performances in evaluating Math Functions
• Use also VDT Mathematical library (by  D. Piparo)

– transcendental mathematical functions which can be auto-vectorized 
– but require a different interface: std::sin(double x) 
– ⇒ void vdt::fast_sinv(int n,const double *x, double *r)
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Parallelization in Histogram Operations

• Speed-up operation on ROOT histograms like scaling or 
merging (add) using multi-threads (openMP)
–good speed-up observed 
–degradation for large number of bins due to cache effects

• Improve also performances by using more efficient serial code in 
several other histogram functions  (work by I.G. Bucur)

39
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Documentation

• Online reference documentation (most up-to date)
–  class description with THtml (and also Doxygen)

• see http://root.cern.ch/root/htmldoc/MATH_Index.html

– see TEfficiency doc as example of a very well documented class 

• Math library documentation on Drupal 
–see http://root.cern.ch/drupal/content/mathematical-libraries
– document most of the recent developments (numerical algorithm, fitting, etc..)

• ROOT User guides: see  http://root.cern.ch/root/doc/RootDoc.html

– not been updated with latest developments
• ROOT Talk Forum (for support, requests and discussions)

✦ a thread is available for only Math and Statistical topics
✦ bugs should be reported to Savannah
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