Design options for emittance measurement systems for the CLIC RTML

R Apsimon

Proposed locations

- 1) Damping ring extraction line
 - Measure extraction emittance
- 2) Between central arc + vertical transfer in RTML
 - Measure emittance growth in BC1, booster linac and central arc
- 3) At end of RTML
 - Measure emittance at entrance of main linac

Proposed locations

Emittance measurement

- Use laserwire scanners to measure beam size
 Non-destructive measurement
- 4 measurement locations (both H and V)
 - To reconstruct beam matrix at a reference point

$$\sigma_{1} = R \sigma_{0} R^{T}$$

$$\sigma_{i} = \begin{pmatrix} \sigma_{1,1} & \sigma_{1,2} \\ \sigma_{2,1} & \sigma_{2,2} \end{pmatrix} = \begin{pmatrix} \beta_{i} \varepsilon & -\alpha_{i} \varepsilon \\ -\alpha_{i} \varepsilon & \gamma_{i} \varepsilon \end{pmatrix}$$

$$\varepsilon = \sqrt{\det(\sigma)}$$

$$M = \begin{pmatrix} R_{1,1}^{1} & -2R_{1,1}^{1}R_{1,2}^{1} & R_{1,2}^{1} \\ \dots & \dots & \dots \\ R_{11}^{N} & -2R_{11}^{N}R_{1,2}^{N} & R_{1,2}^{N} \end{pmatrix}$$

Laserwire scanner

- Laser fired perpendicular to electron beam
 - Produces Compton photon in electrons' direction of motion.
 - Compton detector downstream measures photons
 - Intensity proportional to electron beam intensity
 - Scan laser position to measure electron intensity profile
 → calculate beam size
 - Chicane to separate photons and electrons
 - 0.1m deflection needed to fit detector

Considered optics designs

• 4 FODO cells, 1 scanner per cell

- 45° (180°/N) phase advance per cell (H and V)

- Optimised to minimise emittance measurement error
- 2 FODO cells, 2 scanners per cell at each quad
 90° phase advance per cell

• Tracking simulations to compare schemes

Simulation outline

- 10⁴ "particles" tracked through system
 - Measurement retaken 10⁴ times with error
 - Fractional error at each scanner assumed equal
 - Calculate emittance for all 10⁴ measurements
 - Use to calculate fractional error on emittance vs beam size measurement error
 - Same simulation procedure as described in:
 Yu. A. Kubyshin et al., "simulations of emittance measurement at CLIC", PAC11 proceedings, pp. 2270-2272

Design comparison

Design comparison

Comparison results

- 45° scheme
 - Smaller error on emittance measurement
 - Smaller fraction of non-physical results
 - 2x 90° FODO cells is ~50% longer than 4x 45° cells
- 45° scheme is clearly the design to adopt

System designs

- 1) Extraction line
 - No design yet, should be easier than RTML
- 2) Mid-RTML emittance measurement
 - Design described on next slides
- 3) Pre-linac emittance measurement
 - Design optimised and documented
 - Yu. A. Kubyshin et al., "simulations of emittance measurement at CLIC", PAC11 proceedings, pp. 2270-2272

RTML optics

• **45° FODO cells** $\beta_{\max} = 855.1 = \frac{L_{FODO}}{\sin(\mu/2)} \sqrt{\frac{1 + \sin(\mu/2)}{1 - \sin(\mu/2)}}$ $\beta_{\min} = 381.8 = \frac{L_{FODO}}{\sin(\mu/2)} \sqrt{\frac{1 - \sin(\mu/2)}{1 + \sin(\mu/2)}}$ $L_{FODO} = 438m$

 $L_{system} \approx 2190m$

 $6\sigma_x \approx 1.25mm$

 $6\sigma_v \approx 190 \mu m$

• Emittance measurement system

Very long system, large beam sizes, difficult to measure accurately with laserwire scanner (spot size ~5μm). Laserwire scanner can measure beam sizes between approx 1-10 times laser spot size; accuracy deteriorates outside this range.

Need to reduce length and beam size \rightarrow use matching cell

Improved measurement system

- Use matching cell
 - Squeeze β by factor of 4
 - Compromise between system length + quad strengths
 - Quad strengths: k ~ 0.017 0.058m⁻²; acceptable?
 - Normal RTML FODO quad strength: k $\sim 0.01 \text{m}^{-2}$
- To un-squeeze beam:
 - Use chicane to match $\boldsymbol{\beta}$ and correct dispersion
- Total system length ~ 1127m

Optics layouts for Mid-RTML system

Diagrams are not to scale

Emittance growth

- Dipoles in chicane:
 - Use same radius of curvature as dipoles in turn around sections (305m).
 - $\frac{\Delta \varepsilon}{\varepsilon} \propto E_0^5 \frac{\theta^5}{L_{bend}}$
- Quadrupoles:
 - Limit quad strengths to k $\sim \pm 0.05 \text{m}^{-2}$

These equations are taken from "RMS emittance growth due to intrinsic quadrupole aberrations", R. Baartman

Emittance growth calculations

- Calculated emittance growth from each element in measurement system:
 - Quadrupoles:
 - Total contributions: $\frac{\delta \varepsilon}{\varepsilon} \approx 2.7 \times 10^{-15}$ for both H and V planes
 - Negligible emittance growth
 - Emittance growth from alignment errors will dominate
 - Still orders of magnitude less than dipole contributions!
 - Dipoles:
 - $\frac{\delta \varepsilon_x}{\varepsilon_x} \approx 2.7 \times 10^{-8}$
 - Neglect vertical emittance growth
 - Misalignments will significantly increase emittance growth

Horizontal beam profile

Vertical beam profile

Summary

- Pre-linac system ("system 3") previously designed and optimised
- Mid-RTML system ("system 2") design shown
 Based on design of "system 3"
- Various optics designs examined to determine optimal performance.

Still to do...

- Design extraction line system ("system 1")
- Further tracking simulations to examine system performance.
- Emittance growth from alignment errors
 Define tolerances
- Define requirements for each laserwire system