COMPOSITE 2 HIGGS DOUBLET MODELS

CARLOS A. SAVOY IPhT, SACLAY

PORTOROZ 04/2013

SUMMARY

WHY (NOT) 2HDM?
3 MAIN ISSSUES
(COMPOSITE 1HDM)
COMPOSITE 2HDM
2 CASE STUDIES
SUMMARYTABLE
E. BERTUZZO, T. S. RAY, H. DE SANDES, CAS

W HY 2 HDM?

("ELUSIVE") SUSY

2 HD's but MUCH MORE!! Here: only non-susy models

more phases, more scalars, but w/ I25GeV Higgs, looks marginal

FLAVOUR MODELS

2 vev's: $\tan \beta=v_{I} / v_{\| I}$ can help in accounting for $\mathrm{mt} / \mathrm{mb}$ ratio...
strongly constrain 2HDM, not quite the reverse (by now)

IMO: no really sound reason!

WHY NOT 2 HDM?

+parameters...
 +constraints... + symmetries (discrete,...) !

$\Delta T=0$

tree level anomalous T-parameter in composite/effective models

FCNC

 at tree-level from two Higgs exchange

Zb̄̄ coupling

 corrections from compositeness
T-PARAMETER

COUPLINGS OF HIGGS(ES) TO GAUGE BOSONS

$$
\begin{gathered}
\mathcal{L}=\mathrm{D}_{\mu} \phi_{\mathrm{i}}^{\dagger} \mathrm{D}^{\mu} \phi^{\mathrm{i}}+\frac{\kappa}{\mathrm{f}^{2}}\left(\phi_{\mathrm{i}}^{\dagger} \mathrm{D}^{\mu} \phi^{\mathrm{j}}\right)^{2} \\
\mathrm{O}(3)_{\mathrm{c}}: \quad \Delta \mathrm{I}=0
\end{gathered}
$$

$\rho=I \Leftrightarrow \Delta I_{C}=0 \Leftrightarrow$ custodial symmetry
2 Higgses must align in vacuum: $\phi_{\mid} \propto \phi_{I I}\left(\right.$ or $\left.\phi_{\|}=0\right)$

PNGB Higgs(es): composite sector must have more symmetry

$$
\text { both } S U(2)_{\llcorner } \text {and } O(3)_{C} \Rightarrow O(4)=S U(2)\left\llcorner X S U(2)_{R}\right.
$$

|| 2 Higgs vev's must align to preserve $O(3) c \Rightarrow$ more symmetry: another $\mathrm{SU}(2)$, parities

COUPLINGS OF HIGGS(ES)TO SM FERMIONS

GLASHOW-WEINBERG PRESCRIPTION

$$
Q=-1 / 3 \quad Q=2 / 3
$$

Type I

 $\mathrm{b}, \mathrm{s}, \mathrm{d}-\phi_{\mathrm{I}}-\mathrm{u}, \mathrm{d}, \mathrm{t}$$$
\mathrm{u}, \mathrm{~d}, \mathrm{t}-\phi_{\mathrm{I}}
$$

\Rightarrow symmetry to discriminate between ϕ_{I} and ϕ_{I}, extended to fermions
\Rightarrow symmetry might also impose

$$
\left\langle\phi_{\|}\right\rangle=0 \text { and save } \mathrm{T}, \rho=1
$$

Zbb

COUPLING OF ZTO bL

m_{t} and radiative EWSB
in (CW) $V(\phi)$ suggest more composite $\mathrm{q}_{\mathrm{L}}=\left(\mathrm{t}_{\mathrm{L}}, \mathrm{b}_{\mathrm{L}}\right)$
measured b_{L} coupling to Z, close to SM value, suggests more elementary, $\mathrm{SM}, \mathrm{b}_{\mathrm{L}}$
custodial symmetry for b_{L} :
$\mathbf{I}_{\mathbf{C}}=\mathbf{I}_{\mathbf{L}}+\mathbf{I}_{\mathbf{R}}$ conserved
\& $I_{L 3}\left(b_{L}\right)=I_{R 3}\left(b_{L}\right)=-1 / 2$

$$
\left.\Rightarrow \mathrm{b}_{\mathrm{L}} \in(2,2) \quad\right\} \begin{aligned}
& +++-\longleftarrow \mathrm{t}_{\mathrm{L}} \\
& -+--\longleftarrow \mathrm{b}_{\mathrm{L}}
\end{aligned}
$$

$O(4) \times U(1) \times$

QUARK HYPERCHARGE

$$
Y=T_{R}^{3}+X \quad X(\phi)=0
$$

$$
\text { quark masses } \Rightarrow X(q)=X(q R)
$$

$X(t)$	$X(b)$	$T_{R}^{3}\left(t_{R}\right)$	$T_{R}^{3}\left(b_{R}\right)$	$O(4)$	$!$
$2 / 3$	$-1 / 3$	0	0	$(1,1)$	need brane mass
$2 / 3$	$2 / 3$	0	-1	$(1,3)$	$X=2 B$

$O(5) / O(4)$

MINIMAL COMPOSITE ‘SM' HIGGS

global $O(5) \rightarrow O(4) @ \wedge \sim f$

PNGB HIGGS $(2,2) \longleftrightarrow O(5) / O(4)=4$ of $\mathrm{O}(4) \quad 5 \mathrm{~d}$ sphere

NON-LINEAR REALIZATION

$$
\begin{gathered}
\mathrm{U}\left(\phi^{\mathrm{a}}\right)=\exp \left(\mathrm{i} \Sigma_{\mathrm{a}} \frac{\phi^{\mathrm{a}}}{\mathrm{f}} \mathrm{M}_{\mathrm{a} 5}\right) \quad \mathrm{M}_{\mathrm{a} 5} \in \mathrm{O}(5) / \mathrm{O}(4) \\
\mathrm{u}=\mathrm{U}\left(\phi^{\mathrm{a}}\right) \mathrm{u}_{0} \quad \mathrm{u}_{0}^{\top}=(00001) \\
\text { 5-vector } \\
\\
\\
\\
\mathcal{L}=\mathrm{f}^{2} \partial_{\mu} \mathrm{u}^{\top} \partial^{\mu} \mathrm{u} \\
\end{gathered}
$$

$O(5) / O(4)$

COUPLINGSTO SM GAUGE BOSONS

$$
\mathcal{L}=\mathrm{f}^{2} \mathrm{D}_{\mu} \mathrm{u}^{\top} \mathrm{D}^{\mu} \mathrm{u}
$$

$$
\mathrm{D}_{\mu}=\partial_{\mu}-\mathrm{ig} \mathrm{~W}_{\mu}^{\mathrm{i}} \mathrm{~T}_{\mu}^{\mathrm{i}}-\mathrm{ig}^{\prime} \mathrm{B}_{\mu} \mathrm{Y}
$$

non-linear Higgs Lagrangian

$$
\rho_{\text {tree }}=1 \longleftrightarrow \Delta \mathrm{~T}_{\text {tree }}=0
$$

$\bigcirc(4) \rightarrow \bigcirc(3) c$

$O(5) / O(4)$

COUPLINGSTO SM FERMIONS

$$
\begin{aligned}
& \text { O(5) } \\
& \text { O(4) } \\
& \text { (vector) } 5=(2,2)+(1,1) \\
& (\text { symm. }) 10=(2,2)+(1,3)+(3,1) \\
& \uparrow_{\mathrm{t}_{\mathrm{L}}} \quad{ }_{\mathrm{t}_{\mathrm{R}}, \mathrm{~b}_{\mathrm{R}}} \\
& \text { b }
\end{aligned}
$$

$Z_{\text {Zb }}^{\text {tree }}$ = $=$ ZbbsM

2HDM

CANDIDATES

2HDM

$\frac{O(9)}{O(8)}$

I complex
2 quaternions 2 real

NB: many extensions with $\mathrm{O}(4)$ singlet PNGB = axion-like, disregarded because not easy to make the axion invisible

$O(9) / O(8)$

COUPLINGSTO GAUGE BOSONS

$$
\text { global } O(9) \rightarrow O(8) @ \wedge \sim f
$$

PNGB HUGS $2 \times(2,2) \longleftrightarrow O(9) / O(8)=8$ s of $O(8) \supset O(4)[x \cup(1)]$

$$
\begin{gathered}
=(2,2)_{+1}+(2,2)-1 \\
\phi_{1} \\
\phi_{\text {II }}
\end{gathered}
$$

NONLINEAR REALIZATION

$$
\begin{array}{llll}
u=U\left(\phi^{\mathrm{a}}\right) \mathrm{u}_{0} & \mathrm{u}_{0}^{\top}=(0 \ldots .01) & u^{\top} u=1 & u^{\top} \partial^{\mu} u=0 \\
\text { real 9-vector } & 9 \mathrm{~d} \text { sphere }
\end{array}
$$

$\mathcal{L}=f^{2} D_{\mu} u^{\top} D^{\mu} u$

$$
\rho_{\text {tree }}=1 \longleftrightarrow \Delta T_{\text {tree }}=0
$$

non-linear Higgs Lagrangian

$O(9) / O(8)$

EMBEDDING O(4)sm $\subset O(8)$

$$
\begin{aligned}
& O(9) / O(8)=8_{s} \text { of } O(8) \supset O(4)[x \cup(1)] \\
&=(2,2)_{+1}+(2,2)-1 \\
& \phi_{।} \quad \phi_{\prime \prime}
\end{aligned}
$$

$O(9) / O(8)$

EMBEDDING SM FERMIONS

$O(9)$	$O(8)$	$\mathrm{O}(4) \mathrm{xU}(\mathrm{I})$
9	$\phi_{\mathrm{I}, I I} \in 8_{\mathrm{s}}$	$(2,2)_{+1}+(2,2)-\mathrm{I}$
16	$\psi_{\mathrm{L}} \in 8_{\mathrm{c}}$	$(2,2)_{-I}+(2,2)_{+1}$
	$\psi_{\mathrm{R}} \in 8_{\mathrm{v}}$	$(\mathrm{I}, 3)_{0}+(3, \mathrm{I})_{0}+(\mathrm{I}, \mathrm{I})-2+(\mathrm{I}, \mathrm{I})_{+2}$

$O(9) / O(8)$

EMBEDDING SM FERMIONS

$\mathrm{U}(\mathrm{I}) \Rightarrow$ Type $I \Rightarrow$ no FCNC \& $\mathrm{b}_{\mathrm{L}} \in(2,2) \Rightarrow \mathrm{Zbb}_{\text {tree }}=\mathrm{ZbbsM}$

SU(5) / SU(4)xU(I)

COUPLINGSTO GAUGE BOSONS

$$
\operatorname{HIGGS}=2 \times(2,2) \longleftrightarrow S U(5) / U(4)=\underline{4 \dagger+4} \text { of } U(4) \supset O(4)[x \cup(1)]
$$

$$
\begin{gathered}
=(2,2)+i(2,2) \\
\phi_{I}+\phi_{I I}
\end{gathered}
$$

NON-LINEAR REALIZATION

$$
\begin{aligned}
& \mathrm{u}=\mathrm{U}\left(\phi^{\mathrm{a}}\right) \mathrm{u}_{0} \\
& \text { complex 5-vector }
\end{aligned} \quad \mathrm{u}_{0}^{\top}=(00001) \quad \mathrm{u}^{\dagger} \mathrm{u}=1
$$

$$
\mathcal{L}=f^{2} D_{\mu} u^{\dagger} D^{\mu} u+f^{2}\left(u^{\dagger} D^{\mu} u\right)^{2}
$$

non-linear Higgs Lagrangian

$$
(\Delta I=2)
$$

$$
\frac{\left(\Delta M_{Z}^{2}\right)_{I=2}}{M_{Z}^{2}} \leq \mathrm{O}\left(\mathrm{v}^{2} / \mathrm{f}^{2}\right)
$$

$\Delta T_{\text {tree }} \neq 0$

$\operatorname{SU}(5) / \mathrm{SU}(4) \times \cup(I)$

SU(5)	U(4)	O(4) \times (1)	
	$\phi_{\mathrm{l}}+\mathrm{i} \phi_{\mathrm{\prime} \mathrm{\prime}} \in 4$	$(2,2)+i(2,2)$	t and b couple to two orthogonal combinations of ϕ_{I} and ϕ_{II} of (Type II)
10	$\Psi_{\mathrm{L}} \in 4^{*}$	$(2,2)+i(2,2)$	
	$\psi_{\mathrm{R}} \in 6$	$(1,3)+(3,1)$	

SUMMARY

G/ H

T O(3)
$\begin{aligned} & \Psi_{\mathrm{L}} \\ & \Psi_{\mathrm{R}}\end{aligned}-\mathrm{Zbb}$
FCNC Type

Higgsgauge unifictn

$\mathrm{O}(6) / \mathrm{O}(4) \mathrm{xO}(2)$

$\mathrm{O}(6) / \mathrm{O}(4) \mathrm{xO}(2) \times Z_{2}$
$S U(5) / S U(4) \times U(1)$
$\operatorname{Sp}(6) / \operatorname{Sp}(4) \times \operatorname{Sp}(2)$
$\mathrm{O}(9) / \mathrm{O}(8)$

