Rare B decays at the NNLO in QCD

Mikołaj Misiak
(University of Warsaw)

1. Introduction
2. $\bar{B} \rightarrow X_{s} \gamma$:

2a. (Photonic dipole)-(four quark) vertex interference at the NNLO for $m_{c}=0$

2b. Estimating the uncertainties
2c. Update of the SM prediction
3. $B_{s} \rightarrow \mu^{+} \mu^{-}$: electroweak-scale matching at the NNLO
4. Summary

Information on electroweak-scale physics in the $b \rightarrow s \gamma$ transition is encoded in an effective low-energy local interaction:

$$
b \in \bar{B} \equiv\left(\bar{B}^{0} \text { or } B^{-}\right)
$$

The inclusive $\bar{B} \rightarrow X_{s} \gamma$ decay rate is well approximated by the corresponding perturbative decay rate of the b-quark:

$$
\Gamma\left(\bar{B} \rightarrow X_{S} \gamma\right)_{E_{\gamma}>E_{0}}=\Gamma\left(b \rightarrow X_{S}^{p} \gamma\right)_{E_{\gamma}>E_{0}}+\left(\begin{array}{c}
\text { non-perturbative effects } \\
\sim(2 \pm 5) \% \\
\text { Benzke et al., arXiv:1003.5012 }
\end{array}\right)
$$

provided E_{0} is large ($\boldsymbol{E}_{0} \sim m_{b} / 2$)
but not too close to the endpoint ($m_{b}-2 E_{0} \gg \Lambda_{\mathrm{QCD}}$).
Conventionally, $E_{0}=1.6 \mathrm{GeV} \simeq m_{b} / 3$ is chosen.

Decoupling of $W, Z, t, H^{0} \Rightarrow$ effective weak interaction Lagrangian:

$$
L_{\text {weak }} \sim \Sigma C_{i}(\mu) Q_{i}
$$

8 operators matter in the SM when the higher-order EW and/or CKM-suppressed effects are neglected:

$$
\Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\left|C_{7}\right|^{2} \Gamma_{77}\left(E_{0}\right)+(\text { other })
$$

Optical theorem:
$\frac{d \Gamma_{77}}{d E_{\gamma}} \sim \operatorname{Im}\left\{{\underset{\sim}{\bar{B}}}_{\substack{\alpha}}^{\sim}\right.$

Integrating the amplitude \boldsymbol{A} over \boldsymbol{E}_{γ} :

OPE on
the ring \Rightarrow Non-perturbative corrections to $\Gamma_{77}\left(\boldsymbol{E}_{0}\right)$ form a series in $\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}$ and $\boldsymbol{\alpha}_{s}$ that begins with

$$
\frac{\mu_{\pi}^{2}}{m_{b}^{2}}, \frac{\mu_{G}^{2}}{m_{b}^{2}}, \frac{\rho_{D}^{3}}{m_{b}^{3}}, \frac{\rho_{L S}^{3}}{m_{b}^{3}}, \ldots ; \frac{\alpha_{s} \mu_{\pi}^{2}}{\left(m_{b}-2 E_{0}\right)^{2}}, \frac{\alpha_{s} \mu_{G}^{2}}{m_{b}\left(m_{b}-2 E_{0}\right)} ; \ldots,
$$

where $\mu_{\pi}, \mu_{G}, \rho_{D}, \rho_{L S}=\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$ are extracted from the semileptonic $\bar{B} \longrightarrow X_{c} e \bar{\nu}_{\text {spectra }}$ and the $\boldsymbol{B}-\boldsymbol{B}^{\star}$ mass difference.

The relevant perturbative quantity:
$\frac{\Gamma\left[b \rightarrow X_{s} \gamma\right]_{E_{\gamma}>E_{0}}}{\left|V_{c b} / V_{u b}\right|^{2} \Gamma\left[b \rightarrow X_{u} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} S_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} \sum_{i, j} C_{i} C_{j} K_{i j}$
Expansions of the Wilson coefficients and $K_{i j}$:
$C_{i}(\mu)=C_{i}^{(0)}(\mu)+\frac{\alpha_{s}(\mu)}{4 \pi} C_{i}^{(1)}(\mu)+\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{2} C_{i}^{(2)}(\mu)+\ldots$
$K_{i j}=K_{i j}^{(0)}+\frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi} K_{i j}^{(1)}+\left(\frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi}\right)^{2} K_{i j}^{(2)}+\ldots$
$\mu_{b} \sim \frac{m_{b}}{2}$
Most important at the NNLO: $K_{77}^{(2)}, K_{27}^{(2)}$ and $K_{17}^{(2)}$.
They depend on $\frac{\mu_{b}}{m_{b}}, \frac{E_{0}}{m_{b}}$ and $r=\frac{m_{c}}{m_{b}}$.

Evaluation of $K_{27}^{(2)}$ and $K_{17}^{(2)}$ for $m_{c}=0$:
[M. Czakon, P. Fiedler, T. Huber, M. Misiak, T. Schutzmeier, M. Steinhauser, arXiv:1305.nnnn]

Master integrals and differential equations:

	n_{D}	$n_{O S}$	$n_{\text {eff }}$	$n_{\text {massless }}$
2-particle cuts	292	92	143	9
3-particle cuts	267	54	110	11
4-particle cuts	292	17	37	7

$$
\frac{d}{d z} I_{i}(z)=\sum_{j} R_{i j}(z) I_{j}(z), \quad z=\frac{p^{2}}{m_{b}^{2}}
$$

Boundary conditions in the vicinity of $z=0$:

Massless integrals for the boundary conditions:

2PCuts

The final results:

$$
\begin{aligned}
K_{27}^{(2)}\left(r, E_{0}\right) & =A_{2}+F_{2}\left(r, E_{0}\right)+3 f_{q}\left(r, E_{0}\right)+f_{b}(r)+f_{c}(r)+\frac{8}{3} \phi_{27}^{(1)}\left(r, E_{0}\right) \ln r \\
& +\left[\left(4 L_{c}-x_{m}\right) r \frac{d}{d r}+x_{m} E_{0} \frac{d}{d E_{0}}\right] f_{N L O}\left(r, E_{0}\right)+\frac{416}{81} x_{m} \\
& +\left(\frac{10}{3} K_{27}^{(1)}-\frac{2}{3} K_{47}^{(1)}-\frac{208}{81} K_{77}^{(1)}-\frac{35}{27} K_{78}^{(1)}-\frac{254}{81}\right) L_{b}-\frac{5948}{729} L_{b}^{2}, \\
K_{17}^{(2)}\left(r, E_{0}\right) & =-\frac{1}{6} K_{27}^{(2)}\left(r, E_{0}\right)+A_{1}+F_{1}\left(r, E_{0}\right)+\left(\frac{94}{81}-\frac{3}{2} K_{27}^{(1)}-\frac{3}{4} K_{78}^{(1)}\right) L_{b}-\frac{34}{27} L_{b}^{2},
\end{aligned}
$$

where $F_{i}(0,0) \equiv 0, \quad A_{1} \simeq 22.605, A_{2} \simeq-37.314$ from the current calculation.

Impact of the unknown $F_{i}\left(r, E_{0}\right)$ on the branching ratio:
$\frac{\Delta \mathcal{B}}{\mathcal{B}} \simeq U\left(r, E_{0}\right) \equiv\left[C_{7}^{(0) \mathrm{eff}}\left(\mu_{b}\right)\right]^{-1}\left\{C_{1}^{(0)}\left(\mu_{b}\right) F_{1}\left(r, E_{0}\right)+\left(C_{2}^{(0)}\left(\mu_{b}\right)-\frac{1}{6} C_{1}^{(0)}\left(\mu_{b}\right)\right) F_{2}\left(r, E_{0}\right)\right\}$.
$U(0,0)=0$,
$U\left(r, E_{0}\right)$ at large $r:$ [MM, M. Steinhauser, hep-ph/0609241, arXiv:1005.1173].

Impact of the unknown $U\left(r, E_{0}\right)$ on the branching ratio:

$\frac{\Delta \mathcal{B}}{\mathcal{B}} \simeq U\left(r, E_{0}\right), \quad U(0,0)=0, \quad$ asymptotic behaviour of $U\left(r, E_{0}\right)$ at large r is known.

Dashed line: $U(r, 0)=0.023+0.116 \ln r+0.135 \ln ^{2} r+\mathcal{O}\left(\frac{1}{2 r}\right)$
Solid line: $-0.251+0.038 f_{q}(r, 0)+0.016 f_{N L O}(r, 0)+0.019 r \frac{d}{d r} f_{N L O}(r, 0)$
Estimate at $r_{\text {phys }}: \quad(0 \pm 3) \%$

Incorporating other perturbative contributions evaluated after September 2006:

1. Four-loop mixing (current-current) \rightarrow (gluonic dipole)
M. Czakon, U. Haisch and M. Misiak, JHEP 0703 (2007) 008 [hep-ph/0612329]
2. Diagrams with massive quark loops on the gluon lines
R. Boughezal, M. Czakon and T. Schutzmeier, JHEP 0709 (2007) 072 [arXiv:0707.3090]
H. M. Asatrian, T. Ewerth, H. Gabrielyan and C. Greub, Phys. Lett. B 647 (2007) 173 [hep-ph/0611123]
T. Ewerth, Phys. Lett. B 669 (2008) 167 [arXiv:0805.3911]
3. Complete interference (photonic dipole)-(gluonic dipole)
H. M. Asatrian, T. Ewerth, A. Ferroglia, C. Greub and G. Ossola, Phys. Rev. D 82 (2010) 074006 [arXiv:1005.5587]
4. New BLM corrections to contributions from 3-body and 4-body final states for interferences not involving the photonic dipole:
A. Ferroglia and U. Haisch, Phys. Rev. D 82 (2010) 094012 [arXiv:1009.2144]
M. Misiak and M. Poradziński, Phys. Rev. D 83 (2011) 014024 [arXiv:1009.5685]
5. LO contributions from $b \rightarrow s \gamma q \bar{q},(q=u, d, s)$ from the four quark operators ("penguin" ones or CKM-suppressed ones).
M. Kamiński, M. Misiak and M. Poradziński, Phys. Rev. D 86 (2012) 094004 [arXiv:1209.0965]

Taking into account new non-perturbative analyses:
M. Benzke, S. J. Lee, M. Neubert and G. Paz, JHEP 1008 (2010) 099 [arXiv:1003.5012]
T. Ewerth, P. Gambino and S. Nandi, Nucl. Phys. B 830 (2010) 278 [arXiv:0911.2175]

Updating the parameters:
P. Gambino, C. Schwanda, in preparation

Update of the SM prediction (preliminary)

$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{SM}}=(3.13 \pm 0.22) \times 10^{-4}$
Contributions to the total TH uncertainty (summed in quadrature):
5% non-perturbative,
3% from the unknown $U\left(r, E_{0}\right)$
3% higher order $\mathcal{O}\left(\alpha_{s}^{3}\right), \quad 2.2 \%$ parametric

Experimental world average (HFAG, 2.08.2012):
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E \gamma>1.6 \mathrm{GeV}}^{\mathrm{EXP}}=(3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$
Experiment agrees with the $\mathbf{S M}$ at better than $\sim 1 \sigma$ level. Uncertainties: $\mathbf{T H} \sim 7 \%, \quad \mathbf{E X P} \sim 6.5 \%$.

$B_{s} \rightarrow \mu^{+} \mu^{-}$- flavour physics highlight of the LHC

- It is a strongly suppressed, loop-generated process in the SM. Its CP-averaged time-integrated branching ratio (with final-state photon bremsstrahlung included) reads:

$$
\overline{\mathcal{B}}_{\text {SM }}=(3.67 \pm 0.22) \times 10^{-9}
$$

before including the NNLO QCD and the full
talk of Robert Fleischer yesterday:
$(3.56 \pm 0.18) \times 10^{-9}$ NLO EW matching corrections.

- It is very sensitive to new physics even in models with Minimal Flavour Violation (MFV). Enhancements by orders of magnitude are possible even when constraints from all the other measurements are taken into account.
- It has a clear experimental signature: PEAK in the dimuon invariant mass.
- First evidence (3.5 σ) for its observation has been recently announced by the LHCb Collaboration (arXiv:1211.2674):

$$
\overline{\mathcal{B}}_{\text {exp }}=\left(3.2_{-1.2}^{+1.5}\right) \times 10^{-9}
$$

Error budget for the CP-averaged and time-integrated branching ratio
last update: December 2012
$\overline{\mathcal{B}}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}\right)_{\mathrm{SM}}=\frac{G_{F}^{4} M_{W}^{4} m_{\mu}^{2} M_{B_{s}}}{8 \pi^{5}} \times$
$\left(\kappa^{-1}=1-\tau_{B_{s}} \Delta \Gamma_{s} / 2\right)$
$\times \underbrace{\left|V_{t b}^{*} \boldsymbol{V}_{t s}\right|^{2}}_{ \pm 3.5 \%} \underbrace{\kappa \tau_{B_{s}}}_{ \pm 1.1 \%}\{\underbrace{f_{B_{s}}^{2}}_{ \pm(3.6 \div 7.9) \%}[\underbrace{\boldsymbol{Y}_{0}\left(\frac{m_{t}^{2}}{M_{W}^{2}}\right)+\mathcal{O}\left(\boldsymbol{\alpha}_{\mathrm{s}}\right)+\mathcal{O}\left(\alpha_{\mathrm{em}}\right)+\boldsymbol{\mathcal { O }}\left(\boldsymbol{\alpha}_{\mathrm{s}}^{2}\right)}_{ \pm 1.6 \%\left(\text { for } \bar{m}_{t}\left(\bar{m}_{t}\right)=165(1) \mathrm{GeV}\right)}]^{2}+\mathcal{O}\left(\boldsymbol{\alpha}_{\mathrm{em}}\right)\}$
$=\left\{\begin{array}{l}(3.67 \pm \underbrace{0.22}_{6.1 \%}) \times 10^{-9} \text { for } f_{B_{s}}=225.0(4.0) \mathrm{MeV} \text { [HPQCD, arXiv:1110.4150] } \\ (4.23 \pm \underbrace{0.39}_{9.3 \%}) \times 10^{-9} \text { for } f_{B_{s}}=242.0(9.5) \mathrm{MeV}{ }_{\text {[FNAL/MILC, arXiv:1112.3051] }}\end{array}\right.$
The $\mathcal{O}\left(\alpha_{s}\right)$ corrections enhance the branching ratio by around $+2.2 \%$ when $\bar{m}_{t}\left(\bar{m}_{t}\right)$ is used at the leading order.
G. Buchalla and A.J. Buras, Nucl. Phys. B 400 (1993) 225,

MM and J. Urban, Phys. Lett. B 451 (1999) 161,
G. Buchalla and A.J. Buras, Nucl. Phys. B 548 (1999) 309.

Logarithmically $\left(\ln \left(m_{t}^{2} / m_{b}^{2}\right)\right)$ enhanced electromagnetic corrections and the known electroweak corrections suppress the branching ratio by around -1.6%.
G. Buchalla, A. J. Buras, Phys. Rev. D 57 (1998) 216,
C. Bobeth, P. Gambino, M. Gorbahn, U. Haisch, JHEP 0404 (2004) 071,
T. Huber, E. Lunghi, MM, D. Wyler, Nucl. Phys. B 740 (2006) 105,
A. J. Buras, J. Girrbach, D. Guadagnoli, G. Isidori, Eur. Phys. J C72 (2012) 2172.

Another observable:

(with different NP sensitivity)

$$
\frac{\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)}{\Delta M_{B_{s}} \tau_{B_{s}}}
$$

A. J. Buras, Phys. Lett. B 566 (2003) 115..

Evaluation of the NNLO QCD matching corrections

[T. Hermann, M. Misiak and M. Steinhauser, to be published]
(a)

(b)

(c)

(a)
(b)

Conclusion: Combination with the NLO EW calculation is necessary
[C. Bobeth, J. Brod, S. Casagrande, M. Gorbahn, E. Stamou, to be published]

Summary

- The dominant NNLO corrections to $\mathcal{B}\left(\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma\right)$ are now known not only in the large m_{c} limit, but also at $m_{c}=0$.
- The updated SM prediction is $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)=(3.13 \pm 0.22) \times 10^{-4}$ for $E_{0}=1.6 \mathrm{GeV}$
- Combining the recently calculated NNLO QCD and NLO EW corrections to $\mathcal{B}\left(\bar{B}_{s} \rightarrow \mu^{+} \mu^{-}\right)$will allow for a significant reduction of the residual perturbative uncertainties.

BACKUP SLIDES

Perturbative expansion of the Wilson coefficients:
$C_{i}(\mu)=C_{i}^{(0)}(\mu)+\frac{\alpha_{s}(\mu)}{4 \pi} C_{i}^{(1)}(\mu)+\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{2} C_{i}^{(2)}(\mu)+\ldots$
Branching ratio:

$$
\begin{gathered}
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right)_{\exp }\left|\frac{V_{t s}^{*} t_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi C}\left[\underset{\text { pert. }}{P\left(E_{0}\right)}+\underset{\text { non-pert. }}{\left.N\left(E_{0}\right)\right]}\right. \\
\frac{\Gamma\left[b \rightarrow X_{s} \gamma\right]_{\gamma \gamma}>E_{0}}{\left|V_{c b} / V_{u b}\right|^{2} \Gamma\left[b \rightarrow X_{u} e \bar{\nu}\right]}=\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{\mathrm{em}}}{\pi} P\left(E_{0}\right), \quad C=\left|\frac{V_{u b}}{V_{c b}}\right|^{2} \frac{\Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}\right]}{\Gamma\left[\bar{B} \rightarrow X_{u} e \bar{\nu}\right]} \\
P\left(E_{0}\right)=\sum_{i, j} C_{i} C_{j} K_{i j}
\end{gathered}
$$

Perturbative expansion of $K_{i j}$:
$K_{i j}=K_{i j}^{(0)}+\frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi} K_{i j}^{(1)}+\left(\frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi}\right)^{2} K_{i j}^{(2)}+\ldots \quad \quad \mu_{b} \sim \frac{m_{b}}{2}$
Perturbative expansion of $P\left(E_{0}\right)$:

$$
\begin{aligned}
& P=P^{(0)}+\frac{\alpha_{s}}{4 \pi}\left(P_{1}^{(1)}+P_{2}^{(1)}(r)\right)+\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{2}\left(P_{1}^{(2)}+P_{2}^{(2)}(r)+P_{3}^{(2)}(r)\right) \\
& P_{1}^{(1)}, P_{3}^{(2)} \sim C_{i}^{(0)} C_{j}^{(1)}, \quad P_{2}^{(1)}, P_{2}^{(2)} \sim C_{i}^{(0)} C_{j}^{(0)}, \quad P_{1}^{(2)} \sim\left(C_{i}^{(0)} C_{j}^{(2)}, C_{i}^{(1)} C_{j}^{(1)}\right)
\end{aligned}
$$

$$
r=\frac{m_{c}}{m_{b}} \quad \text { Most important at the NNLO: } K_{77}^{(2)}, K_{27}^{(2)} \text { and } K_{17}^{(2)}
$$

Perturbative evaluation of $\Gamma\left(b \rightarrow X_{s}^{\mathrm{p}} \gamma\right)$ at $\mu_{b} \sim \frac{m_{b}}{2}$.

$$
\Gamma\left(b \rightarrow X_{S}^{\mathrm{p}} \gamma\right)_{E_{\gamma}>E_{0}}=\frac{G_{F}^{2} m_{b}^{5} \alpha_{\mathrm{e}}}{32 \pi^{4}}\left|V_{t s}^{*} V_{t b}\right|^{2} \sum_{i, j=1}^{8} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) G_{i j}\left(E_{0}, \mu_{b}\right)
$$

[Kamiński, Poradziński, MM, 2012]
NLO: 1996: Quasi-complete $G_{i j} \quad\left\{\begin{array}{l}\text { [Greub, Hurth, Wyler, 1996] } \\ \text { [Ali, Greub, 1991-1995] }\end{array}\right.$
2002: Complete ${ }^{(*)} G_{i j} \quad\left\{\begin{array}{l}{\left[\begin{array}{l}\text { Buras, Czarnecki, Urban, MM, 2002] } \\ \text { [Pott, 1995] }\end{array}\right.}\end{array}\right.$
${ }^{(*)} \mathbf{U p}$ to $b \longrightarrow s q \bar{q} \gamma$ channel contributions involving diagrams similar to the above LO one.
They get suppressed by $\alpha_{s} C_{3,4,5,6}$ and phase-space for $E_{0} \sim m_{b} / 3$.
NNLO: We are still on the way to the quasi-complete case:
G_{77} is fully known:

G_{78} is fully known:

Two-particle cuts are known (just $|\mathrm{NLO}|^{2}$).

Three- and four-particle cuts are known in the BLM approximation only: [Ligeti, Luke, Manohar, Wise, 1999], [Ferroglia, Haisch, arXiv:1009.2144], [Poradziński, MM, arXiv:1009.5685]. NLO + (NNLO BLM) corrections are not big ($+3.8 \%$).

Example:

Evaluation of the ($n>2$)-particle cut contributions to G_{28} in the Brodsky-Lepage-Mackienzie (BLM) approximation ("naive nonabelianization", large- β_{0} approximation) [Poradziński, MM, arXiv:1009.5685]:

q - massless quark,
N_{q} - number of massless flavours (equals to 3 in practice because masses of u, d, s are neglected). Replacement in the final result:
$-\frac{2}{3} N_{q} \longrightarrow \beta_{0}=11-\frac{2}{3}\left(N_{q}+2\right)$.
The diagrams have been evaluated using the method of Smith and Voloshin [hep-ph/9405204].

Non-BLM contributions to $G_{i j}$ from quark loops on the gluon lines are quasi-completely known.
[Boughezal, Czakon, Schutzmeier, 2007], [Asatrian, Ewerth, Gabrielyan, Greub, 2007], [Ewerth, 2008].

The most troublesome NNLO contribution to $G_{i j}$:

G_{27} : (and analogous G_{17})

$m_{c}=0:$ Czakon, Fiedler, Huber, Misiak, Schutzmeier Steinhauser, to be published] 163 massive 4-loop on-shell master integrals (with cuts).
The $m_{c} \gg m_{b} / 2$ limit is known [Steinhauser, MM, 2006].
The BLM approximation is known for arbitrary $m_{c}:\left\{\begin{array}{l}\text { [Bieri, Greub, Steinhauser, 2003], } \\ \text { [Ligeti, Luke, Manohar, Wise, 1999]. }\end{array}\right.$

Towards G_{27} at the NNLO for arbitrary m_{c}.

[M. Czakon, R.N. Lee, A. Rehman, M. Steinhauser, A.V. Smirnov, V.A. Smirnov, MM] in progress.

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of four-loop two-scale scalar integrals with unitarity cuts.
2. Reduction to master integrals with the help of Integration By Parts (IBP).
$\begin{array}{lll}\text { Available C++ codes: } & \text { FIRE } & \text { [A.V. Smirnov, arXiv:0807.3243] (public in the Mathematica version only), } \\ & \text { REDUZE } & \text { [C. Studerus, arXiv:0912.2546], } \\ & \text { DiaGen/IdSolver } & \text { [M. Czakon, unpublished (2004)]. }\end{array}$
The IBP for 2-particle cuts has just been completed
with the help of FIRE: ~ 0.5 TB RAM has been used ~ 1 month at CERN and KIT.
Number of master integrals: around 500.
3. Extending the set of master integrals I_{n} so that it closes under differentiation with respect to $z=m_{c}^{2} / m_{b}^{2}$. This way one obtains a system of differential equations

$$
\begin{equation*}
\frac{d}{d z} I_{n}=\Sigma_{k} w_{n k}(z, \epsilon) I_{k} \tag{*}
\end{equation*}
$$

where $w_{n k}$ are rational functions of their arguments.
4. Calculating boundary conditions for $(*)$ using automatized asymptotic expansions at $m_{c} \gg m_{b}$.
5. Calculating three-loop single-scale master integrals for the boundary conditions using dimensional recurrence relations [R.N. Lee, arXiv:0911.0252].
6. Solving the system (*) numerically [A.C. Hindmarsch, http://www.netlib.org/odepack] along an ellipse in the complex z plane. Doing so along several different ellipses allows us to estimate the numerical error.

This algorithm has already been successfully applied for diagrams

 with (massless and massive) quark loops on the gluon lines where $18+47+38=103$ master integrals were present.[R. Boughezal, M. Czakon, T. Schutzmeier, arXiv:0707.3090]

Non-perturbative contributions from the photonic dipole operator alone (" 77 " term) are well controlled for $E_{0}=1.6 \mathrm{GeV}$:

The dominant non-perturbative uncertainty originates from the " 27 " interference term:

$\lambda_{2} \simeq 0.12 \mathrm{GeV}^{2}$
from $B-B^{*}$ mass splitting

The coefficients b_{n} decrease fast with n. [Voloshin, 1996], [Khodjamirian, Rückl, Stall, Wyler, 1997] [Grant, Morgan, Nussinov, Peccei, 1997]
[Ligeti, Randall, Wise, 1997], [Buchalla, Isidori, Rev, 1997]

New claims by Benzke, Lee, Neubert and Paz in arXiv:1003.5012:
One cannot really expand in $m_{b} \Lambda / m_{c}^{2}$. All such corrections should be treated as Λ / m_{b} ones and estimated using models of subleading shape functions. Dominant contributions to the estimated $\pm 5 \%$ non-perturbative uncertainty in \mathcal{B} are found this way, with the help of alternating-sign shape functions that undergo weaker suppression at large gluon momenta.

correction to the above

phase-space suppressed

Main worry in hep-ph/0609232, and reason for the
$\pm 5 \%$ non-perturbative uncertainty.

Goal: calculate the inclusive sum $\left.\Sigma_{X_{s}}\left|C_{7}\left(\mu_{b}\right)\left\langle X_{s} \gamma\right| O_{7}\right| \bar{B}\right\rangle+C_{2}\left(\mu_{b}\right)\left\langle X_{s} \gamma\right| O_{2}|\bar{B}\rangle+\left.\ldots\right|^{2}$
The " 77 " term in this sum is purely "hard". It is related via the optical theorem to the imaginary part of the elastic forward scattering amplitude $\bar{B}(\vec{p}=0) \gamma(\vec{q}) \rightarrow \bar{B}(\vec{p}=0) \gamma(\vec{q})$:

When the photons are soft enough, $m_{X_{s}}^{2}=\left|m_{B}\left(m_{B}-2 E_{\gamma}\right)\right| \gg \Lambda^{2} \Rightarrow$ Short-distance dominance \Rightarrow OPE. However, the $\bar{B} \rightarrow X_{s} \gamma$ photon spectrum is dominated by hard photons $E_{\gamma} \sim m_{b} / 2$.

Once $A\left(E_{\gamma}\right)$ is considered as a function of arbitrary complex E_{γ}, $\operatorname{Im} A$ turns out to be proportional to the discontinuity of A at the physical cut. Consequently,

$$
\int_{1 \mathrm{GeV}}^{E_{\gamma}^{\max }} d E_{\gamma} \operatorname{Im} A\left(E_{\gamma}\right) \sim \oint_{\text {circle }} d E_{\gamma} A\left(E_{\gamma}\right)
$$

Since the condition $\left|m_{B}\left(m_{B}-2 E_{\gamma}\right)\right| \gg \Lambda^{2}$ is fulfilled along the circle,
 the OPE coefficients can be calculated perturbatively, which gives $\left.A\left(E_{\gamma}\right)\right|_{\text {circle }} \simeq \sum_{j}\left[\frac{F_{\text {polynomial }}^{(j)}\left(2 E_{\gamma} / m_{b}\right)}{m_{b}^{n_{j}}\left(1-2 E_{\gamma} / m_{b}\right)^{k_{j}}}+\mathcal{O}\left(\alpha_{s}\left(\mu_{\text {hard }}\right)\right)\right]\langle\bar{B}(\vec{p}=0)| Q_{\text {local operator }}^{(j)}|\bar{B}(\vec{p}=0)\rangle$.
Thus, contributions from higher-dimensional operators are suppressed by powers of Λ / m_{b}.
At $\left(\Lambda / m_{b}\right)^{0}$:

$$
\langle\bar{B}(\vec{p})| \bar{b} \gamma^{\mu} b|\bar{B}(\vec{p})\rangle=2 p^{\mu} \quad \Rightarrow \quad \Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)=\Gamma\left(b \rightarrow X_{s}^{\text {parton }} \gamma\right)+\mathcal{O}\left(\Lambda / m_{b}\right)
$$

At $\left(\Lambda / m_{b}\right)^{1}$: Nothing! All the possible operators vanish by the equations of motion.
At $\left(\Lambda / m_{b}\right)^{2}: \quad\langle\bar{B}(\vec{p})| \bar{h} D^{\mu} D_{\mu} h|\bar{B}(\vec{p})\rangle=-2 m_{B} \lambda_{1}, \quad \lambda_{1}=(-0.27 \pm 0.04) \mathrm{GeV}^{2}$ from $\bar{B} \rightarrow X \ell^{-} \nu$ spectrum.

$$
\langle\bar{B}(\vec{p})| \bar{h} \sigma^{\mu \nu} G_{\mu \nu} h|\bar{B}(\vec{p})\rangle=6 m_{B} \lambda_{2}, \quad \lambda_{2} \simeq \frac{1}{4}\left(m_{B^{*}}^{2}-m_{B}^{2}\right) \simeq 0.12 \mathrm{GeV}^{2}
$$

The HQET heavy-quark field $h(x)$ is defined by $h(x)=\frac{1}{2}(1+\not \subset) b(x) \exp \left(i m_{b} v \cdot x\right)$ with $v=p / m_{B}$.

Energetic photon production in charmless decays of the \bar{B}-meson
$\left(E_{\gamma} \gtrsim \frac{m_{b}}{3} \simeq 1.6 \mathrm{GeV}\right.$)
[see MM, arXiv:0911.1651]
A. Without long-distance charm loops:

Dominant, well-controlled.

$\mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right), \quad(-1.6 \pm 1.2) \%$.
[Benzke, Lee, Neubert, Paz, 2010]
3. Collinear

$\sim-0.2 \%$ or $(+0.8 \pm 1.1) \%$.
[Kapustin,Ligeti,Politzer, 1995]
[Benzke, Lee, Neubert, Paz, 2010]
4. Annihilation $\left\{\begin{array}{r}6 \\ 6\end{array}\right.$ $(q \bar{q} \neq c \bar{c})$

Exp. $\pi^{0}, \eta, \eta^{\prime}, \omega$ subtracted.
Perturbatively $\sim 0.1 \%$.

B. With long-distance charm loops:

5. Soft

6. Annihilation of $c \bar{c}$ in a heavy $(\bar{c} s)(\bar{q} c)$ state
7. Boosted light $c \bar{c}$ state annihilation

Exp. J / ψ subtracted $(<1 \%)$.
Perturbatively (including hard): $\sim+3.6 \%$.

$$
\begin{array}{rr}
\mathcal{O}\left(\alpha_{s}(\Lambda / M)^{2}\right) & \mathcal{O}\left(\alpha_{s} \Lambda\right. \\
M & \sim 2 m_{c}, 2 E_{\gamma}, m_{b} .
\end{array}
$$

$$
\text { e.g. } \mathcal{B}\left[B^{-} \rightarrow D_{S J}(2457)^{-} D^{*}(2007)^{0}\right] \simeq 1.2 \% \text {, }
$$

$$
\mathcal{B}\left[B^{0} \rightarrow D^{*}(2010)^{+} \bar{D}^{*}(2007)^{0} K^{-}\right] \simeq 1.2 \% .
$$

