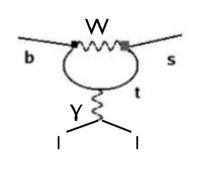
Isospin B \rightarrow K^(*) I₊I₋ in and beyond the SM

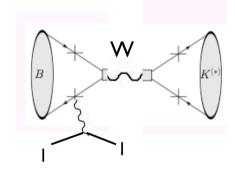
Generic remarks B K H-L and iso b) What drives isospin violation c) Isospin asymmetries in and beyond SM d) Remarks on low recoil region (high q2) CP³ - Origins The Higgs Centre for Theoretical Physics Particle Physics & Origin of Mass Roman Zwicky Higgs-centre for theoretical physics -- Edinburgh University in collaboration James Lyon & (Maria Dimou) Challenges in Flavour pHYSICS --- 15-18 April 2013 Portoro

Note: corresponds to arXiv.1304.479 (appeared after talk) later includes $B\!\!\to\!\!\rho\gamma/ll$ isospin analysis as well as some further aspects on phenomenology aspects.

Why B \rightarrow K^(*) I₊I₋? And what it is.

- I) It's an FCNC (b \rightarrow s -transition); thus loop suppressed in SM
 - 2) It's measured at experimental facilities (currently LHCb future KEK2 past: Belle/BaBar/CDF)



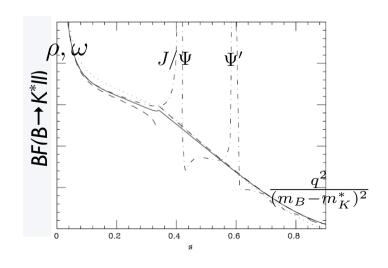


Wilson coefficient operator (UV-physics SM & BSM?) (IR-physics)

$$H_{\text{eff}} = \sum_{i} C^{i}(\mu_{F}) O^{i}(\mu_{F})$$

$$\mathcal{A} = \langle Vll|H_{\text{eff}}|B\rangle = \sum_{i} C_{i}(m_{b}) (Vll|O_{i}(m_{b})|B\rangle$$

non-perturbative



low q² (large recoil) $E_{K*} >> \Lambda_{QCD}$

- ⇒ light-cone dynamics
- this talk •QCD-factorization/SCET & LCSR -- form factor LCSR

high q² (low recoil) $E_{K^*} \approx \Lambda_{QCD}$

- OPE (Grinstein, Pirjol'04, Beylich et al' I I) $1/m_b\sqrt{q^2}$
- form factors Lattice

Lyon & RZ'13

Definition of isospin asymmetries

• Experimental definition (Recall: q² lepton pair momentum squared)

$$\frac{dA_I^{\bar{0}-}}{dq^2} \equiv \frac{d\Gamma[\bar{B}^0 \to \bar{K}^{*0}l^+l^-]/dq^2 - d\Gamma[B^- \to K^{*-}l^+l^-]/dq^2}{d\Gamma[\bar{B}^0 \to \bar{K}^{*0}l^+l^-]/dq^2 + d\Gamma[B^- \to K^{*-}l^+l^-]/dq^2}$$

K* . KII analoguous

• In terms of K*-helicity (0,±) & $(\bar{l}l)_{V,A}$

$$\frac{dA_I^{\bar{0}-}}{dq^2}[B \to K^*l^+l^-] = \frac{\sum_{i=\{0,\pm\}} \text{Re}[h_i^{V,0}(q^2)\Delta_i^{V,d-u}(q^2)]}{\sum_{i=\{0,\pm\}} \left[|h_i^{V,0}(q^2)|^2 + \left|h_i^{A}(q^2)\right|^2\right]} + \mathcal{O}([\Delta_i^{V,d-u}(q^2)]^2, m_l)$$

$$\Delta_{\iota}^{V,d-u}(q^2) \equiv \left(h_{\iota}^{V,d}(q^2) - h_{\iota}^{V,u}(q^2)\right)$$

- above isospin linear effect -- interference with isospin neutral part
 - a) compute SM asymmetry
 - b) extend the basis to include most generic isospin sensitive dimension 6 operators (N.B. do not extend SM isospin neutral part; as "know" to be small by rate)

How do we extend the basis?

What "drives" sizeable isospin asymmetries?

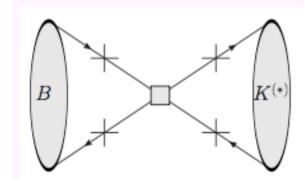
• Not QCD as effects known to be small: $m(K^{*-})/m(K^{*0}) = 0.995$

• Recall:
$$\mathcal{A} = \langle Vll|H_{\mathrm{eff}}|B\rangle = \sum_i C_i(m_b) \langle Vll|O_i(m_b)|B\rangle$$

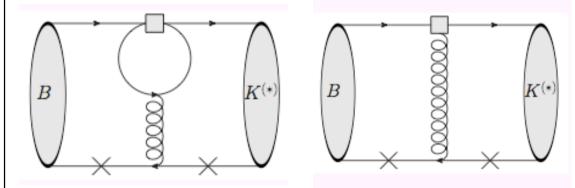
Weak Annihilation (WA)

Quark-loop spectator scattering (QLSS)

Chromomagnetic-operator (O_8)



spectator is not a spectator (sensitive to UV isospin violation)



resemble each other (e.g. - if loop massive shrinks to a point & mix under RG)

Answer title: IR QED-effects & BSM UV isospin violation manifested in WA

• very specific operators ⇒ answers the question: "why isospin asymmetries?"

A rough overview of what we did.

- **WA:** I) extend (*Khodj.*&Wyler, *Ali*&Braun'95) to q²≠0 within Light-cone sum rules
 - 2) introduce most general dimension 6 H^{eff} at $O(\alpha_s^0)$

Introduce most general dimension 6 HeII at
$$O(\alpha_s^{\text{o}})$$

$$IO(20)_{operators}$$

$$O_9^{\text{WA}} = -\frac{G_F}{\sqrt{2}}\lambda_t \sum_{i=1}^{10} a_i^q O_i^{\text{WA}}$$

$$O_9^{\text{WA}} \equiv \bar{q}\sigma_{\mu\nu}b\,\bar{s}\sigma^{\mu\nu}q \quad O_{10}^{\text{WA}} \equiv \bar{q}\sigma_{\mu\nu}\gamma_5b\,\bar{s}\sigma^{\mu\nu}q$$

$$O_1^{\text{WA}} \equiv \bar{q}b\,\bar{s}q \quad O_2^{\text{WA}} \equiv \bar{q}\gamma_5b\,\bar{s}q \quad O_3^{\text{WA}} \equiv \bar{q}b\,\bar{s}\gamma_5q \quad O_4^{\text{WA}} \equiv \bar{q}\gamma_5b\,\bar{s}\gamma_5q$$

$$O_5^{\text{WA}} \equiv \bar{q}\gamma_\mu b\,\bar{s}\gamma^\mu q \quad O_6^{\text{WA}} \equiv \bar{q}\gamma_\mu\gamma_5b\,\bar{s}\gamma^\mu q \quad O_7^{\text{WA}} \equiv \bar{q}\gamma_\mu b\,\bar{s}\gamma^\mu\gamma_5q \quad O_8^{\text{WA}} \equiv \bar{q}\gamma_\mu\gamma_5b\,\bar{s}\gamma^\mu\gamma_5q$$

• QLSS: extend (Feldmann & Matias '02) to include most general dimension 6 H^{eff} at $O(\alpha_s^0)$ We resort to QCDF as LCSR involves 2-loops and complicated analytic structure ..

$${\cal H}^{
m QLSS} = -rac{G_F}{\sqrt{2}} \lambda_t \sum_{x,\chi,f} s^f_{x\chi} Q^{4f}_{x\chi} \,, \quad x=1,2 \;, \;\; \chi=L,R \;, \;\; f=SU(3)_F,c,b$$
 10 operators (mq=0) $Q^{4f}_{1L(R)} \equiv ar f t^a \gamma_\mu f \, ar s_{L(R)} t^a \gamma^\mu b \;, \quad Q^{4f}_{2L(R)} \equiv ar f t^a \sigma_{\mu
u} f \, ar s_{L(R)} t^a \sigma_{\mu
u} b \;, \quad Q^{4SU(3)_F}_{xL(R)} \equiv \qquad \sum \qquad Q^{4q}_{xL(R)}$

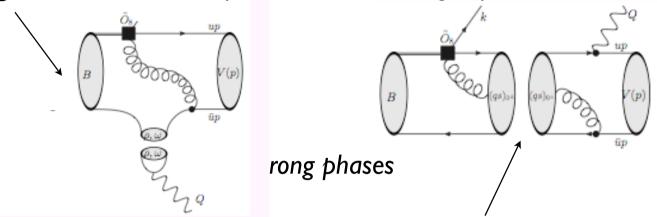
N.B. $10(20)_{WA} \& 10_{QLSS(mq=0)}$ are not orthogonal but linearly independent

q=u,d,s

• O_8 : earlier work (Dimou, Lyon & RZ'12) BSM: flipped chirality \Rightarrow trivial

Hadronic contributions & strong phases

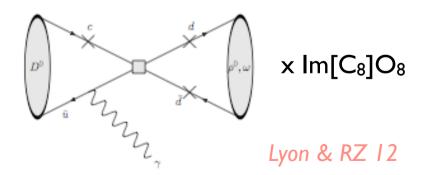
• e.g. ρ , ω -thresholds when photon emitted from light-quark -- seen O_8 , WA not in (QLSS as LO QCDF)



• Multihadron state $(\bar{s}q)_{0^{\pm}}$ q-number and momentum squared m_B²

Quick comment (un)related topic: $A_{CP}[D^0 \rightarrow \rho^0 \gamma]$

• Strong phase of O₈ and WA (dominant) interfere to CP-violation in D⁰ $\rightarrow \rho^0 \gamma$



LD
$$e^{i\delta(strong)} \times Im[C_8]O_7$$

RG-mixing

First: Isidori & Kamenik 12

main difference: IK: LD not specified depends sizeable strong phase

LZ: LD=WA no strong phase at leading order -- strong phase through O₈

Fun with dispersion relations

• Main tool for sum rules (besides LC-OPE) is the construction of a dispersion relation:

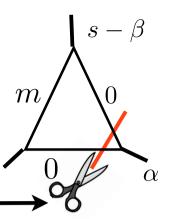
$$g_i(p_B^2,..) = \int_{\Gamma} \frac{dsg_i(s,..)}{s-p_B^2-i0} \quad \begin{array}{c} \text{I) Γ: path encircles singularities $\mathcal{C}_{p_B^2}$} \\ \text{2) Γ: chosen s.t. relates hadronic states} \end{array} \quad \begin{array}{c} \text{"Usually"} \\ \text{Physical Region} \\ \hline \\ m_b^2 \end{array}$$

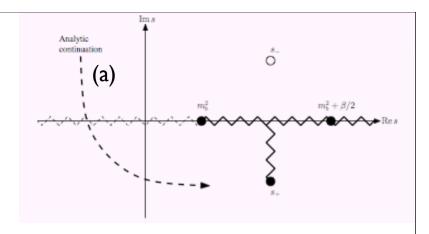
- Investigate singularities <u>Landau equations</u>: leading Landau singularities <u>s</u>± of a three point function appearing in the computation has got two <u>complex solutions</u>.
- Are they on the physical Riemann sheet (PRS)?
 For real singularities its relatively straightforward to answer not for complex ones!
- Found 4 ways to show/convince ourselves that one is present on PRS
 - I) Kallen-Wightman paper '59 ananlytic properties three pts fcts (axiomatic approach)
 - 2) 6-dimensional projective geometry (did not do finally)
 - 3) deformation from non-complex case (tricky in case at hand)
 - 4) "invented method" using Feynman parameter integral (next slide)

Passarino-Veltman reduction C₀:

> study analytic continuation

$$\rho/\omega$$
-thresholds & $(\bar{s}q)_{0^{\pm}}$ -mutiparticle threshold





- **1** Real line: $C_0(s) = C_0^F(s) \equiv \int_0^1 dx \int_0^{1-x} dy ((1-x-y)(xs+y(s-\beta)-m^2)....+xy\alpha+i0]^{-1}$
- **2** Real α, β, m C_0^F no singularities upper half plane > valid analytic continuation & $s_- \notin PRS$
- **3** Lower half plane -- analytic continuation via (a) -- unphysical branch cut $s < m^2$
- Principle: impose continuity across real line $s < m^2 > eliminate branch cut$

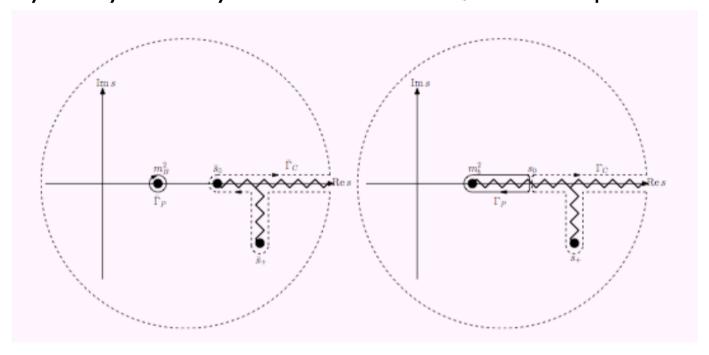
$$Im[s] \neq 0$$
: $[C_0^F(s^*)]^* = C_0^F(s)$ Reflection principle

$$C_0(s) = \begin{cases} C_0^F(s) & \text{Im}[s] > 0 \\ C_0^F(s^*)^* + C_0^{\text{rem}}(s) & \text{Im}[s] < 0 \end{cases} \qquad C_0^{\text{rem}}(s) = Im[C_0^F(s)] \quad Im[s] = 0$$

is continuous and thus the unique analytic continuation! N.B. $[C_0(s^*)]^* \neq C_0[s]$

6 Inspect C_0^{rem} note $s_+ \in PRS!!$ Know how to choose path appropriately

very briefly the analytic structure in full QCD and in partonic QCD



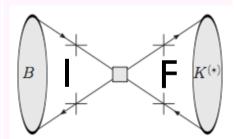
- leading Landau singularities (anomalous thresholds) are not related to insersion of a hadronic state(s).
- Essence for sum rules is that the branch cut from **s**₋ is above continuum states and therefore will be exponentially Borel suppressed

end of technical excursion

Selection rules

- **General:** a) $B[0^-] \to K[0^-](\gamma^*[1^-] \to ll[1^-]) \Rightarrow \text{p-wave; i.e. } l=1$, induced by parity conserving interaction $...(1-\sqrt{5})s$
 - b) other way around for $K^*(0$ -helicity = longitidinal polarisation)
- WA: more stringent selection rules ground of Lorentz-invariance etc (at least at the level of the factorisable contribution)

		Twist	Operator O_n^{WA}									
			1	2	3	4	5	6	7	8	9	10
$B \to K$	cov. (α_s^0)		X	×	X		X	×	×		X	×
	χ -even (ϕ_K) χ -odd $(\phi_{P,\sigma})$	2								$_{\rm I,F}$		
	χ -odd $(\phi_{P,\sigma})$	3	İ			I,F						
	cov. $(\alpha_s^n, n > 0)$		✓	×	X	✓	✓	×	×	✓	✓	×
$B \to K^*$	cov. (α_s^0)		X		Х				X	X		
	χ -even $(g_{\perp}^{(v)}, g_{\perp}^{(a)})$	3					I,F	$_{\rm I,F}$				
	χ -odd (ϕ_{\perp})	2		\mathbf{F}		\mathbf{F}					I	I
	$\chi ext{-even }(g_{\perp}^{(v)},g_{\perp}^{(a)}) \ \chi ext{-odd }(\phi_{\perp}) \ \chi ext{-odd }(h_{\parallel}^{(t)},h_{\parallel}^{(s)})$	3		\mathbf{F}								I
	cov. $(\alpha_s^n, n > 0)$		1	1	✓	✓	✓	1	1	✓	1	✓



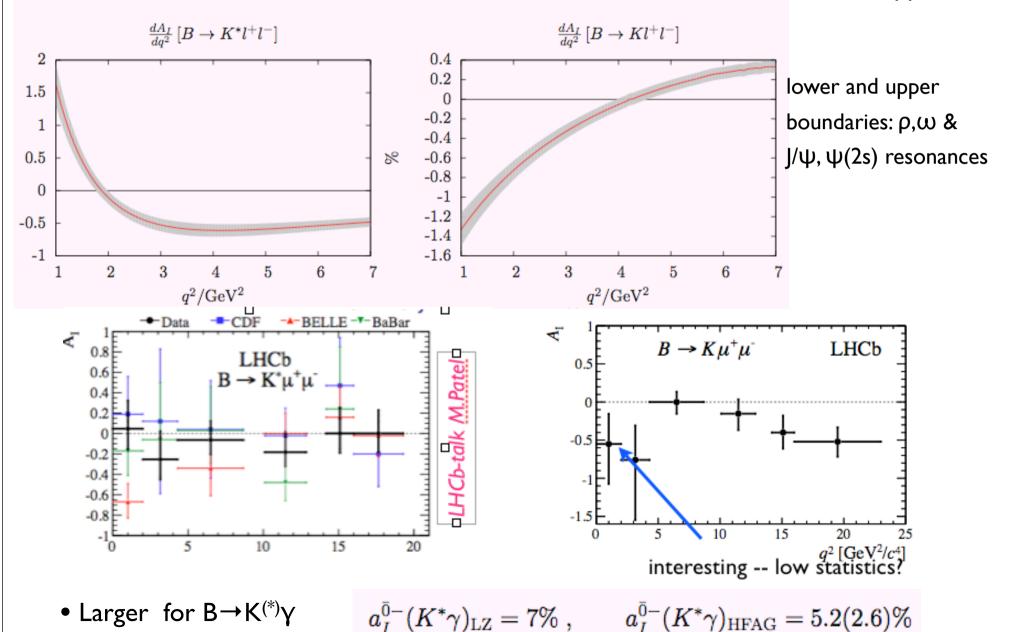
I(inital) & F(inal) state radiation

"the K-meson contribution corresponds to the longitudinal part of K^* -meson"

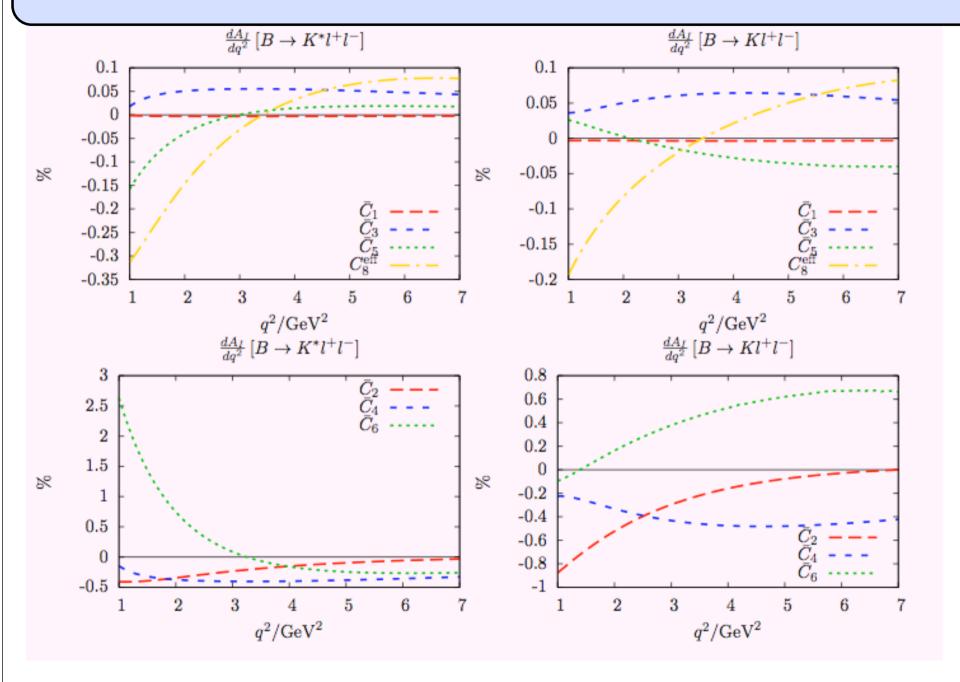
true leading twist in the SM where V-A imposes $a_6 = -a_{8}$; V+A not true

Isospin asymmetries in the SM

Are small for B→K^(*)II -- accidental sizeable tree-level WC double Cabibbo suppressed



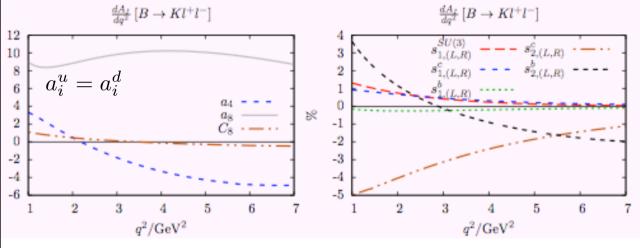
The breakdown in the SM....



Isospin asymmetries BSM

 After selection rules: still many operators!

	0	WA		QLSS		total
$\overline{K^*}$	2[1]	12[3]	$a_{2,4,5,6,9,10}^q$	10[3]	all no $i=2,f=SU(3)$	24[7]
K		4[3]	$a_{4.8}^{q^{\prime\prime}}$	-5[3]	idem no $\chi = A$	10[7]



- K* even more "... by the laws of probability cancellation ought to be the rule rather than the exception."
- Or a new principle for flavour physics)
- q²-spectrum ought to help can't be unlucky all the way

N.B. all BSM WCs set to unity (paper a_iq=0.1)

 Are there constraints? a) non-leptonic decays (large hadronic uncertainties) to be seen: some constraint not all as selection rules differ isospin & non-leptonic decays might marry to constrain bsqq's b) isospin asymmetry in $B \rightarrow K^* \gamma$ of course

Take $a_i \neq 0$ others zero then to be within 2σ of $a_I^{0-}(K^*\gamma)_{HFAG} = 5.2(2.6)\%$

$$a_I^{\bar{0}-}(K^*\gamma)_{HFAG} = 5.2(2.6)\%$$

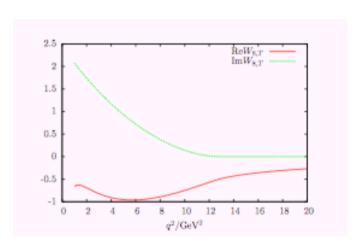
$$0 > a_2 > -3 \cdot 10^{-1}$$
, $0 > a_4 > -3 \cdot 10^{-1}$, $0 < a_5 < 5 \cdot 10^{-1}$
 $0 > a_6 > -7 \cdot 10^{-1}$, $0 < a_9 < 6 \cdot 10^{-2}$, $0 < a_{10} < 6 \cdot 10^{-2}$.

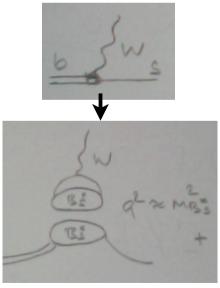
indicative constraints

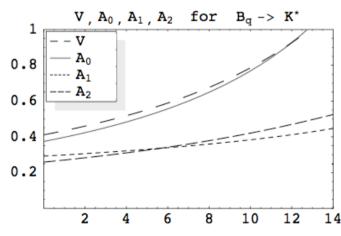
Comments on high q²

1) Generic remarks

- Isospin violation: through photon \succ enhanced through photon pole low q^2 \succ isospin asymmetry has to decrease (module conspiracy) at high q^2 as rate dominated by Z-penguins and boxes (e.g. $C_9^{eff.}$)
- On top of that isospin transitions (IT) compete with penguin form factors who show increase, at high q^2 , due to nearby t-channel $B_s^*[1^+]$ poles and alike whereas IT have no such enhancements (at least at leading order)







2) OPE language: form factors dim 3 operators isospin violation dim 5,6

•Beylich, Buchalla, Feldmann' I I

... Epilogue

- Isospin asymmetry driven by QED-effects & Weak Annihilation
- SM isospin accidentally small as large WC is doubly Cabibbo suppressed
- Difficult to see how isospin asymmetry can be large at high q² Isospin symmetric WC as well as matrix element (form factors) raise
- BSM many operators contribute
 - Is by the laws of probability cancellation the rule rather than the exception
 - This is where q^2 -spectrum ought to help can't be unlucky everywhere in q^2
- Theoretical improvement

SM: compute WA at $O(\alpha_s)$ -- presumably difficult -- important charm $D{\to}V\gamma$ BSM: compute QLSS with LCSR

thanks for your attention!