Isospin $\mathrm{B} \rightarrow \mathrm{K}^{* *} I_{+1}$ in and beyond the SM

 b) What drives isospin yolation
 c) Isospin asymmetries in and beyond SM

d) Remarks on low recoil region (high q^{2})

CP ${ }^{3}$ - Origins
Particle Physics \& Origin of Mass

Roman \%wicky
Higgs-centyefor theoretical physics. Edinburgh University in ©ollaboration James Ivon \& (Maria Dimou)

Note: corresponds to arXiv. I 304.479 (appeared after talk) later includes $B \rightarrow \rho \gamma / I l$ isospin analysis as well as some further aspects on phenomenology aspects.

Why $B \rightarrow K^{(*)} I_{+} I_{-}$? And what it is.

- I) It's an FCNC ($b \rightarrow s$-transition); thus loop suppressed in SM

2) It's measured at experimental facilities (currently LHCb future KEK2 past: Belle/BaBar/CDF)

Wilson coefficient operator (UV-physics SM \& BSM?) (IR-physics) $H_{\text {eff }}=\sum_{i} C^{i}\left(\mu_{F}\right) O^{i}\left(\mu_{F}\right)$

$$
\mathcal{A}=\langle V l l| H_{\mathrm{eff}}|B\rangle=\sum_{i} C_{i}\left(m_{b}\right) \underbrace{\langle V l l| O_{i}\left(m_{b}\right)|B\rangle}_{\text {non-perturbative }}
$$

low $\mathbf{q}^{\mathbf{2}}$ (large recoil) $\mathrm{E}_{\mathrm{K}^{*}} \gg \Lambda_{\mathrm{QCD}}$

- \Rightarrow light-cone dynamics
-QCD-factorization/SCET \& LCSR -- form factor LCSR
high \mathbf{q}^{2} (low recoil) $\mathrm{E}_{\mathrm{K}} \approx \Lambda_{\mathrm{QCD}}$
- OPE (Grinstein,Pirjol'O4, Beylich et al '।I) I/mb $\sqrt{ } \mathrm{q}^{2}$
- form factors Lattice

Definition of isospin asymmetries

- Experimental definition (Recall: $\mathbf{q}^{\mathbf{2}}$ lepton pair momentum squared)

$$
\frac{d A_{I}^{\overline{0}-}}{d q^{2}} \equiv \frac{d \Gamma\left[\bar{B}^{0} \rightarrow \bar{K}^{* 0} l^{+} l^{-}\right] / d q^{2}-d \Gamma\left[B^{-} \rightarrow K^{*-} l^{+} l^{-}\right] / d q^{2}}{d \Gamma\left[\bar{B}^{0} \rightarrow \bar{K}^{* 0} l^{+} l^{-}\right] / d q^{2}+d \Gamma\left[B^{-} \rightarrow K^{*-} l^{+} l^{-}\right] / d q^{2}}
$$

- In terms of K^{*}-helicity $(0, \pm) \&(\bar{l})_{V, A}$

$$
\underbrace{\frac{d A_{I}^{\overline{0}-}}{d q^{2}}\left[B \rightarrow K^{*} l^{+} l^{-}\right]=\frac{\sum_{i=\{0, \pm\}} \operatorname{Re}\left[h_{i}^{V, 0}\left(q^{2}\right) \Delta_{i}^{V, d-u}\left(q^{2}\right)\right]}{\sum_{i=\{0, \pm\}}\left[\left|h_{i}^{V, 0}\left(q^{2}\right)\right|^{2}+\left|h_{i}^{A}\left(q^{2}\right)\right|^{2}\right]}+\mathcal{O}\left(\left[\Delta_{i}^{V, d-u}\left(q^{2}\right)\right]^{2}, m_{l}\right)}
$$

- above isospin linear effect -- interference with isospin neutral part
a) compute SM asymmetry
b) extend the basis to include most generic isospin sensitive dimension 6 operators (N.B. do not extend SM isospin neutral part; as "know" to be small by rate)

What "drives" sizeable isospin asymmetries?

- Not QCD as effects known to be small: $m\left(K^{*}\right) / m\left(K^{* 0}\right)=0.995$
- Recall: $\quad \mathcal{A}=\langle V l l| H_{\text {eff }}|B\rangle=\sum_{i} C_{i}\left(m_{b}\right)\langle V l l| O_{i}\left(m_{b}\right)|B\rangle$

Weak Annihilation (WA)

spectator is not a spectator (sensitive to UV isospin violation)

Quark-loop spectator scattering (QLSS)

Chromomagnetic-operator $\left(\mathrm{O}_{8}\right)$

resemble each other
(e.g. - if loop massive shrinks to a point \& mix under RG)

Answer title: IR QED-effects \& BSM UV isospin violation manifested in WA

- very specific operators \Rightarrow answers the question: "why isospin asymmetries?"

A rough overview of what we did.

- WA: I) extend (Khodj.\&Wyler, Ali\&Braun'95) to $q^{2} \neq 0$ within Light-cone sum rules 2) introduce most general dimension $6 \mathrm{H}^{\text {eff }}$ at $\mathrm{O}\left(\alpha_{s}{ }^{\circ}\right)$

$$
{ }^{10(20)_{o_{p_{e_{\text {atorors }}}}}}
$$

$$
\begin{array}{llll}
\mathcal{H}^{\mathrm{WA}, \mathrm{q}}=-\frac{G_{F}}{\sqrt{2}} \lambda_{t} \sum_{i=1}^{10} a_{i}^{q} O_{i}^{\mathrm{WA}} & O_{9}^{\mathrm{WA}} \equiv \bar{q} \sigma_{\mu \nu} b \bar{s} \sigma^{\mu \nu} q & O_{10}^{\mathrm{WA}} \equiv \bar{q} \sigma_{\mu \nu} \gamma_{5} b \bar{s} \sigma^{\mu \nu} q_{0}{ }^{0}{D_{e}}_{,} \\
O_{1}^{\mathrm{WA}} \equiv \bar{q} b \bar{s} q & O_{2}^{\mathrm{WA}} \equiv \bar{q} \gamma_{5} b \bar{s} q & O_{3}^{\mathrm{WA}} \equiv \bar{q} b \bar{s} \gamma_{5} q & O_{4}^{\mathrm{WA}} \equiv \bar{q} \gamma_{5} b \bar{s} \gamma_{5} q \\
O_{5}^{\mathrm{WA}} \equiv \bar{q} \gamma_{\mu} b \bar{s} \gamma^{\mu} q & O_{6}^{\mathrm{WA}} \equiv \bar{q} \gamma_{\mu} \gamma_{5} b \bar{s} \gamma^{\mu} q & O_{7}^{\mathrm{WA}} \equiv \bar{q} \gamma_{\mu} b \bar{s} \gamma^{\mu} \gamma_{5} q & O_{8}^{\mathrm{WA}} \equiv \bar{q} \gamma_{\mu} \gamma_{5} b \bar{s} \gamma^{\mu} \gamma_{5} q
\end{array}
$$

- QLSS: extend (Feldmann \& Matias '02) to include most general dimension $6 \mathrm{H}^{\text {eff }}$ at $\mathrm{O}\left(\alpha_{s}{ }^{0}\right)$

We resort to QCDF as LCSR involves 2-loops and complicated analytic structure ..

$$
\begin{aligned}
\mathcal{H}^{\mathrm{QLSS}} & =-\frac{G_{F}}{\sqrt{2}} \lambda_{t} \sum_{x, \chi, f} s_{x \chi}^{f} Q_{x \chi}^{4 f}, \quad x=1,2, \chi=L, R, f=S U(3)_{F}, c, b \quad 10 \text { operators }\left(\boldsymbol{m}_{q}=0\right) \\
Q_{1 L(R)}^{4 f} & \equiv \bar{f} t^{a} \gamma_{\mu} f \bar{s}_{L(R)} t^{a} \gamma^{\mu} b, \quad Q_{2 L(R)}^{4 f} \equiv \bar{f} t^{a} \sigma_{\mu \nu} f \bar{s}_{L(R)} t^{a} \sigma_{\mu \nu} b, Q_{x L(R)}^{4 S U(3)_{F}} \equiv \sum_{q=u, d, s} Q_{x L(R)}^{4 q}
\end{aligned}
$$

N.B. $10(20) \mathrm{wA} \& 10_{\mathrm{QLSS}(\mathrm{mq}=0)}$ are not orthogonal but linearly independent

- O8: earlier work (Dimou, Lyon \& RZ'I2) BSM: flipped chirality \Rightarrow trivial

Hadronic contributions \& strong phases

- e.g. ρ, ω-thresholds when photon emitted from light-quark -- seen O_{8},WA not in (QLSS as LO QCDF)

- Multihadron state $(\bar{s} q)_{0^{ \pm}} \mathrm{q}$-number and momentum squared mB^{2}

Quick comment (un)related topic: $\mathrm{AcP}_{\mathrm{cp}}\left[\mathrm{D}^{\boldsymbol{0}} \rightarrow \rho^{0} \mathrm{\gamma}\right]$

- Strong phase of O_{8} andWA (dominant) interfere to $C P$-violation in $D^{0} \rightarrow \rho^{0} \gamma$

main difference: IK: LD not specified depends sizeable strong phase
LZ: $L D=$ WA no strong phase at leading order - strong phase through O_{8}

Fun with dispersion relations

- Main tool for sum rules (besides LC-OPE) is the construction of a dispersion relation:

$$
\begin{array}{cl|c|c}
g_{i}\left(p_{B}^{2}, . .\right)=\int_{\Gamma} \frac{d s g_{i}(s, . .)}{s-p_{B}^{2}-i 0} & \text { I) } \Gamma \text { : path encircles singularities } \mathcal{C}_{p_{B}^{2}} & \text { "USUally" } \text { 2) }^{\text {: chosen s.t. relates hadronic states }} & \begin{array}{c}
\text { Physical Region }
\end{array} \\
\text { Cauchy's thm } & & m_{b}^{2}
\end{array}
$$

- Investigate singularities Landau equations: leading Landau singularities $\mathbf{S}_{ \pm}$of a three point function appearing in the computation has got two complex solutions.
- Are they on the physical Riemann sheet (PRS)?

For real singularities its relatively straightforward to answer not for complex ones!

- Found 4 ways to show/convince ourselves that one is present on PRS
I) Kallen-Wightman paper '59 ananlytic properties three pts fcts (axiomatic approach)

2) 6-dimensional projective geometry (did not do finally)
3) deformation from non-complex case (tricky in case at hand)
4) "invented method" using Feynman parameter integral (next slide)

Passarino-Veltman reduction C_{0} :
$>$ study analytic continuation
ρ / ω-thresholds \&
$(\bar{s} q)_{0^{ \pm}-m u t i p a r t i c l e ~ t h r e s h o l d ~} s$

(1) Real line: $\quad C_{0}(s)=C_{0}^{F}(s) \equiv \int_{0}^{1} d x \int_{0}^{1-x} d y\left((1-x-y)\left(x s+y(s-\beta)-m^{2}\right) \ldots+x y \alpha+i 0\right]^{-1}$
(2) Real $\alpha, \beta, \mathrm{m} \mathrm{C}_{0}{ }^{\mathrm{F}}$ no singularities upper half plane $>$ valid analytic continuation \& $\mathbf{s} \neq \mathrm{PRS}$
(3) Lower half plane -- analytic continuation via (a) -- unphysical branch cut $s<\mathrm{m}^{2}$

4
Principle: impose continuity across real line $\left.s<m^{2}\right\rangle$ eliminate branch cut

$$
\begin{gathered}
\operatorname{Im}[s] \neq 0:\left[C_{0}^{F}\left(s^{*}\right)\right]^{*}=C_{0}^{F}(s) \text { Reflection principle } \\
C_{0}(s)=\left\{\begin{array}{cc}
C_{0}^{F}(s) & \operatorname{Im}[s]>0 \\
C_{0}^{F}\left(s^{*}\right)^{*}+C_{0}^{\mathrm{rem}}(s) & \operatorname{Im}[s]<0
\end{array} \quad C_{0}^{\mathrm{rem}}(s)=\operatorname{Im}\left[C_{0}^{F}(s)\right] \quad \operatorname{Im}[s]=0\right.
\end{gathered}
$$

is continuous and thus the unique analytic continuation! N.B. $\left[C_{0}\left(s^{*}\right)\right]^{*} \neq C_{0}[s]$
5 Inspect $\mathrm{C}_{0}{ }^{\text {rem }}$ note $\mathbf{s}_{+} \in \mathrm{PRS}$!! Know how to choose path appropriately
very briefly the analytic structure in full QCD and in partonic QCD

- leading Landau singularities (anomalous thresholds) are not related to insersion of a hadronic state(s).
- Essence for sum rules is that the branch cut from \mathbf{s}. is above continuum states and therefore will be exponentially Borel suppressed

> end of technical excursion

Selection rules

- General: a) $\quad B\left[0^{-}\right] \rightarrow K\left[0^{-}\right]\left(\gamma^{*}\left[1^{-}\right] \rightarrow l l\left[1^{-}\right]\right) \quad \Rightarrow \quad$ p-wave; i.e. $l=1$;

$$
\text { induced by parity conserving interacton } \ldots\left(1-\gamma_{5}\right) s
$$

b) other way around for K^{*} (0 -helicity = longitidinal polarisation)

- WA: more stringent selection rules ground of Lorentz-invariance etc (at least at the level of the factorisable contribution)

I (inital) \& F (inal) state radiation
"the K-meson contribution corresponds to the longitudinal part of K*-meson"
true leading twist in the SM where V - A imposes $\mathrm{a}_{6}=-\mathrm{a} 8$; $\mathrm{V}+\mathrm{A}$ not true

Isospin asymmetries in the SM

- Are small for $B \rightarrow K^{(*)} \|$-- accidental sizeable tree-level $W C$ double Cabibbo suppressed

- Larger for $B \rightarrow K^{(*)} \gamma$

$$
a_{I}^{\overline{0}-}\left(K^{*} \gamma\right)_{\mathrm{LZ}}=7 \%, \quad a_{I}^{\overline{0}-}\left(K^{*} \gamma\right)_{\mathrm{HFAG}}=5.2(2.6) \%
$$

The breakdown in the SM....

Isospin asymmetries BSM

- After selection rules: still many operators!

	$C_{8}^{\left({ }^{\prime}\right)}$	WA		QLSS		total
K^{*}	$2[1]$	$12[3]$	$a_{2,4,5,6,9,10}^{q}$	$10[3]$	all no $\mathrm{i}=2, \mathrm{f}=\mathrm{SU}(3)$	$24[7]$
K	$1[1]$	$4[3]$	$a_{4,8}^{q}$	$5[3]$	idem no $\chi=A$	$10[7]$

- Are there constraints? a) non-leptonic decays (large hadronic uncertainties) to be seen: some constraint not all as selection rules differ isospin \& non-leptonic decays might marry to constrain bsqq's
b) isospin asymmetry in $B \rightarrow K^{*} Y$ of course

Take $\mathrm{a}_{\mathrm{i}} \neq 0$ others zero then to be within 2σ of $\quad a_{I}^{0-}\left(K^{*} \gamma\right)_{\text {HPAG }}=5.2(2.6) \%$

$$
\begin{array}{llc}
0>a_{2}>-3 \cdot 10^{-1}, & 0>a_{4}>-3 \cdot 10^{-1}, & 0<a_{5}<5 \cdot 10^{-1} \\
0>a_{6}>-7 \cdot 10^{-1}, & 0<a_{9}<6 \cdot 10^{-2}, & 0<a_{10}<6 \cdot 10^{-2}
\end{array} \quad \text { indicative constraints }
$$

Comments on high q^{2}

I) Generic remarks

- Isospin violation: - through photon $>$ enhanced through photon pole low q^{2} $>$ isospin asymmetry has to decrease (module conspiracy) at high q^{2} as rate dominated by Z -penguins and boxes (e.g. C_{9} eff.)
- On top of that isospin transitions (IT) compete with penguin form factors who show increase, at high q^{2}, due to nearby t -channel $\mathrm{B}_{\mathrm{s}}{ }^{*}\left[\mathrm{I}^{+}\right]$poles and alike whereas IT have no such enhancements (at least at leading order)

2) OPE language: form factors dim 3 operators isospin violation dim 5,6

... Epilogue

- Isospin asymmetry driven by QED-effects \& Weak Annihilation
- SM isospin accidentally small as large WC is doubly Cabibbo suppressed
- Difficult to see how isospin asymmetry can be large at high q^{2} Isospin symmetric WC as well as matrix element (form factors) raise
- BSM many operators contribute
- Is by the laws of probability cancellation the rule rather than the exception
- This is where q^{2}-spectrum ought to help - can't be unlucky everywhere in q^{2}
- Theoretical improvement

SM: compute $W A$ at $O\left(\alpha_{s}\right)$-- presumably difficult -- important charm $\mathrm{D} \rightarrow \mathrm{V}_{\gamma}$
BSM: compute QLSS with LCSR

thanks for your attention!

