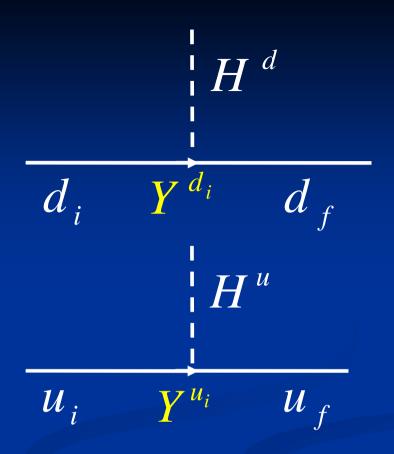


Outline:

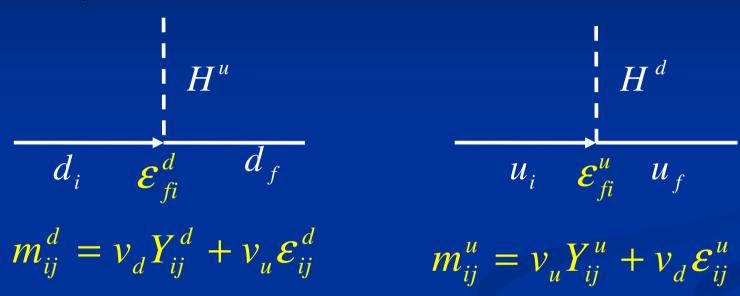

- Introductions: Flavor violation in 2HDMs
- Matching on the MSSM on the 2HDM of type III
 - Resummation of chirally enhanced effects
 - 2-loop corrections to Higgs-quark-quark vertices
- Flavor-phenomenology of 2HDMs with generic flavour-structure
 - Constraints from FCNC processes
 - Tauonic B decays
 - Direct CP asymmetry in D->KK,ππ
 - LFV processes
- Conclusions

Introduction

Flavor-violation in 2HDMs

2HDM of type II (MSSM at tree-level)

- One Higgs doublet couples only to down-quarks (and charged leptons), the other Higgs doublet couples only to up-quarks.
- 2 additional free parameters: $tan(β)=v_u/v_d$ and the heavy Higgs mass $m_H ≈ m_{A^0} ≈ m_{H^\pm} ≈ m_{H^0}$

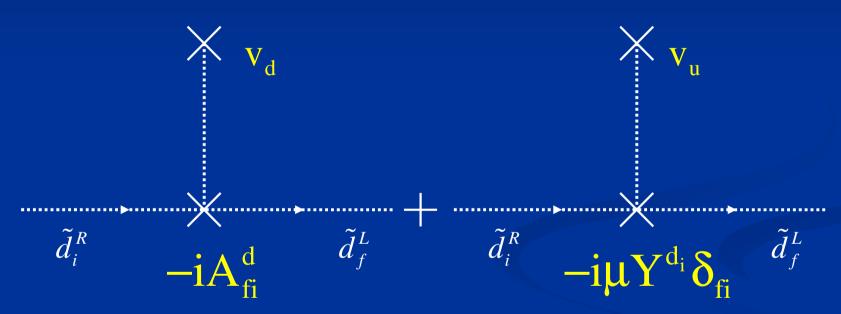


$$m_{q_i} = v_q Y^{q_i}$$

 All flavor-violations is due to the CKM matrix: neutral Higgs-quark couplings are flavor-conserving.

2HDM of type III

 Both Higgs doublets couple simultaneously to up and down quarks.

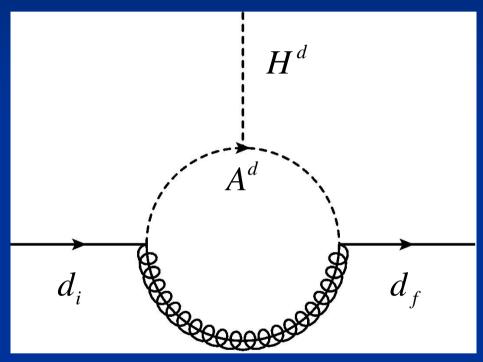


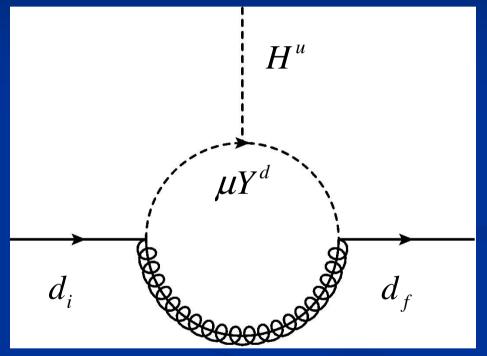
- The parameters $\varepsilon_{ij}^{u,d}$ describe flavor-changing neutral Higgs interactions
- In the MSSM, $\mathcal{E}_{ij}^{u,d}$ are induced via loops

Matching of the MSSM on the 2HDM

Squark-Higgs couplings

The off-diagonal elements $\Delta_{ii}^{q LR}$ of the squark mass matrices originate from squark-Higgs couplings

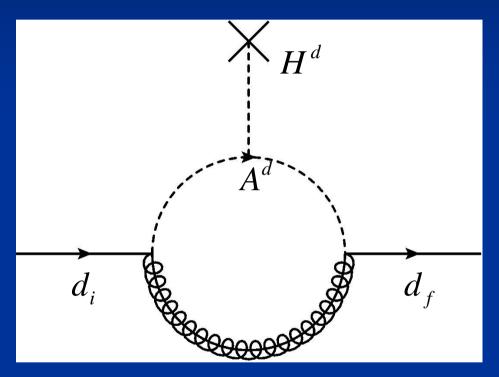


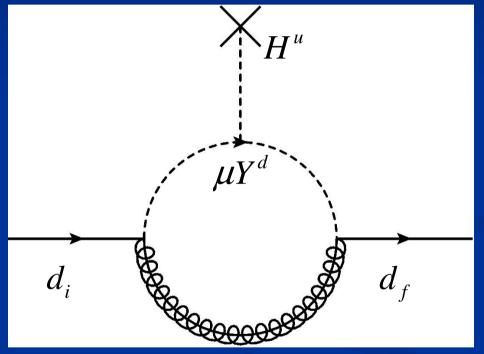

$$= \underbrace{\tilde{d}_i^R} \underbrace{\tilde{d}_f^L} \underbrace{\tilde{d}_f^L}$$

$$= \Delta_{\tilde{d}_{i}}^{R} \qquad \tilde{d}_{f}^{L} \qquad \tilde{d}_{f}^{L} \qquad \delta_{fi}^{\tilde{q}\,LR} \equiv \frac{\Delta_{fi}^{\tilde{q}\,LR}}{\hat{m}_{\tilde{q}}^{2}} \quad \hat{m}_{\tilde{q}}^{2} \text{ average squark mass}$$

Loop corrections to Higgs quark couplings

Before electroweak symmetry breaking




$$\Gamma^{H^d}_{d_f d_i}$$

$$\Gamma^{H^u}_{d_f d_i}$$

Loop corrections to Higgs quark couplings

After electroweak symmetry breaking

$$\sum_{fi\,A}^{d\,LR} = \nu_d \Gamma_{d_f d_i}^{H^d}$$

$$\sum_{fi \, Y}^{d \, LR} = v_u \Gamma_{d_f d_i}^{H^u}$$

One-to-one correspondence between Higgs-quark couplings and chirality changing self-energies. (In the decoupling limit)

Determination of the MSSM Yukawa coupling

All corrections are finite and are non-decoupling

Matching condition:

$$\begin{split} m_{d_i} &= v_d Y^{d_i} + \Sigma_{ii}^{d LR} \\ &= v_d Y^{d_i} + \Sigma_{ii A}^{q LR} + v_d \tan(\beta) Y^{d_i} \epsilon_{d_i} \end{split}$$

$$Y^{d_i} = \frac{m_{d_i} - \sum_{ii A}^{q LR}}{v_d \left(1 + \tan(\beta) \varepsilon_i^d\right)}$$

tan(β) is automatically resummed to all orders

Carena et al, hep-ph/9912516

Complete resummation of all chirally enhanced corrections

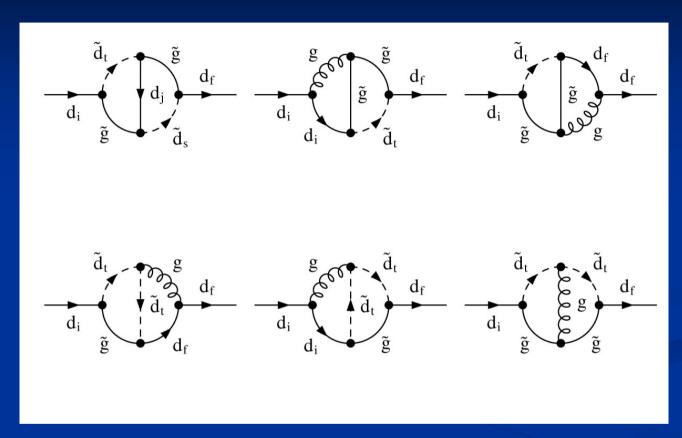
A.C., L. Hofer and J. Rosiek, 1103.4272

Including:

- Most general MSSM flavor structure
- SQCD and electroweak contributions
- Threshold corrections to the CKM matrix
- Effective Higgs-quark-quark vertices
- Effective quark-squark-gaugino vertices

Using these vertices, all chirally enhanced corrections can be automatically included.

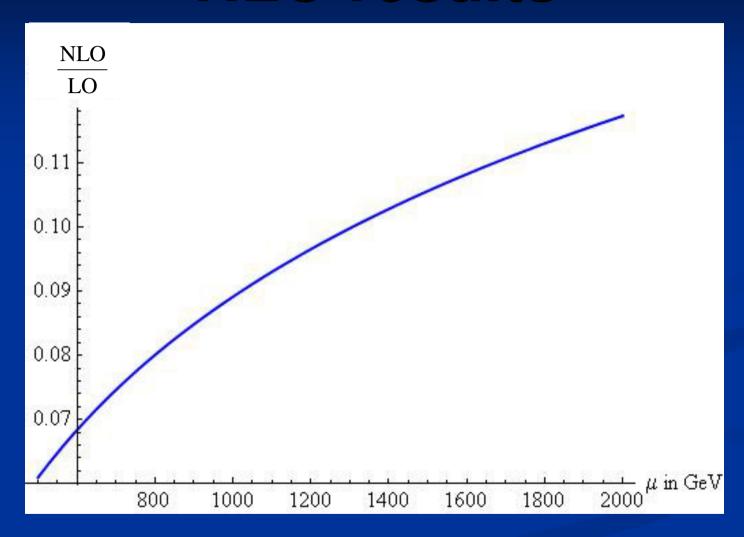
Implemented in SUSY_FLAVOR 2.0


NLO calculation of the quark self-energies

NLO calculation is important for:

- Computation of effective Higgs-quark vertices.
- Determination of the Yukawa couplings of the MSSM superpotential (needed for the study of Yukawa unification in GUTs).
- NLO calculation of FCNC processes in the MSSM at large tan(β).

Reduction of the matching scale dependence


NLO calculation

Examples of 2-loop diagrams

NLO calculation includes analytic results and tan(β) resummation in the generic MSSM. Δ_b at order α_s^2

NLO results

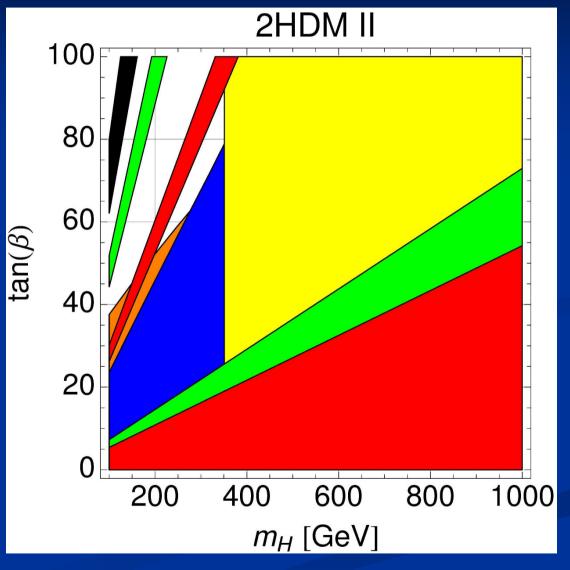
Relative importance of the 2-loop corrections approximately 9%

Flavorphenomenology of two-Higgs-doublet models

Type-II 2HDM

Allowed regions from:

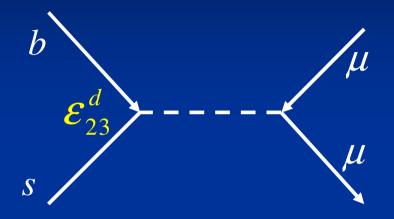
$$b \rightarrow s\gamma$$


$$B \rightarrow \tau \nu$$

$$K \rightarrow \mu\nu / \pi \rightarrow \mu\nu$$

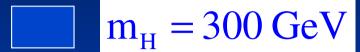
$$B \rightarrow D\tau V$$

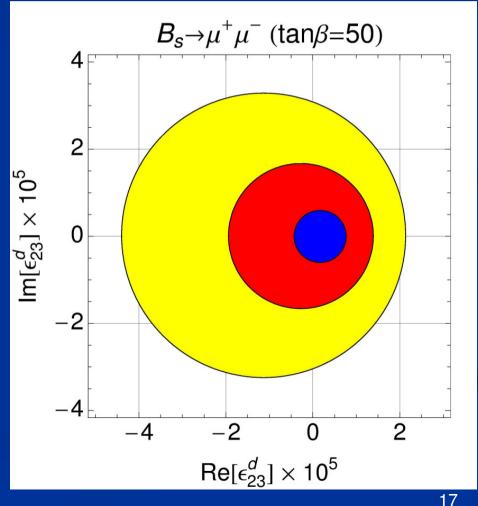
$$B_s \rightarrow \mu^+ \mu^-$$


$$B \rightarrow D^* \tau \nu$$

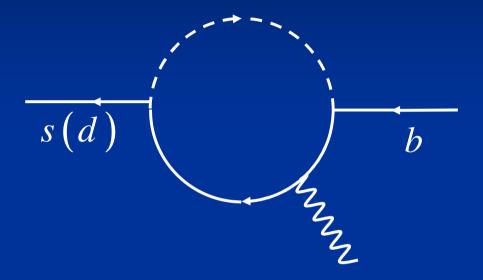
Tension from $B \rightarrow D^* \tau v$

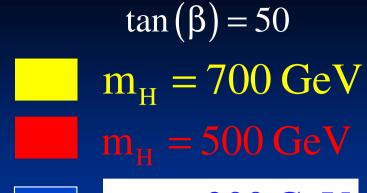
Type-III: constraints from M→µ+µ⁻

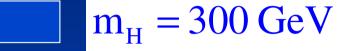

- B $\rightarrow \mu^+\mu^-$ constrains $\epsilon^d_{13,31}$
- $B_s \rightarrow \mu^+\mu^-$ constrains $ε_{23,32}^d$
- $\mathsf{K}_\mathsf{L} \to \mu^+ \mu^- \text{ constrains } \mathbf{\mathcal{E}}_{12,21}^\mathsf{d}$
- D $\rightarrow \mu^+\mu^-$ constrains $\varepsilon^u_{12,21}$

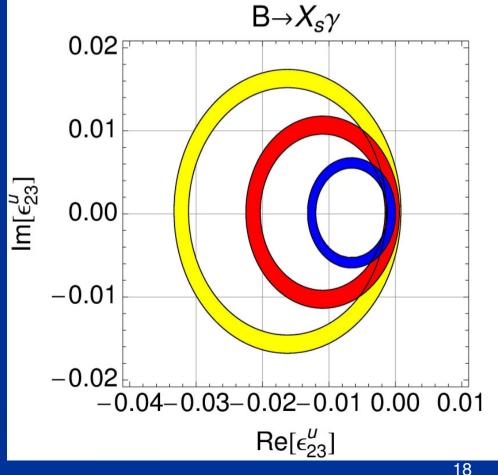

 $\mathcal{E}_{32,23}^{u}$ and $\mathcal{E}_{13,31}^{u}$ unconstrained

from tree-level FCNCs


$$\tan(\beta) = 50$$

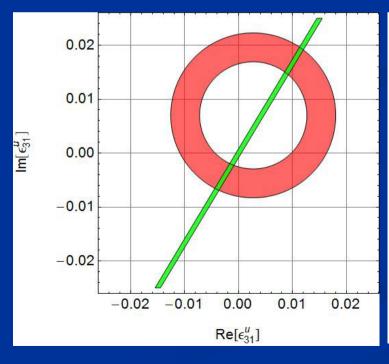


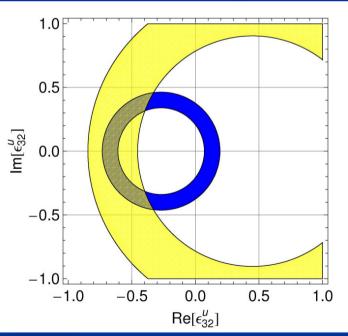



Type-III: Constraints from $b \rightarrow s(d) \gamma$

- b→sγ constrains ε_{23}^{u}
- b→dγ constrains ε_{13}^{u}
- still unconstrained

Tauonic B decays


- Constructive contribution to $B \rightarrow \tau \nu$ using \mathcal{E}_{31}^u is possible.
- B→D^(*)TV and B→DTV can be explained simultaneously using \mathcal{E}_{32}^u .
 Check model via $H^0, A^0 \to \overline{tc}$


Allowed regions from:

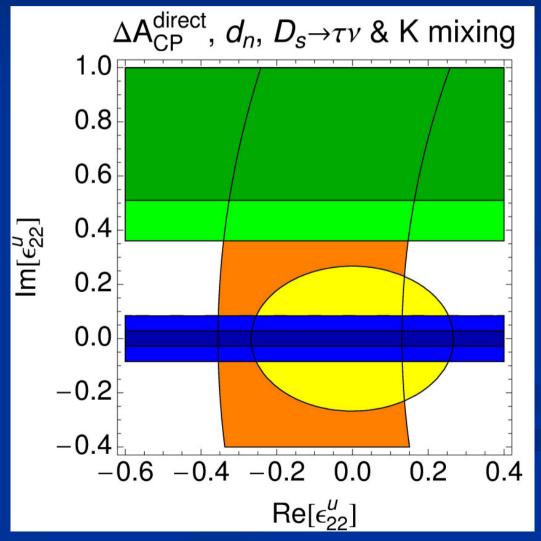
 $B \rightarrow D\tau V$

 $B \rightarrow D^* \tau \nu$

 $B \rightarrow \tau$

Direct CP asymmetry in

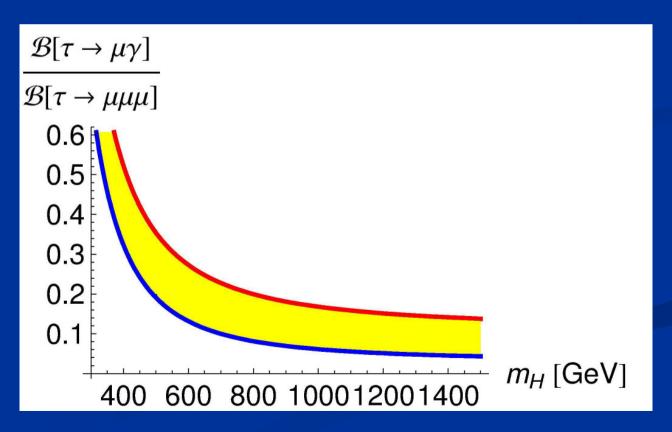
Cannot be explained in the 2HDM III


Allowed regions from:

$$D \rightarrow KK, \pi\pi$$

$$K - \overline{K}$$
 mixing

$$D_{(s)} \rightarrow \mu \nu$$



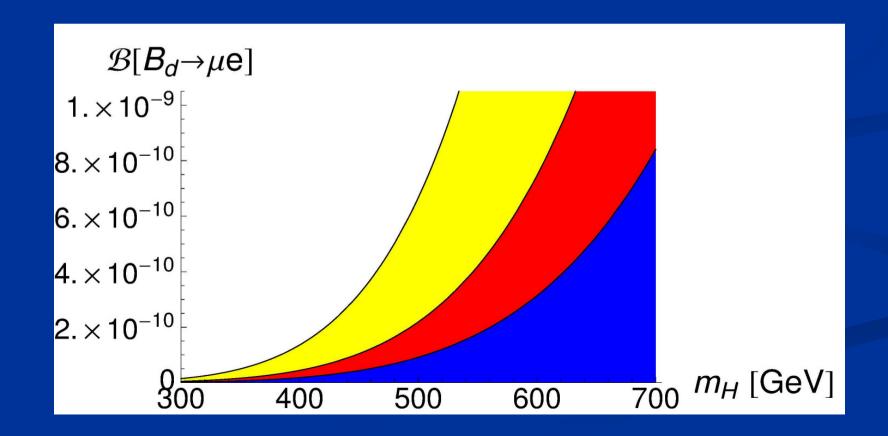
Lepton Flavor violation

■ Correlations between $\tau \rightarrow \mu\mu\mu$ and $\tau \rightarrow \mu\gamma$

$$\epsilon_{23}^{\ell} \neq 0, \epsilon_{32}^{\ell} \neq 0$$
 $\epsilon_{32}^{\ell} = 0, \epsilon_{23}^{\ell} \neq 0$

$$\boldsymbol{\varepsilon}_{32}^{\ell} \neq 0, \, \boldsymbol{\varepsilon}_{23}^{\ell} = 0$$

Upper limits on lepton flavour violating B decays



Excluded by experiment

$$\tan(\beta) = 30$$

$$\tan(\beta) = 40$$

$$\tan(\beta) = 50$$

Conclusions

- The decoupling limit of the MSSM is the 2HDM of type III
- Sizable non-holomorphic Higgs couplings are generated via loops, 2-loop calculation of Higgs-quark couplings significantly reduces the matching scale dependence.
- In the 2HDM III all off-diagonal elements \mathcal{E}_{ij}^q except $\mathcal{E}_{31,32}^u$ must be small.
- A 2HDM of type III with flavour violation in the up-sector can explain B→τv, B→Dτv and B→D*τv simultaneously.
- The direct CP asymmetry in D \rightarrow KK,ππ cannot be explained
- Interesting correlations between among lepton flavor violating observables.

SUSY_FLAVOR 2.0

A.C., J. Rosiek et al, arXiv:1203.5023

Calculates a large set of flavour observables including the complete resummation of all chirally enhanced corrections and the effective Higgs vertices.

Observable	Most stringent constraints on	Experiment
$\Delta F = 0$		
$\frac{1}{2}(g-2)_e$	$\mathrm{Re}\left[\delta_{11}^{\ell\mathrm{LR,RL}} ight]$	$(1159652188.4 \pm 4.3) \times 10^{-12}$
$\frac{1}{2}(g-2)_{\mu}$	$\mathrm{Re}\left[\delta_{22}^{\ell\mathrm{LR,RL}} ight]$	$(11659208.7 \pm 8.7) \times 10^{-10}$
$\frac{1}{2}(g-2)_{\tau}$	$\mathrm{Re}\left[\delta_{33}^{\ell\mathrm{LR,RL}} ight]$	$< 1.1 \times 10^{-3}$
$ d_e (\text{ecm})$	$\operatorname{Im}\left[\delta_{11}^{\ell\operatorname{LR},\operatorname{RL}} ight]$	$< 1.6 \times 10^{-27}$
$ d_{\mu} (ext{ecm})$	$\mathrm{Im}\left[\delta_{22}^{\ell\mathrm{LR,RL}} ight]$	$< 2.8 \times 10^{-19}$
$ d_{ au} (ext{ecm})$	$\mathrm{Im}\left[\delta_{33}^{\ell\mathrm{LR,RL}} ight]$	$< 1.1 \times 10^{-17}$
$ d_n (\text{ecm})$	$\operatorname{Im}\left[\delta_{11}^{\operatorname{d}\operatorname{LR},\operatorname{RL}}\right],\operatorname{Im}\left[\delta_{11}^{\operatorname{u}\operatorname{LR},\operatorname{RL}}\right]$	$< 2.9 \times 10^{-26}$
$\Delta F = 1$		
$Br(\mu \to e\gamma)$	$\delta_{12,21}^{\ellLR,RL},\delta_{12}^{\ellLL,RR}$	$< 2.8 \times 10^{-11}$
$Br(\tau \to e\gamma)$	$\delta_{13,31}^{\ellLR,RL},\delta_{13}^{\ellLL,RR}$	$< 3.3 \times 10^{-8}$
$Br(\tau \to \mu \gamma)$	$\delta^{\ell LR, RL}_{23,32}, \delta^{\ell LL, RR}_{23}$	$< 4.4 \times 10^{-8}$
${ m Br}(K_L o \pi^0 u u)$	$\delta^{uLR}_{23}, \delta^{uLR}_{13} \times \delta^{uLR}_{23}$	$< 6.7 \times 10^{-8}$
$Br(K^+ \to \pi^+ \nu \nu)$	sensitive to $\delta^{uLR}_{13} \times \delta^{uLR}_{23}$	$17.3^{+11.5}_{-10.5} \times 10^{-11}$
$Br(B_d \to ee)$	$\delta^{dLL,RR}_{13}$	$< 1.13 \times 10^{-7}$
$Br(B_d \to \mu\mu)$	$\delta^{dLL,RR}_{13}$	$< 1.8 \times 10^{-8}$
$Br(B_d \to \tau \tau)$	$\delta_{13}^{dLL,RR}$	$< 4.1 \times 10^{-3}$
$Br(B_s \to ee)$	$\delta^{dLL,RR}_{23}$	$< 7.0 \times 10^{-5}$
$Br(B_s \to \mu\mu)$	$\delta^{dLL,RR}_{23}$	$< 1.08 \times 10^{-8}$
$Br(B_s \to \tau \tau)$	$\delta^{dLL,RR}_{23}$	
$Br(B_s \to \mu e)$	$\delta^{dLL,RR}_{23} \times \delta^{\ellLL,RR}_{12}$	$< 2.0 \times 10^{-7}$
$Br(B_s \to \tau e)$	$\delta^{dLL,RR}_{23} imes \delta^{\ellLL,RR}_{13}$	$< 2.8 \times 10^{-5}$
$Br(B_s \to \mu \tau)$	$\delta^{dLL,RR}_{23} imes \delta^{\ellLL,RR}_{23}$	$< 2.2 \times 10^{-5}$
$Br(B^+ \to \tau^+ \nu)$	-	$(1.65 \pm 0.34) \times 10^{-4}$
$Br(B_d \to D\tau\nu)/Br(B_d \to Dl\nu)$	-	$(0.407 \pm 0.12 \pm 0.049)$
$Br(B \to X_s \gamma)$	$\delta^{dLL,RR}_{23}$ for large $\tan\beta,\delta^{dLR}_{23,32}$	$(3.52 \pm 0.25) \times 10^{-4}$
$\Delta F = 2$		
$ \epsilon_K $	$\operatorname{Im}\left[(\delta_{12}^{\operatorname{dLL,RR}})^2\right], \operatorname{Im}\left[(\delta_{12,21}^{\operatorname{dLR}})^2\right]$	$(2.229 \pm 0.010) \times 10^{-3}$
ΔM_K	$\delta_{12}^{dLL,RR},\delta_{12,21}^{dLR}$	$(5.292 \pm 0.009) \times 10^{-3} \text{ ps}^{-1}$
ΔM_D	$\delta_{12}^{u\;LL,RR},\;\delta_{12,21}^{u\;LR}$	$(2.37^{+0.66}_{-0.71}) \times 10^{-2} \text{ ps}^{-1}$
ΔM_{B_d}	$\delta^{dLL,RR}_{13},\delta^{dLR}_{13,31}$	$(0.507 \pm 0.005) \text{ ps}^{-1}$
ΔM_{B_s}	$\delta^{dLL,RR}_{23},\delta^{dLR}_{23,32}$	$(17.77 \pm 0.12) \text{ ps}^{-1}$