Portoroz 2013 April 17th 2013

Light Neutralino Dark Matter at the LHC

Lorenzo Calibbi ULB

based on collaborations with J. Lindert, T. Ota, Y. Takanishi

 Strongly-interacting SUSY particles (squarks and gluinos) typically excluded by the LHC above 1 TeV
 ATLAS-CONF-2012-109 CMS, arXiv:1301.2175

• Direct bounds on EW-iteracting particles relatively weaker, due to the smaller production cross-section, e.g. $m_{\tilde{\ell}} \gtrsim 275 \,\text{GeV}$ CMS-PAS-SUS-12-022

• The EW SUSY sector might be much lighter than the strong sector

• However, with 8 TeV run data, LHC searches for EW-produced new states started to go considerably beyond the limits set by LEP

• Here, we discuss an example of the potential of EW searches at the LHC: how to test light Neutralino Dark Matter in the MSSM, i.e.

$$m_{\tilde{\chi}_1^0} \lesssim 30 \,\,\mathrm{GeV}$$

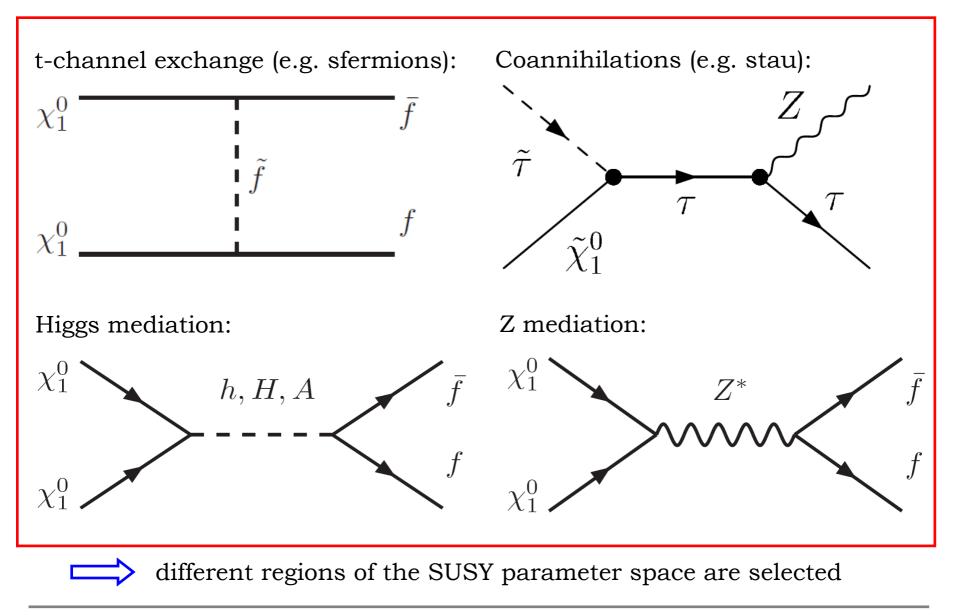
Light Neutralino DM at the LHC

Light Neutralino Dark Matter in the MSSM

$$\begin{split} \text{MSSM neutralinos:} & \left(\tilde{B}, \tilde{W}_{3}, \tilde{H}_{d}^{0}, \tilde{H}_{u}^{0}\right) & \text{MSSM charginos:} & \left(\tilde{W}^{\pm}, \tilde{H}_{u}^{+}, \tilde{H}_{d}^{+}\right) \\ \mathbf{M}_{\tilde{N}} = \begin{pmatrix} \mathbf{M}_{0} & \mathbf{0} & -c_{\beta} s_{W} m_{Z} & s_{\beta} s_{W} m_{Z} \\ -c_{\beta} s_{W} m_{Z} & -c_{\beta} c_{W} m_{Z} & \mathbf{0} \\ s_{\beta} s_{W} m_{Z} & -s_{\beta} c_{W} m_{Z} & \mathbf{0} \\ -s_{\beta} c_{W} m_{Z} & \mathbf{0} \\ -\mu & \mathbf{0} \end{pmatrix} & \mathcal{M}_{\pm} = \begin{pmatrix} \mathbf{M}_{2} & \sqrt{2} M_{W} \sin\beta \\ \sqrt{2} M_{W} \cos\beta & \mu \end{pmatrix} \\ \end{split}$$

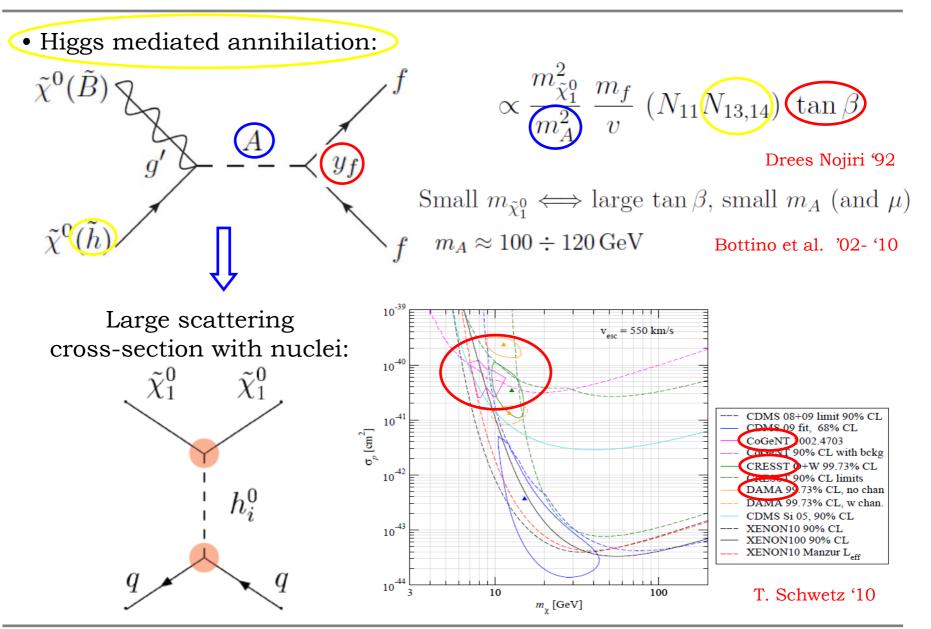
$$\begin{aligned} \text{Mass eigenstates:} & \text{LEP chargino searches:} & M_{\tilde{\chi}_{1}^{+}} > 94 \text{ GeV} \\ \mathbf{M}_{\tilde{\chi}_{1}^{0}} &= N_{i1} \tilde{B} + N_{i2} \tilde{W} + N_{i3} \tilde{H}_{d} + N_{i4} \tilde{H}_{u} & M_{2}, \ \mu \gtrsim 90 \text{ GeV} \\ \end{aligned}$$

$$\begin{aligned} \boxed{M_{\chi_{1}^{0}} \lesssim 30 \text{ GeV}} & \Longrightarrow & M_{1} \ll M_{2}, \ \mu \iff \tilde{\chi}_{1}^{0} \approx \tilde{B} \end{split}$$

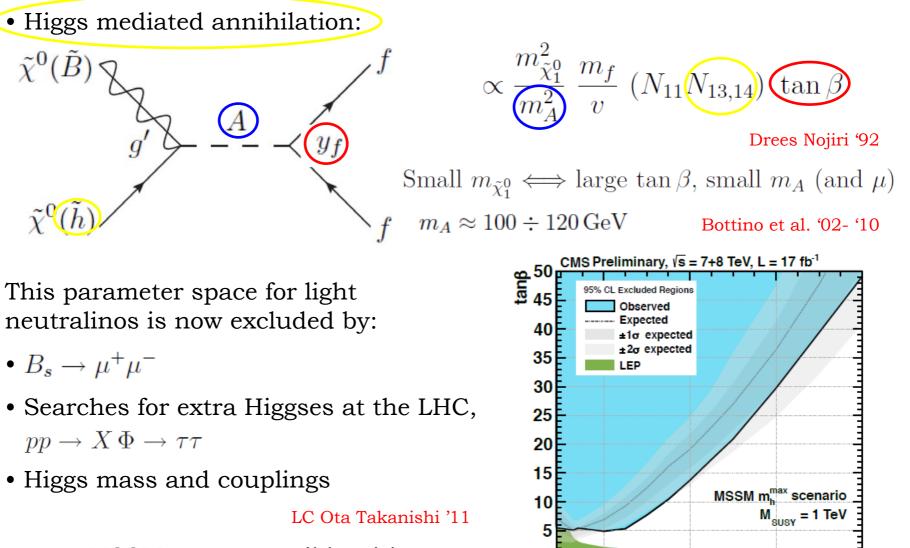

No gaugino mass unification at the GUT scale ($M_1\simeq 0.5\times M_2$)

Light Neutralino DM at the LHC

Light Neutralino Dark Matter in the MSSM


Light Neutralino DM at the LHC

Annihilation processes


Light Neutralino DM at the LHC

Annihilation processes: Higgs exchange

Light Neutralino DM at the LHC

Annihilation processes: Higgs exchange

0

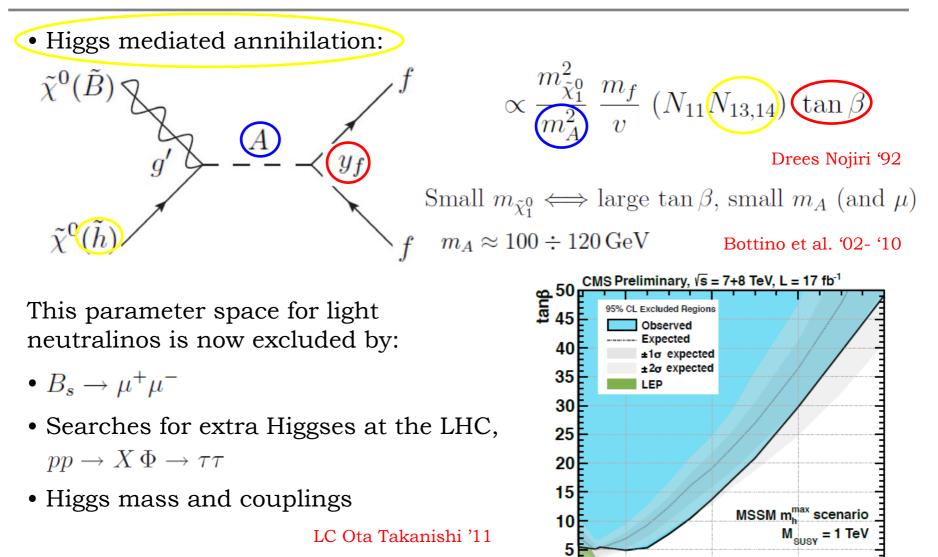
200

400

CMS PAS HIG-12-050

→ MSSM not compatible with DAMA, CoGent, CRESST

Light Neutralino DM at the LHC


Lorenzo Calibbi (ULB)

600

800

m_A [GeV]

Annihilation processes: Higgs exchange

0

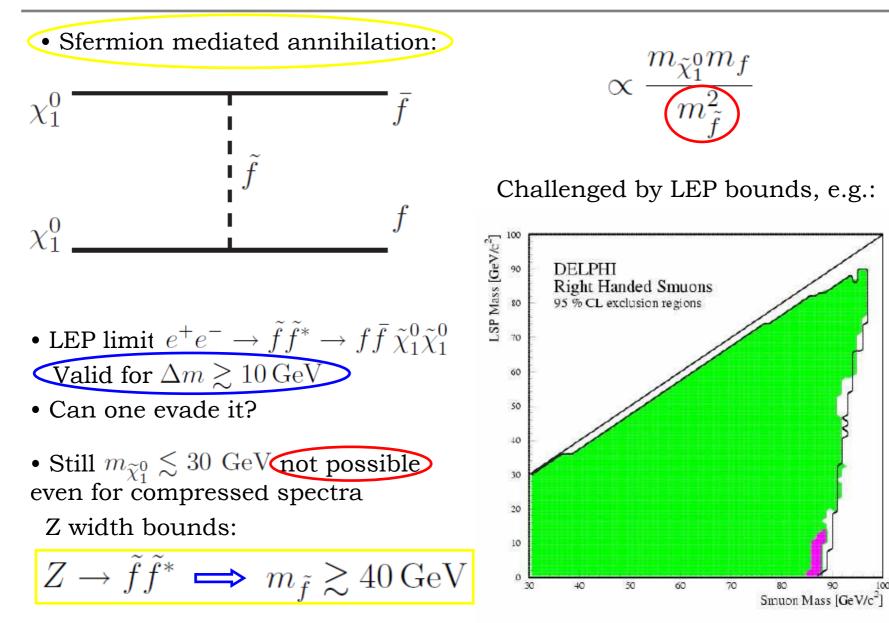
200

400

CMS PAS HIG-12-050

Heavier neutralinos excluded by XENON100

Light Neutralino DM at the LHC


Lorenzo Calibbi (ULB)

600

800

m_A [GeV]

Annihilation processes: sfermion exchange

Light Neutralino DM at the LHC

Annihilation processes: sfermion exchange

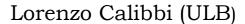
200

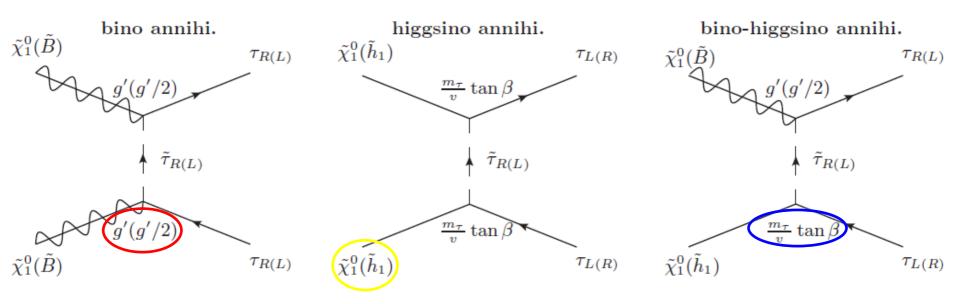
Similarly, LEP and/or Z width bounds exclude chargino and Z exchanges as annihilation mechanisms for light neutralinos

Arbey Battaglia Mahmoudi '12

Light neutralino DM is only possible in presence of a light stau

Albornoz Bélanger Boehm '11 Grothaus Lindner Takanishi '12

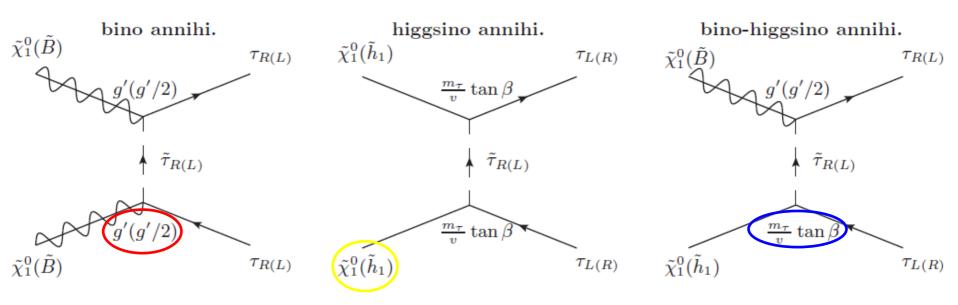

because:


(a) efficient annihilation is achieved if Yukawa interactions contribute

(a) LEP/LHC set too severe bounds to other sfermions (e.g. $m_{\tilde{b}} \gtrsim 650 \,\mathrm{GeV}$)

Albornoz Bélanger Boehm '11

Light Neutralino DM at the LHC



- RH stau much more efficient (cross-section 16x larger than LH one)
- Sizeable higgsino component: small μ
- Yukawa interactions: large tanβ

Relic density essentially controlled by 4 parameters only:

 $M_1, \ m_{\tilde{\tau}_R}, \ \mu, \ \tan\beta$

- RH stau much more efficient (cross-section 16x larger than LH one)
- \bullet Sizeable higgsino component: small μ
- Yukawa interactions: large $tan\beta$

Light neutralino DM necessarly implies:

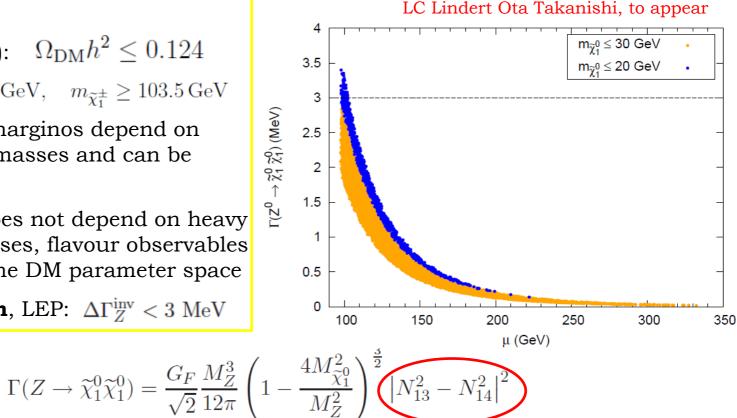
light stau, light higgsino-like neutralinos and charginos

Light Neutralino DM at the LHC

Parameters scan and constraints

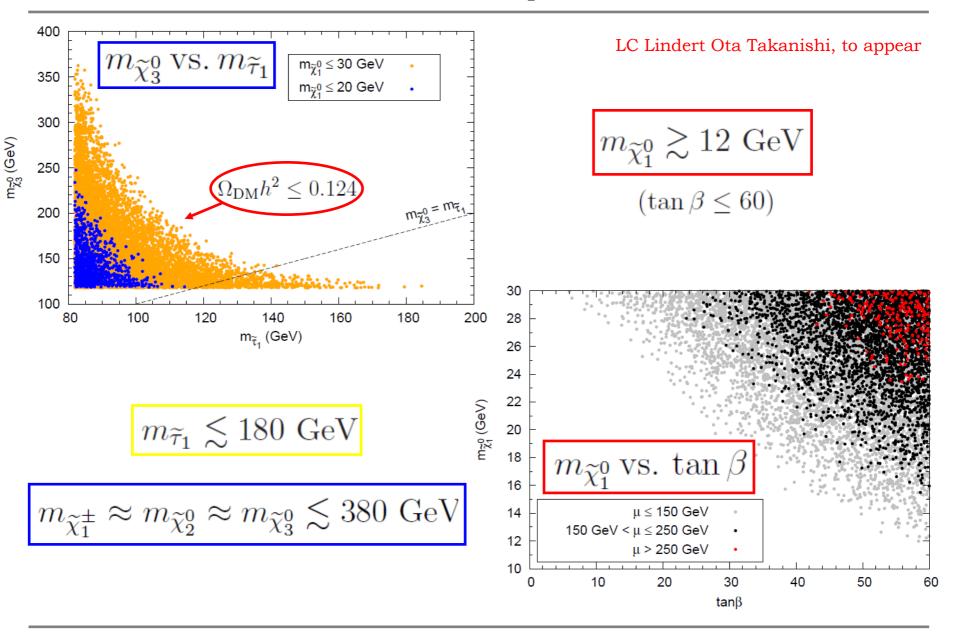
 $10 \text{ GeV} \leq M_1 \leq 45 \text{ GeV}, \quad 65 \text{ GeV} \leq m_{\widetilde{\tau}_B} \leq 200 \text{ GeV},$ 90 GeV $\leq \mu \leq 400$ GeV, $5 \leq \tan \beta \leq 60$. $m_{\widetilde{f}} = M_3 = m_A = 2 \text{ TeV}, \ M_2 = 500 \text{ GeV}, \ A_t = 1.5 \times m_{\widetilde{f}}.$

SuSpect, micrOMEGAs Diouadi et al. '02 Belanger et al. '06


•
$$m_{\widetilde{\chi}_1^0} \leq 30 \text{ GeV}$$

- **CMB**, Planck (3 σ): $\Omega_{\rm DM}h^2 \le 0.124$
- **LEP2**: $m_{\tilde{\tau}_R} \ge 81.9 \,\text{GeV}, \quad m_{\tilde{\chi}_1^{\pm}} \ge 103.5 \,\text{GeV}$

• **LHC**: limits on charginos depend on smuon/selectron masses and can be evaded

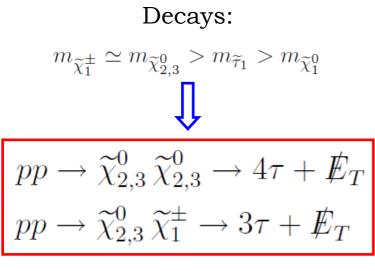

• **Flavour**: Ω_{DM} does not depend on heavy Higgs/squark masses, flavour observables do not constrain the DM parameter space

• **Z** invisible width, LEP: $\Delta \Gamma_Z^{\text{inv}} < 3 \text{ MeV}$

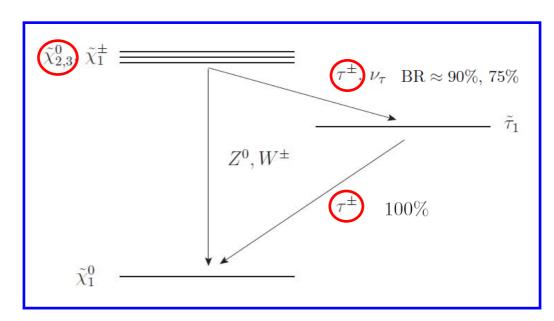
Light Neutralino DM at the LHC

Parameter space

Light Neutralino DM at the LHC


Relic density constr. imply that we have at least 4 states at O(100) GeV:

$$\widetilde{\tau}_1, \, \widetilde{\chi}_2^0, \, \widetilde{\chi}_3^0, \, \widetilde{\chi}_1^\pm$$

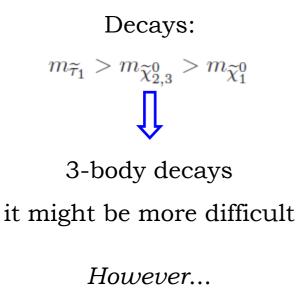

The rest of the spectrum *can* be decoupled. Still sizeable EW production:

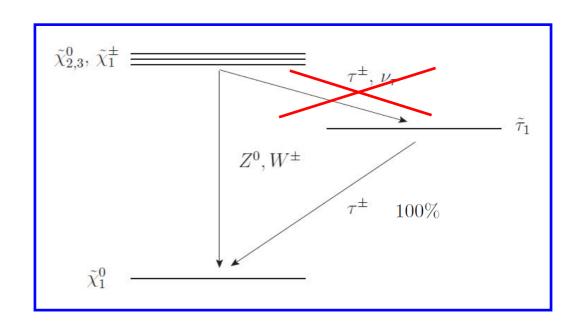
$$pp \to \widetilde{\tau}_1^+ \widetilde{\tau}_1^- + X, \quad pp \to \widetilde{\chi}_i^0 \widetilde{\chi}_j^0 + X, \quad pp \to \widetilde{\chi}_i^0 \widetilde{\chi}_1^\pm + X, \quad pp \to \widetilde{\chi}_1^+ \widetilde{\chi}_1^- + X$$

Drell-Yan, up to O(1) pb at LHC8

multi-tau signals!

Light Neutralino DM at the LHC

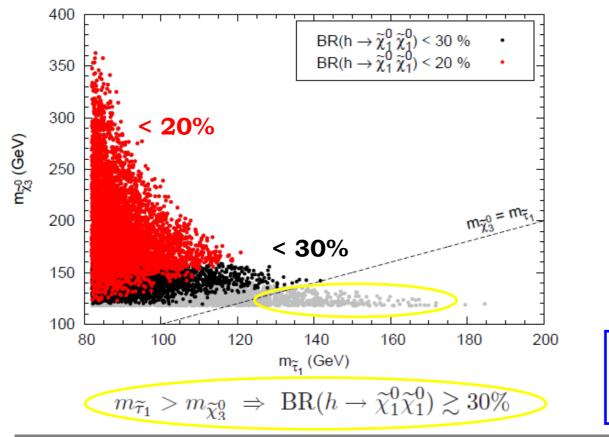

Relic density constr. imply that we have at least 4 states at O(100) GeV:


$$\widetilde{\tau}_1, \, \widetilde{\chi}_2^0, \, \widetilde{\chi}_3^0, \, \widetilde{\chi}_1^\pm$$

The rest of the spectrum *can* be decoupled. Still sizeable EW production:

 $pp \to \widetilde{\tau}_1^+ \widetilde{\tau}_1^- + X, \quad pp \to \widetilde{\chi}_i^0 \widetilde{\chi}_j^0 + X, \quad pp \to \widetilde{\chi}_i^0 \widetilde{\chi}_1^\pm + X, \quad pp \to \widetilde{\chi}_1^+ \widetilde{\chi}_1^- + X$

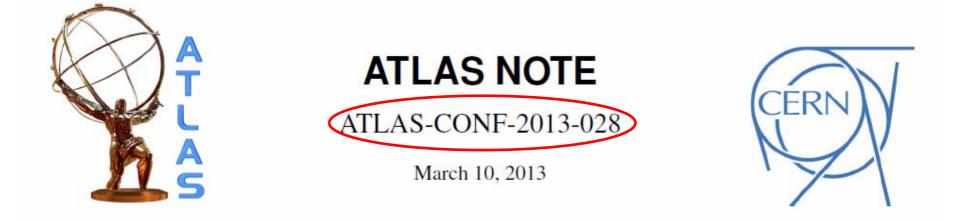
Drell-Yan, up to O(1) pb at LHC8



Light Neutralino DM at the LHC

LHC phenomenology: invisible Higgs decay

$$\Gamma(h \to \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}) = \frac{G_{F} M_{W}^{2} m_{h}}{2\sqrt{2}\pi} \left(1 - 4m_{\tilde{\chi}_{1}^{0}}^{2}/m_{h}^{2}\right)^{3/2} \left|C_{h\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}}\right|^{2} C_{h\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}} = \left(N_{12} - \tan\theta_{W} N_{11}\right) \left(\sin\beta N_{14} - \cos\beta N_{13}\right)$$

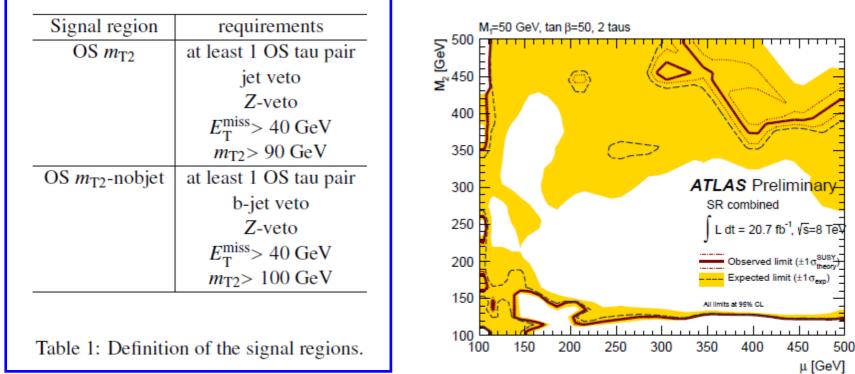


Last fits to Higgs data: $BR_h^{inv} < 16\%$ (95% CL) Falkowski et al. '13 $BR_h^{inv} < 19\%$ (95% CL) Giardino et al. '13 but with 20% theo unc.: $BR_h^{inv} < 52\%$ (68% CL) Djouadi Moreau '13

$$m_{\widetilde{ au}_1} > m_{\widetilde{\chi}^0_{2,3}} > m_{\widetilde{\chi}^0_1}$$
strongly disfavoured!

Light Neutralino DM at the LHC

News from Atlas

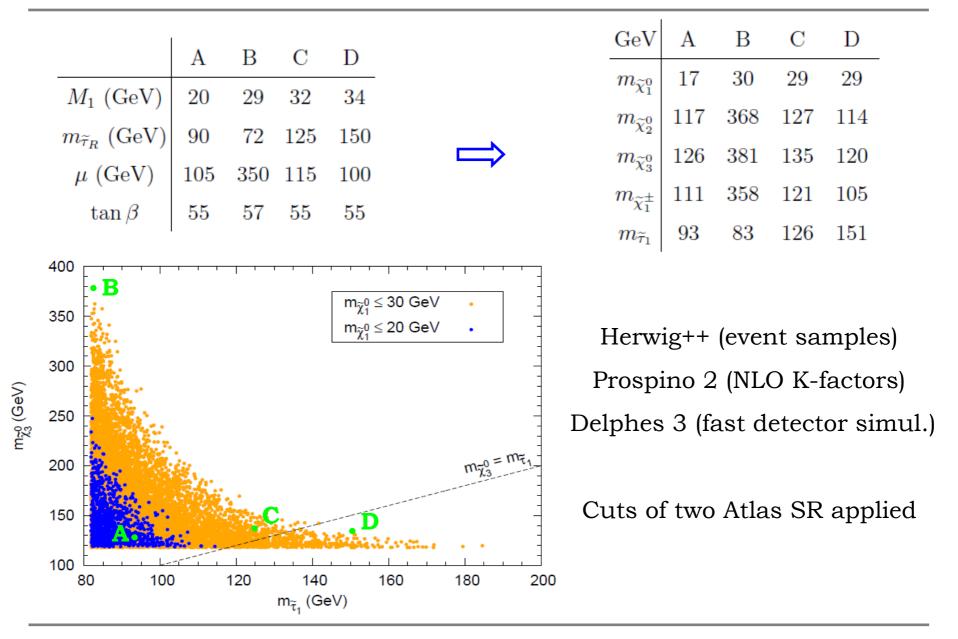


Search for electroweak production of supersymmetric particles in final states with at least two hadronically decaying taus and missing transverse momentum with the ATLAS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV

The ATLAS Collaboration

Light Neutralino DM at the LHC

News from Atlas


SM process	SR OS m_{T2}	SR OS m_{T2} -nobjet
top	$0.2 \pm 0.5 \pm 0.1$	$1.6 \pm 0.8 \pm 1.2$
Z+jets	$0.28 \pm 0.26 \pm 0.23$	$0.4 \pm 0.3 \pm 0.3$
diboson	$2.2 \pm 0.5 \pm 0.5$	$2.5 \pm 0.5 \pm 0.9$
multi-jet & W+jets	$8.4 \pm 2.6 \pm 1.4$	$12 \pm 3 \pm 3$
SM total	$11.0 \pm 2.7 \pm 1.5$	$17 \pm 4 \pm 3$
data	6	14

ATLAS-CONF-2013-028

$m_{\tilde{\tau}_1} = 95 \mathrm{GeV},$	$m_{\tilde{\chi}_1^0} = 50 \mathrm{GeV}$
---	--

Light Neutralino DM at the LHC

Representative points

Light Neutralino DM at the LHC

VERY preliminary results

SM process	SR OS m _{T2}	SR OS m_{T2} -nobjet
top	$0.2 \pm 0.5 \pm 0.1$	$1.6 \pm 0.8 \pm 1.2$
Z+jets	$0.28 \pm 0.26 \pm 0.23$	$0.4 \pm 0.3 \pm 0.3$
diboson	$2.2 \pm 0.5 \pm 0.5$	$2.5 \pm 0.5 \pm 0.9$
multi-jet & W+jets	$8.4 \pm 2.6 \pm 1.4$	$12 \pm 3 \pm 3$
SM total	$11.0 \pm 2.7 \pm 1.5$	$17 \pm 4 \pm 3$
data	6	14
point A	31.2	42.4
point B	7.3	17.6
point C	1.6	6.0
point D	2.8	7.7
	A B C	D
BR_h^{inv}	20% 1% $26%$	36%

Work in progress, but our first results indicate that multi-tau searches and Higgs fits can exclude neutralino DM up to 30 GeV already now

Light Neutralino DM at the LHC