$\mathrm{B}_{\mathrm{s}} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$and New Physics
 from an EFT perspective

Diego Guadagnoli
LAPTh Annecy

Outline

Based on:

- Buras, Girrbach, DG, Isidori, EPJC 13
- DG, Isidori, 1302.3909
(Th Exp Issues
One-slide summary about what theory calculates vs. what exp measures

■ Impact on new physics within an effective-theory approach
With minimal assumptions, possible to correlate $B_{s} \rightarrow \mu \mu$ to Z-peak observables from LEP

Theory (SM) ready to match expected experimental accuracy

- SM prediction:

$$
B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]_{\mathrm{SM}}=\left(3.23 \pm 0.27 \cdot 10^{-9}\right.
$$

Statistical error

- dominated by $f_{B s}$ error (7\%) followed by CKM error (4\%)
- short-term improvements expected

Theory (SM) ready to match expected experimental accuracy

- SM prediction:

$$
B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]_{\mathrm{SM}}=\left(3.23 \pm 0.27 \cdot 10^{-9}\right.
$$

Statistical error

- dominated by $f_{B s}$ error (7\%) followed by CKM error (4\%)
- short-term improvements expected
- Systematics: various effects
- Effect of $\mathrm{B}_{\mathrm{s}}-\overline{\mathrm{B}}_{\mathrm{s}}$ oscillations: $\quad B R_{\text {exp }}=B R_{\mathrm{th}} \times 1.09$ De Bruyn et al., PRL 12 \& PRD 12

Theory (SM) ready to match expected experimental accuracy

- SM prediction:

$$
B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]_{\mathrm{SM}}=\left(3.23 \pm 0.27 \cdot 10^{-9}\right.
$$

Statistical error

- dominated by $f_{\text {ss }}$ error (7\%) followed by CKM error (4\%)
- short-term improvements expected
- Systematics: various effects
- Effect of $\mathbf{B}_{\mathrm{s}}-\overline{\mathbf{B}}_{\mathrm{s}}$ oscillations: $\quad B R_{\text {exp }}=B R_{\text {th }} \times 1.09$

See talk by R. Fleischer

- Effect of soft undetected photons in the final state:

$$
B R_{\mathrm{exp}}=B R_{\mathrm{th}} \times 0.89
$$

[^0]
Theory (SM) ready to match expected experimental accuracy

- SM prediction:

$$
B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]_{\mathrm{SM}}=\left(3.23 \pm 0.27 \cdot 10^{-9}\right.
$$

Statistical error

- dominated by $f_{B s}$ error (7\%) followed by CKM error (4\%)
- short-term improvements expected
- Systematics: various effects
- Effect of $B_{s}-\bar{B}_{s}$ oscillations:

$$
B R_{\mathrm{exp}}=B R_{\mathrm{th}} \times 1.09
$$

- Effect of soft undetected photons in the final state:

$$
B R_{\mathrm{exp}}=B R_{\mathrm{th}} \times 0.89
$$

```
    Buras, Girrbach, DG, Isidori, EPJC 13
```

- Incomplete knowledge of NLO EW corrections:
- Implied syst. error comparable to $f_{\text {Bs }}$ error
- Impact on above central value arguably small (\sim O(1\%)) in appropriate scheme
- Final answer only from full calculation

See talk by M. Gorbahn

$B_{s} \rightarrow \mu \mu$ and new physics

$\mathrm{BR}\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]$beyond the SM

V Model-independent approach: effective operators
Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator

$$
\begin{array}{ll}
O_{A} \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime_{P}} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

$\mathrm{BR}\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]$beyond the SM

V Model-independent approach: effective operators
Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator

$$
\begin{array}{ll}
O_{A} \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime_{P}} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

The very "delicate" structure of the SM prediction is easily spoiled beyond the SM.

- Via what kind of interactions?

$\mathrm{BR}\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]$beyond the SM

V Model-independent approach: effective operators
Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator

$$
\begin{aligned}
& O_{A} \equiv\left(\bar{b} \gamma_{L}^{\alpha} S\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
& O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
& O_{S} \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) O_{S}^{\prime} \equiv\left(\bar{b} P_{R} S\right)(\bar{\mu} \mu) \\
& O_{P} \equiv\left(\bar{b} P_{L} S\right)\left(\bar{\mu} \gamma_{5} \mu\right) O_{P}^{\prime} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{aligned}
$$

The very "delicate" structure of the SM prediction
is easily spoiled beyond the SM.

- Via what kind of interactions?

Observation: the $B_{s} \rightarrow \mu \mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

$\mathrm{BR}\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]$beyond the SM

V Model-independent approach: effective operators
SM operator
Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

$$
\begin{array}{ll}
O_{A} \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} S\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} S\right)(\bar{\mu} \mu) \\
O_{P} \equiv\left(\bar{b} P_{L} S\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} S\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

The very "delicate" structure of the SM prediction
is easily spoiled beyond the SM.

- Via what kind of interactions?

Observation: the $B_{s} \rightarrow \mu \mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

$$
A_{B_{s} \rightarrow \mu \mu} \propto G_{F} \cdot \alpha_{e . m .} \cdot Y\left(M_{t}^{2} / M_{W}^{2}\right) \quad \text { with } \quad Y\left(\frac{M_{t}^{2}}{M_{W}^{2}}\right) \sim \frac{M_{t}^{2}}{M_{W}^{2}} \quad \text { because of GIM }
$$

$\mathrm{BR}\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]$beyond the SM

V Model-independent approach: effective operators

SM operator

Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

$$
\begin{array}{ll}
O_{A} \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} S\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} S\right)(\bar{\mu} \mu) \\
O_{P} \equiv\left(\bar{b} P_{L} S\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} S\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

The very "delicate" structure of the SM prediction
is easily spoiled beyond the SM.

- Via what kind of interactions?

Observation: the $B_{s} \rightarrow \mu \mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

$$
A_{B_{s} \rightarrow \mu \mu} \propto G_{F} \cdot \alpha_{e . m .} \cdot Y\left(M_{t}^{2} / M_{W}^{2}\right) \quad \text { with } \quad Y\left(\frac{M_{t}^{2}}{M_{W}^{2}}\right) \sim \frac{M_{t}^{2}}{M_{W}^{2}} \quad \text { because of GIM }
$$

- Hence the relevant proportionality is:

$$
A_{B_{s} \rightarrow \mu \mu} \propto \frac{1}{v^{2}} \cdot g^{2} \cdot \frac{M_{t}^{2}}{M_{W}^{2}}
$$

$\mathrm{BR}\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]$beyond the SM

■ Model-independent approach: effective operators

SM operator

Beyond the SM,
a total of 6 operators can contribute:

$$
\begin{array}{ll}
O_{A} \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} S\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} S\right)(\bar{\mu} \mu) \\
O_{P} \equiv\left(\bar{b} P_{L} S\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} S\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

The very "delicate" structure of the SM prediction
is easily spoiled beyond the SM.

- Via what kind of interactions?

Observation: the $B_{s} \rightarrow \mu \mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

$$
A_{B_{s} \rightarrow \mu \mu} \propto G_{F} \cdot \alpha_{e . m .} \cdot Y\left(M_{t}^{2} / M_{W}^{2}\right) \quad \text { with } \quad Y\left(\frac{M_{t}^{2}}{M_{W}^{2}}\right) \sim \frac{M_{t}^{2}}{M_{W}^{2}} \quad \text { because of GIM }
$$

- Hence the relevant proportionality is:

$$
A_{B_{s} \rightarrow \mu \mu} \propto \frac{1}{v^{2}} g^{2} \cdot \frac{M_{t}^{2}}{M_{W}^{2}} \quad \propto \frac{y_{t}^{2}}{v^{2}}
$$

the g^{2} dependence cancels out

$\mathrm{BR}\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]$beyond the SM

V Model-independent approach: effective operators

SM operator

Beyond the SM,
a total of 6 operators can contribute:

$$
\begin{array}{ll}
O_{A} \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} S\right)(\bar{\mu} \mu) \\
O_{P} \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

The very "delicate" structure of the SM prediction
is easily spoiled beyond the SM.

- Via what kind of interactions?

Thanks to Gino Isidori
for making this point

Observation: the $B_{s} \rightarrow \mu \mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

$$
A_{B_{s} \rightarrow \mu \mu} \propto G_{F} \cdot \alpha_{e . m .} \cdot Y\left(M_{t}^{2} / M_{W}^{2}\right) \quad \text { with } \quad Y\left(\frac{M_{t}^{2}}{M_{W}^{2}}\right) \sim \frac{M_{t}^{2}}{M_{W}^{2}} \quad \text { because of GIM }
$$

- Hence the relevant proportionality is:
$A_{B_{s} \rightarrow \mu \mu} \propto \frac{1}{v^{2}} g^{2} \cdot \frac{M_{t}^{2}}{M_{W}^{2}} \propto \frac{y_{t}^{2}}{v^{2}}$
the g^{2} dependence cancels out

So this process is a genuine probe of Yukawa interactions
i.e. of the scalar-fermion sector

$\mathrm{BR}\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]$beyond the SM

V Model-independent approach: effective operators

SM operator

Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators,
but their matrix elements vanish for this process.)

$$
\begin{aligned}
O_{A} \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} S\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} S\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{aligned}
$$

The very "delicate" structure of the SM prediction
is easily spoiled beyond the SM.

- Via what kind of interactions?

Thanks to Gino Isidori
for making this point

Observation: the $B_{s} \rightarrow \mu \mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero.

$$
A_{B_{s} \rightarrow \mu \mu} \propto G_{F} \cdot \alpha_{e . m .} \cdot Y\left(M_{t}^{2} / M_{W}^{2}\right) \quad \text { with } \quad Y\left(\frac{M_{t}^{2}}{M_{W}^{2}}\right) \sim \frac{M_{t}^{2}}{M_{W}^{2}} \quad \text { because of GIM }
$$

- Hence the relevant proportionality is:

So this process is a genuine probe of Yukawa interactions
i.e. of the scalar-fermion sector

One famous example: the MSSM with large tanß

Effectively tree-level diagrams:
Enhancement going as:
$B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right] \propto A_{t}^{2} \frac{\tan ^{6} \beta}{M_{A}^{4}}$

$B R\left[B_{s} \rightarrow \mu \mu\right]$ as an EW precision test

$\square B_{s} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs

$B R\left[B_{s} \rightarrow \mu \mu\right]$ as an EW precision test

$\square B_{s} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs Consider the $Z-\bar{d}_{i}-d_{j}$ coupling:

$B R\left[B_{s} \rightarrow \mu \mu\right]$ as an EW precision test

$\square B_{s} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs
Consider the $Z-\bar{d}_{i}-d_{j}$ coupling:
Flavor-diag: $i=j(=3)$
Affects $L E P$-measured
$Z \rightarrow b \bar{b}$ observables: $R_{b}, A_{b}, A_{F B}^{b}$

$B R\left[B_{s} \rightarrow \mu \mu\right]$ as an EW precision test

$\square B_{s} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs
Consider the $Z-\bar{d}_{i}-d_{j}$ coupling:

的

$B R\left[B_{s} \rightarrow \mu \mu\right]$ as an EW precision test

$\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs
Consider the $Z-\bar{d}_{i}-d_{j}$ coupling:

Flavor-diag: $i=j(=3)$
Affects LEP-measured
$Z \rightarrow b \bar{b}$ observables: $R_{b}, A_{b}, A_{F B}^{b}$

Flavor-off-diag: $i \neq j$
Affects Z-penguin-driven FCNCs, in particular $B_{s} \rightarrow \mu \mu$

(At the Lagrangian leven, these coupling modifications may be parameterized as follows

$$
L_{\mathrm{eff}}^{Z d d}=\frac{g}{c_{W}} Z_{\mu} \overline{d^{i}} \gamma^{\mu}\left[\left(g_{L}^{i j}+\delta g_{L}^{i j}\right) P_{L}+\left(g_{R}^{i j}+\delta g_{R}^{i j}\right) P_{R}\right] d^{j}
$$

$B R\left[B_{s} \rightarrow \mu \mu\right]$ as an EW precision test

($B_{s} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs
Consider the $Z-\bar{d}_{i}-d_{j}$ coupling:

Flavor-diag: $i=j(=3)$
Affects LEP-measured
$Z \rightarrow b \bar{b}$ observables: $R_{b}, A_{b}, A_{F B}^{b}$

Flavor-off-diag: $i \neq j$
Affects Z-penguin-driven FCNCs, in particular $B_{s} \rightarrow \mu \mu$

$\boxed{\boxed{V}}$ At the Lagrangian leven, these coupling modifications may be parameterized as follows

$$
L_{\mathrm{eff}}^{Z d d}=\frac{g}{c_{W}} Z_{\mu} \overline{d^{i}} \gamma^{\mu}\left[\left(g_{L}^{i j}+\delta g_{L}^{i j}\right) P_{L}+\left(g_{R}^{i j}+\delta g_{R}^{i j}\right) P_{R}\right] d^{j}
$$

where:

SM couplings

$$
\begin{gathered}
g_{L}^{i i}=-\frac{1}{2}+\frac{1}{3} s_{W}^{2}+\text { loops } \\
g_{R}^{i i}=\frac{1}{3} s_{W}^{2}+\text { loops } \quad g_{L, R}^{i j}=0+\text { loops }
\end{gathered}
$$

$B R\left[B_{s} \rightarrow \mu \mu\right]$ as an EW precision test

($B_{s} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs
Consider the $Z-\bar{d}_{i}-d_{j}$ coupling:

Flavor-diag: $i=j(=3)$
Affects LEP-measured
$Z \rightarrow b \bar{b}$ observables: $R_{b}, A_{b}, A_{F B}^{b}$

Flavor-off-diag: $i \neq j$
Affects Z-penguin-driven FCNCs, in particular $B_{s} \rightarrow \mu \mu$

【 At the Lagrangian leven, these coupling modifications may be parameterized as follows

$$
L_{\mathrm{eff}}^{Z d d}=\frac{g}{c_{W}} Z_{\mu} \overline{d^{i}} \gamma^{\mu}\left[\left(g_{L}^{i j}+\delta g_{L}^{i j}\right) P_{L}+\left(g_{R}^{i j}+\delta g_{R}^{i j}\right) P_{R}\right] d^{j}
$$

where:

SM couplings

$$
\begin{gathered}
g_{L}^{i i}=-\frac{1}{2}+\frac{1}{3} s_{W}^{2}+\text { loops } \\
g_{R}^{i i}=\frac{1}{3} s_{W}^{2}+\text { loops } \quad g_{L, R}^{i j}=0+\text { loops }
\end{gathered}
$$

new-physics enters here

Effective theory

- Shifts in Zdd couplings can be implemented as contributions from effective operators (\rightarrow minimal model dep.) The only operators relevant to the problem are of the form:

$$
\text { Operators } \sim\left(\begin{array}{llll}
\bar{d}_{i} & \gamma^{u} & X^{i j} & d_{j}
\end{array}\right)\left(\begin{array}{ll}
H^{\dagger} D_{\mu} H
\end{array}\right)
$$

Effective theory

- Shifts in Zdd couplings can be implemented as contributions from effective operators (\rightarrow minimal model dep.) The only operators relevant to the problem are of the form:

$$
\text { Operators ~(} \left.\begin{array}{llll}
\bar{d}_{i} & \gamma^{u} & X^{i j} & d_{j}
\end{array}\right) \underbrace{\left(H^{\dagger} D_{\mu} H\right.}_{\sim v^{2} Z_{\mu}})
$$

Effective theory

【 Shifts in Zdd couplings can be implemented as contributions from effective operators (\rightarrow minimal model dep.) The only operators relevant to the problem are of the form:

Effective theory

■ Shifts in Zdd couplings can be implemented as contributions from effective operators (\rightarrow minimal model dep.) The only operators relevant to the problem are of the form:

Comments

,
Three such structures compatible with the SM gauge group

Effective theory

【 Shifts in Zdd couplings can be implemented as contributions from effective operators (\rightarrow minimal model dep.)

The only operators relevant to the problem are of the form:

Comments

T Three such structures compatible with the SM gauge group
\square Other operators yield negligible effects in either Z-peak obs or in $B_{s} \rightarrow \mu \mu$

- 4-fermion ops. negligible in Zbb
- ops. involving field-strength tensors negligible in $B_{s} \rightarrow \mu \mu$

Effective theory

$\boxed{\text { Shifts in Zdd couplings can be implemented as contributions from effective operators (} \rightarrow \text { minimal model dep.) }}$

The only operators relevant to the problem are of the form:

Comments

Three such structures compatible with the SM gauge group

- Other operators yield negligible effects in either Z-peak obs or in $B_{s} \rightarrow \mu \mu$
- 4-fermion ops. negligible in Zbb
- ops. involving field-strength tensors negligible in $B_{s} \rightarrow \mu \mu$
V. In this approach, there is a correlation between $Z \rightarrow b \bar{b}$ and $B_{s} \rightarrow \mu \mu$.

This correlation is fixed, after specifying the $X^{i j}$ couplings.

Effective theory

. Shifts in Zdd couplings can be implemented as contributions from effective operators (\rightarrow minimal model dep.)

The only operators relevant to the problem are of the form:

Comments

Three such structures compatible with the SM gauge group■ Other operators yield negligible effects in either Z-peak obs or in $B_{s} \rightarrow \mu \mu$

- 4-fermion ops. negligible in Zbb
- ops. involving field-strength tensors negligible in $B_{s} \rightarrow \mu \mu$

In this approach, there is a correlation between $Z \rightarrow b \bar{b}$ and $B_{s} \rightarrow \mu \mu$.
This correlation is fixed, after specifying the $X^{i j}$ couplings.

Within frameworks as general (and motivated) as:

- Minimal Flavor Violation
or
See: D'Ambrosio et al., NPB 02
- Partial Compositeness
See:
Davidson, Isidori, Uhlig, PLB 08;
Keren-Zur et al., NPB 13
the $X^{i j}$ can be fixed up to $\mathrm{O}(1)$ factors (that btw weigh equally between Zbb and $\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$)
D. Guadagnoli, Portoroz 2013

Fixing the couplings. Case 1: MFV

V MFV is the statement that - even beyond the SM - the only structures that break the flavor symmetry are the SM Yukawa couplings

T This statement fixes the flavor structure of new operators.

Fixing the couplings. Case 1: MFV

【 MFV is the statement that - even beyond the SM - the only structures that break the flavor symmetry are the SM Yukawa couplings
(This statement fixes the flavor structure of new operators.
Example: operators with the bilinear $\quad \bar{Q}_{L}^{i} \gamma^{u} X_{i j} Q_{L}^{j} \quad \square X_{i j}=O(1) \times\left(Y_{u} Y_{u}^{\dagger}\right)_{i j}$

Fixing the couplings. Case 1: MFV

【 MFV is the statement that - even beyond the SM - the only structures that break the flavor symmetry are the SM Yukawa couplings
(This statement fixes the flavor structure of new operators.
Example: operators with the bilinear $\quad \bar{Q}_{L}^{i} \gamma^{u} X_{i j} Q_{L}^{j} \quad \square X_{i j}=O(1) \times\left(Y_{u} Y_{u}^{\dagger}\right)_{i j}$

■ This fixes the flavor structure of the $Z \overline{\mathrm{~d}}_{\mathrm{i}} \mathrm{d}_{\mathrm{j}}$ coupling $\delta g_{L}^{i j}$

Fixing the couplings. Case 1: MFV

【 MFV is the statement that - even beyond the SM - the only structures that break the flavor symmetry are the SM Yukawa couplings
(7) This statement fixes the flavor structure of new operators.

Example: operators with the bilinear

$$
\bar{Q}_{L}^{i} \gamma^{\mu} X_{i j} Q_{L}^{j}
$$

$\square X_{i j}=O(1) \times\left(Y_{u} Y_{u}^{\dagger}\right)_{i j}$
$\boxed{\square}$ This fixes the flavor structure of the $Z \overline{\mathrm{~d}}_{\mathrm{i}} \mathrm{d}_{\mathrm{j}}$ coupling $\delta g_{L}^{i j}$
E.g., in the basis where $Y_{u}=V^{\dagger} \hat{Y}_{u}$ and $Y_{d}=\hat{Y}_{d}$ one has: $\quad \delta g_{L}^{i j} \propto V_{t i}^{*} V_{t j}$

Fixing the couplings. Case 1: MFV

【 MFV is the statement that - even beyond the SM - the only structures that break the flavor symmetry are the SM Yukawa couplings
(This statement fixes the flavor structure of new operators.

Example: operators with the bilinear

$$
\bar{Q}_{L}^{i} \gamma^{u} X_{i j} Q_{L}^{j} \quad \square X_{i j}=O(1) \times\left(Y_{u} Y_{u}^{\dagger}\right)_{i j}
$$

This fixes the flavor structure of the $Z \overline{\mathrm{~d}}_{\mathrm{i}} \mathrm{d}_{\mathrm{j}}$ coupling $\delta g_{L}^{i j}$
E.g., in the basis where $Y_{u}=V^{\dagger} \hat{Y}_{u}$ and $Y_{d}=\hat{Y}_{d}$ one has: $\quad \delta g_{L}^{i j} \propto V_{t i}^{*} V_{t j}$

Most relevantly, this fixes univocally the correlation between the flavor-off-diag. and the flavor-diag. coupling:

$$
\delta g_{L}^{32}=\frac{V_{t b}^{*} V_{t s}}{\left|V_{t b}\right|^{2}} \delta g_{L}
$$

Fixing the couplings. Case 1: MFV

【 MFV is the statement that - even beyond the SM - the only structures that break the flavor symmetry are the SM Yukawa couplings
(This statement fixes the flavor structure of new operators.

Example: operators with the bilinear

$$
\bar{Q}_{L}^{i} \gamma^{u} X_{i j} Q_{L}^{j} \quad \square X_{i j}=O(1) \times\left(Y_{u} Y_{u}^{\dagger}\right)_{i j}
$$

This fixes the flavor structure of the $Z \overline{\mathrm{~d}}_{\mathrm{i}} \mathrm{d}_{\mathrm{j}}$ coupling $\delta g_{L}^{i j}$
E.g., in the basis where $Y_{u}=V^{\dagger} \hat{Y}_{u}$ and $Y_{d}=\hat{Y}_{d}$ one has: $\quad \delta g_{L}^{i j} \propto V_{t i}^{*} V_{t j}$

Most relevantly, this fixes univocally the correlation between the flavor-off-diag. and the flavor-diag. coupling:

Fixing the couplings. Case 1: MFV

【 MFV is the statement that - even beyond the SM - the only structures that break the flavor symmetry are the SM Yukawa couplings
(This statement fixes the flavor structure of new operators.

Example: operators with the bilinear

$$
\bar{Q}_{L}^{i} \gamma^{u} X_{i j} Q_{L}^{j} \quad \square X_{i j}=O(1) \times\left(Y_{u} Y_{u}^{\dagger}\right)_{i j}
$$

This fixes the flavor structure of the $Z \overline{\mathrm{~d}}_{\mathrm{i}} \mathrm{d}_{\mathrm{j}}$ coupling $\delta g_{L}^{i j}$
E.g., in the basis where $Y_{u}=V^{\dagger} \hat{Y}_{u}$ and $Y_{d}=\hat{Y}_{d}$ one has: $\quad \delta g_{L}^{i j} \propto V_{t i}^{*} V_{t j}$

Most relevantly, this fixes univocally the correlation between the flavor-off-diag. and the flavor-diag. coupling:

D. Guadagnoli, Portoroz 2013

Fixing the couplings. Case 1: MFV

【 MFV is the statement that - even beyond the SM - the only structures that break the flavor symmetry are the SM Yukawa couplings
(This statement fixes the flavor structure of new operators.

Example: operators with the bilinear

$$
\bar{Q}_{L}^{i} \gamma^{u} X_{i j} Q_{L}^{j} \quad \square X_{i j}=O(1) \times\left(Y_{u} Y_{u}^{\dagger}\right)_{i j}
$$

,
This fixes the flavor structure of the $Z \overline{\mathrm{~d}}_{\mathrm{i}} \mathrm{d}_{\mathrm{j}}$ coupling $\delta g_{L}^{i j}$
E.g., in the basis where $Y_{u}=V^{\dagger} \hat{Y}_{u}$ and $Y_{d}=\hat{Y}_{d}$ one has: $\quad \delta g_{L}^{i j} \propto V_{t i}^{*} V_{t j}$

Most relevantly, this fixes univocally the correlation between the flavor-off-diag. and the flavor-diag. coupling:

Fixing the couplings. Case 2: Partial Compositeness

■ Basic observation \#1. Within the dim-4 part of the Lagrangian, two are the possible sources of flavor violation:

Fixing the couplings. Case 2: Partial Compositeness

(Basic observation \#1. Within the dim-4 part of the Lagrangian, two are the possible sources of flavor violation:
(1) Yukawa interactions (as known) and/or
hierarchical kinetic terms for fermions (in a non-canonical wave-function normalization)

Fixing the couplings. Case 2: Partial Compositeness

(7 Basic observation \#1. Within the dim-4 part of the Lagrangian, two are the possible sources of flavor violation:
(1) Yukawa interactions (as known) and/or
(2) hierarchical kinetic terms for fermions

Restricting to dim-4 interactions, the two sources are interchangeable (\rightarrow only a matter of field-basis choice)

Fixing the couplings. Case 2: Partial Compositeness

(Basic observation \#1. Within the dim-4 part of the Lagrangian, two are the possible sources of flavor violation:
(1) Yukawa interactions (as known)
and/or
(2) hierarchical kinetic terms for fermions

Restricting to dim-4 interactions, the two sources are interchangeable (\rightarrow only a matter of field-basis choice)

■ About source

- Hierarchical kin. terms can arise in extra-dims as non-trivial profiles of fermion wave-functions in the extra-dims

Fixing the couplings. Case 2: Partial Compositeness

■ Basic observation \#1. Within the dim-4 part of the Lagrangian, two are the possible sources of flavor violation:
(1) Yukawa interactions (as known)
and/or
(2) hierarchical kinetic terms for fermions

Restricting to dim-4 interactions, the two sources are interchangeable (\rightarrow only a matter of field-basis choice)
(About source

- Hierarchical kin. terms can arise in extra-dims as non-trivial profiles of fermion wave-functions in the extra-dims
- Hierarchies are then transmitted to the Yukawa interactions, once kin. terms are made canonical

Fixing the couplings. Case 2: Partial Compositeness

$$
\begin{aligned}
& \text { See e.g.: } \\
& \text { Davidson, Isid... PLB } 08
\end{aligned}
$$

■ Basic observation \#1. Within the dim-4 part of the Lagrangian, two are the possible sources of flavor violation:
(1) Yukawa interactions (as known)
and/or
(2) hierarchical kinetic terms for fermions

Restricting to dim-4 interactions, the two sources are interchangeable (\rightarrow only a matter of field-basis choice)
(About source

- Hierarchical kin. terms can arise in extra-dims as non-trivial profiles of fermion wave-functions in the extra-dims
- Hierarchies are then transmitted to the Yukawa interactions, once kin. terms are made canonical
- Before rotation to the canonical basis, Yukawa interactions can therefore be patternless, $\mathrm{O}(1)$ anarchic matrices

Fixing the couplings. Case 2: Partial Compositeness

■ Basic observation \#1. Within the dim-4 part of the Lagrangian, two are the possible sources of flavor violation:
(1) Yukawa interactions (as known) and/or
hierarchical kinetic terms for fermions (in a non-canonical wave-function normalization)

Restricting to dim-4 interactions, the two sources are interchangeable (\rightarrow only a matter of field-basis choice)

■ About source

- Hierarchical kin. terms can arise in extra-dims as non-trivial profiles of fermion wave-functions in the extra-dims
- Hierarchies are then transmitted to the Yukawa interactions, once kin. terms are made canonical
- Before rotation to the canonical basis, Yukawa interactions can therefore be patternless, $\mathrm{O}(1)$ anarchic matrices

```
Example
```

$$
\begin{gathered}
\bar{Q}_{L} Z_{Q}^{-2} \gamma^{\mu} D_{\mu} Q_{L} \\
\text { with } Z_{Q}=\operatorname{diag}\left(z_{Q}^{(1)}, z_{Q}^{(2)}, z_{Q}^{(3)}\right) \\
\text { and } z_{Q}^{(1)} \ll z_{Q}^{(2)} \ll z_{Q}^{(3)}
\end{gathered}
$$

$$
\text { \&\& } \quad Y_{u, d}=O(1)
$$

$$
\begin{aligned}
& \text { See e.g.: } \\
& \text { Davidson, Isidori, Uhlig, PLB } 08
\end{aligned}
$$

Fixing the couplings. Case 2: Partial Compositeness

$$
\begin{aligned}
& \text { See e.g.: } \\
& \text { Davidson, Isidori, Uhlig, PLB } 08
\end{aligned}
$$

$\sqrt{\square}$ Basic observation \#1. Within the dim-4 part of the Lagrangian, two are the possible sources of flavor violation:
(1) Yukawa interactions (as known) and/or
hierarchical kinetic terms for fermions (in a non-canonical wave-function normalization)

Restricting to dim-4 interactions, the two sources are interchangeable (\rightarrow only a matter of field-basis choice)
\square About source

- Hierarchical kin. terms can arise in extra-dims as non-trivial profiles of fermion wave-functions in the extra-dims
- Hierarchies are then transmitted to the Yukawa interactions, once kin. terms are made canonical
- Before rotation to the canonical basis, Yukawa interactions can therefore be patternless, $\mathrm{O}(1)$ anarchic matrices

```
Example
```

$$
\begin{gathered}
\bar{Q}_{L} Z_{Q}^{-2} \gamma^{\mu} D_{\mu} Q_{L} \\
\text { with } Z_{Q}=\operatorname{diag}\left(z_{Q}^{(1)}, z_{Q}^{(2)}, z_{Q}^{(3)}\right) \\
\text { and } z_{Q}^{(1)} \ll z_{Q}^{(2)} \ll z_{Q}^{(3)}
\end{gathered}
$$

$$
\text { \&\& } \quad Y_{u, d}=O(1)
$$

basis

$$
\left(Y_{u, d}\right)_{i j} \propto z_{Q}^{(i)} z_{u, d}^{(j)}
$$

D. Guadagnoli, Portoroz 2013

Fixing the couplings. Case 2: Partial Compositeness

■ Basic observation \#2.
The very same $Y_{u, d}$ pattern as above arises in scenarios of Partial Compositeness.

Fixing the couplings. Case 2: Partial Compositeness

, Basic observation \#2.
The very same $Y_{u, d}$ pattern as above arises in scenarios of Partial Compositeness.

The defining property of (fermion) Partial Compositeness is as follows.
At a cutoff scale Λ, the SM fermions f_{i} couple linearly to operators O_{i} of a confining sector:
interactions $=\epsilon_{i} f_{i} O_{i}$

Fixing the couplings. Case 2: Partial Compositeness

, Basic observation \#2.
The very same $Y_{u, d}$ pattern as above arises in scenarios of Partial Compositeness.

The defining property of (fermion) Partial Compositeness is as follows.
At a cutoff scale Λ, the SM fermions f_{i} couple linearly to operators O_{i} of a confining sector:
interactions $=\epsilon_{i} f_{i} O_{i}$

- the ϵ_{i} measure the degree of compositeness of f_{i}
- apart from an overall factor, the ϵ_{i} can be identified with the z_{i} of the previous picture

Fixing the couplings. Case 2: Partial Compositeness

- Basic observation \#2.

The very same $Y_{u, d}$ pattern as above arises in scenarios of Partial Compositeness.
The defining property of (fermion) Partial Compositeness is as follows.
At a cutoff scale Λ, the SM fermions f_{i} couple linearly to operators O_{i} of a confining sector:

```
interactions = € }\mp@subsup{\epsilon}{i}{}\mp@subsup{f}{i}{}\mp@subsup{O}{i}{
```

- the ϵ_{i} measure the degree of compositeness of f_{i}
- apart from an overall factor, the ϵ_{i} can be identified with the z_{i} of the previous picture

Main points

- The two pictures are completely equivalent - at least within our context
- From the second picture it is evident that the relevant low-energy d.o.f. are not f_{i}, but rather $\epsilon_{i} f_{i}$ Building our EFT with $\epsilon_{i} f_{i}$ the flavor structure is fixed - apart from O(1) factors

Fixing the couplings. Case 2: Partial Compositeness

■ Basic observation \#2.
The very same $Y_{u, d}$ pattern as above arises in scenarios of Partial Compositeness.
The defining property of (fermion) Partial Compositeness is as follows.
At a cutoff scale Λ, the SM fermions f_{i} couple linearly to operators O_{i} of a confining sector:

- the ϵ_{i} measure the degree of compositeness of f_{i}
- apart from an overall factor, the ϵ_{i} can be identified with the z_{i} of the previous picture

Main points

- The two pictures are completely equivalent - at least within our context
- From the second picture it is evident that the relevant low-energy d.o.f. are not f_{i}, but rather $\epsilon_{i} f_{i}$ Building our EFT with $\epsilon_{i} f_{i}$ the flavor structure is fixed - apart from O(1) factors

Example
Flavor structure of the RH operator $O_{1 \mathrm{R}}^{32} \equiv i\left(\bar{b}_{R} \gamma^{\mu} s_{R}\right) H^{\dagger} D_{\mu} H$

Fixing the couplings. Case 2: Partial Compositeness

■ Basic observation \#2.
The very same $Y_{u, d}$ pattern as above arises in scenarios of Partial Compositeness.
The defining property of (fermion) Partial Compositeness is as follows.
At a cutoff scale Λ, the SM fermions f_{i} couple linearly to operators O_{i} of a confining sector:

- the ϵ_{i} measure the degree of compositeness of f_{i}
- apart from an overall factor, the ϵ_{i} can be identified with the z_{i} of the previous picture

Main points

- The two pictures are completely equivalent - at least within our context
- From the second picture it is evident that the relevant low-energy d.o.f. are not f_{i}, but rather $\epsilon_{i} f_{i}$ Building our EFT with $\epsilon_{i} f_{i}$ the flavor structure is fixed - apart from O(1) factors

Example
Flavor structure of the RH operator $O_{1 \mathrm{R}}^{32} \equiv i\left(\bar{b}_{R} \gamma^{\mu} s_{R}\right) H^{\dagger} D_{\mu} H$

Wilson coeff.
$\propto z_{d}^{(3)} z_{d}^{(2)}=\frac{z_{Q}^{(3)} z_{d}^{(3)} z_{Q}^{(2)} z_{d}^{(2)}}{z_{Q}^{(3)} z_{Q}^{(2)}} \propto \frac{m_{b} m_{s}}{\left|V_{t b}\right|\left|V_{t s}\right|}$

Fixing the couplings. Case 2: Partial Compositeness

(Basic observation \#2.
The very same $Y_{u, d}$ pattern as above arises in scenarios of Partial Compositeness.
The defining property of (fermion) Partial Compositeness is as follows.
At a cutoff scale Λ, the SM fermions f_{i} couple linearly to operators O_{i} of a confining sector:

- the ϵ_{i} measure the degree of compositeness of f_{i}
- apart from an overall factor, the ϵ_{i} can be identified with the z_{i} of the previous picture

Main points

- The two pictures are completely equivalent - at least within our context
- From the second picture it is evident that the relevant low-energy d.o.f. are not f_{i}, but rather $\epsilon_{i} f_{i}$ Building our EFT with $\epsilon_{i} f_{i}$ the flavor structure is fixed - apart from O(1) factors

Example
Flavor structure of the RH operator $O_{1 \mathrm{R}}^{32} \equiv i\left(\bar{b}_{R} \gamma^{\mu} s_{R}\right) H^{\dagger} D_{\mu} H$

Wilson coeff.

$$
\propto z_{d}^{(3)} z_{d}^{(2)}=\frac{z_{Q}^{(3)} z_{d}^{(3)} z_{Q}^{(2)} z_{d}^{(2)}}{z_{Q}^{(3)} z_{Q}^{(2)}} \propto \frac{m_{b} m_{s}}{\left|V_{t b}\right|\left|V_{t s}\right|} \quad \square \delta g_{R}^{32}=\frac{m_{b} m_{s}}{\left|V_{t b}\right| V_{t s} \mid} \frac{\left|V_{t b}\right|^{2}}{m_{b}^{2}} \delta g_{R}
$$

$B R\left[B_{s} \rightarrow \mu \mu\right]$ as an EWPT: results

\square One can then compare the limits on $\delta g_{L, R}$ obtained from Z-peak obs with those obtained from $B_{s} \rightarrow \mu \mu$

$\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right.$] as an EWPT: results

\square One can then compare the limits on $\delta g_{L, R}$ obtained from Z-peak obs with those obtained from $B_{s} \rightarrow \mu \mu$

with present
$B_{s} \rightarrow \mu \mu \exp$ error
$\left|\delta g_{L}\right|^{\mathrm{MFV} \text { or PC }}<2.3 \times 10^{-3}$
with ~ 10\%
$B_{s} \rightarrow \mu \mu$ error
$\left|\delta g_{L}\right|^{\mathrm{MFV} \text { or PC }}<4.6 \times 10^{-4}$
D. Guadagnoli, Portoroz 2013
$\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ as an EWPT: results
$\boxed{\square}$ One can then compare the limits on $\delta g_{L, R}$ obtained from Z-peak obs with those obtained from $B_{s} \rightarrow \mu \mu$

D. Guadagnoli, Portoroz 2013

$B R\left[B_{s} \rightarrow \mu \mu\right]$ as an EWPT: results

$$
\text { DG, Isidori, } 1302.390
$$

V One can then compare the limits on $\delta g_{\mathrm{L}, \mathrm{R}}$ obtained from Z-peak obs with those obtained from $\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$

D. Guadagnoli, Portoroz 2013

Conclusions

$B_{s} \rightarrow \mu \mu: S M$ vs. \exp- Parametric error ($f_{B S}$, CKM) likely to improve soon
- (Known) sources of systematics under control, or going to become so
- Overall accuracy expected at $\sim 10 \%$ by 2018 (dominated by exp)

Conclusions

$\sqrt{\nabla} \quad B_{s} \rightarrow \mu \mu: S M$ vs. \exp

- Parametric error ($f_{B s}$, CKM) likely to improve soon
- (Known) sources of systematics under control, or going to become so
- Overall accuracy expected at $\sim 10 \%$ by 2018 (dominated by exp)
$\boxed{B_{s}} \rightarrow \mu \mu$ and new physics
- To the extent that no deviations wrt the SM prediction are observed, it is a (formidable) null test of new physics
- One example of $B_{s} \rightarrow \mu \mu$ constraining power:
- able to test even tiny deviations in Z-down-quark couplings
- E.g., within generic partial compositeness:

O(10-5) deviations in couplings to RH down-quarks: way more stringent than EWPO

Systematics from soft radiation

V Ideally, the final state is a $\mu \mu$-pair such that $\mathrm{m}_{\mu \mu} \approx \mathrm{m}_{\mathrm{Bs}}$ In practice, this final state may come with a number of soft, undetected, photons, so that what one is actually measuring is:

$$
B R\left(B_{s} \rightarrow \mu \mu\right)+\left.B R\left(B_{s} \rightarrow \mu \mu+n \gamma\right)\right|_{n \neq 0}
$$

[(dominant) sub-leading e.m. correction to the BR]

Why should this correction be significant?

Systematics from soft radiation

$\boxed{\square}$ Ideally, the final state is a $\mu \mu$-pair such that $m_{\mu \mu} \approx m_{B s}$ In practice, this final state may come with a number of soft, undetected, photons, so that what one is actually measuring is:

$$
B R\left(B_{s} \rightarrow \mu \mu\right)+\left.B R\left(B_{s} \rightarrow \mu \mu+n \gamma\right)\right|_{n \neq 0}
$$

[(dominant) sub-leading e.m. correction to the BR]

Why should this correction be significant?

Main physics argument

- A proper treatment of soft photons must sum up the contribution from an arbitrary number of:

real emitted soft photons

cutoff of exp origin:
minimum energy that one or more γ have to have to be detectable

Systematics from soft radiation

$\boxed{\square}$ Ideally, the final state is a $\mu \mu$-pair such that $m_{\mu \mu} \approx m_{B s}$ In practice, this final state may come with a number of soft, undetected, photons, so that what one is actually measuring is:

$$
B R\left(B_{s} \rightarrow \mu \mu\right)+\left.B R\left(B_{s} \rightarrow \mu \mu+n \gamma\right)\right|_{n \neq 0}
$$

[(dominant) sub-leading e.m. correction to the BR]

Why should this correction be significant?

Main physics argument

- A proper treatment of soft photons must sum up the contribution from an arbitrary number of:

cutoff of exp origin:
minimum energy that one or more γ have to have to be detectable
virtual soft photons

kinematic limit of the energy that a virtual γ can have

Systematics from soft radiation

$\boxed{\square}$ Ideally, the final state is a $\mu \mu$-pair such that $m_{\mu \mu} \approx m_{B s}$ In practice, this final state may come with a number of soft, undetected, photons, so that what one is actually measuring is:

$$
B R\left(B_{s} \rightarrow \mu \mu\right)+\left.B R\left(B_{s} \rightarrow \mu \mu+n \gamma\right)\right|_{n \neq 0}
$$

[(dominant) sub-leading e.m. correction to the BR]

Why should this correction be significant?

Main physics argument

- A proper treatment of soft photons must sum up the contribution from an arbitrary number of:

cutoff of exp origin:
minimum energy that one or more γ have to have to be detectable
- Furthermore, the two contributions, separately, have each an IR cutoff.

Systematics from soft radiation

$\boxed{\square}$ Ideally, the final state is a $\mu \mu$-pair such that $m_{\mu \mu} \approx m_{B s}$ In practice, this final state may come with a number of soft, undetected, photons, so that what one is actually measuring is:

$$
B R\left(B_{s} \rightarrow \mu \mu\right)+\left.B R\left(B_{s} \rightarrow \mu \mu+n \gamma\right)\right|_{n \neq 0}
$$

[(dominant) sub-leading e.m. correction to the BR]

Why should this correction be significant?

Main physics argument

- A proper treatment of soft photons must sum up the contribution from an arbitrary number of:

cutoff of exp origin:
minimum energy that one or more γ have to have to be detectable

virtual soft photons

cutoff $2=\Lambda \leq \frac{m_{B_{s}}}{2}$
kinematic limit of the energy that a virtual γ can have

- Furthermore, the two contributions, separately, have each an IR cutoff.

Since the two cutoffs are (generally) vastly different, the correction may well be important - and in fact it is.

Systematics from soft radiation

$\boxed{\square}$ Ideally, the final state is a $\mu \mu$-pair such that $m_{\mu \mu} \approx m_{B s}$ In practice, this final state may come with a number of soft, undetected, photons, so that what one is actually measuring is:

$$
B R\left(B_{s} \rightarrow \mu \mu\right)+\left.B R\left(B_{s} \rightarrow \mu \mu+n \gamma\right)\right|_{n \neq 0}
$$

[(dominant) sub-leading e.m. correction to the BR]

Why should this correction be significant?

Main physics argument

- A proper treatment of soft photons must sum up the contribution from an arbitrary number of:

cutoff of exp origin:
minimum energy that one or more γ have to have to be detectable

virtual soft photons

cutoff $2=\Lambda \leq \frac{m_{B_{s}}}{2}$
kinematic limit of the energy that a virtual γ can have

- Furthermore, the two contributions, separately, have each an IR cutoff.

Since the two cutoffs are (generally) vastly different, the correction may well be important - and in fact it is.
2an $\left.B R\left(B_{s} \rightarrow \mu \mu[+n \gamma]\right)\right|_{E_{y i} \leq E_{\mathrm{cut}}}=\left(\frac{E_{\mathrm{cut}}}{m_{B_{s}} / 2}\right)^{\frac{\alpha_{\mathrm{cm}}}{\pi} \#} B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{th}}$
taking $\mathrm{E}_{\text {cut }}=60 \mathrm{MeV}$ [LHCb] correction $=0.89$

[^0]: Buras, Girrbach, DG, Isidori, EPJC 13

