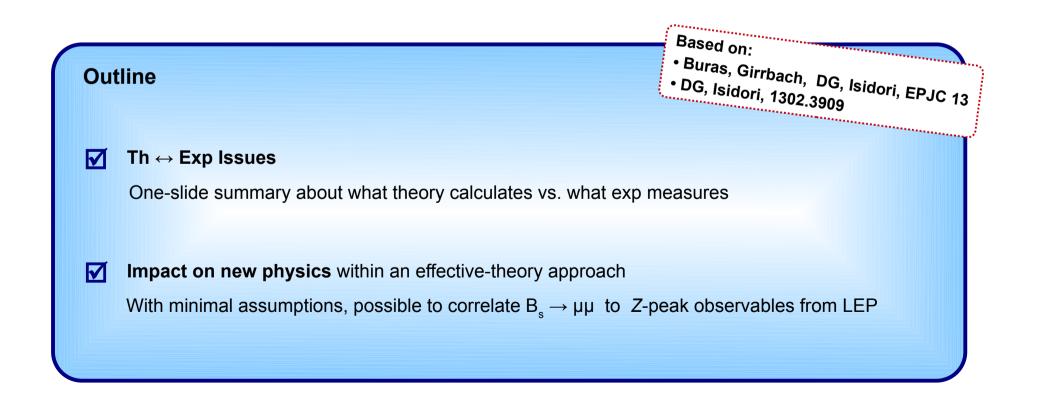
$B_s^{} \rightarrow \mu^+ \mu^-$ and New Physics

from an EFT perspective

Diego Guadagnoli LAPTh Annecy



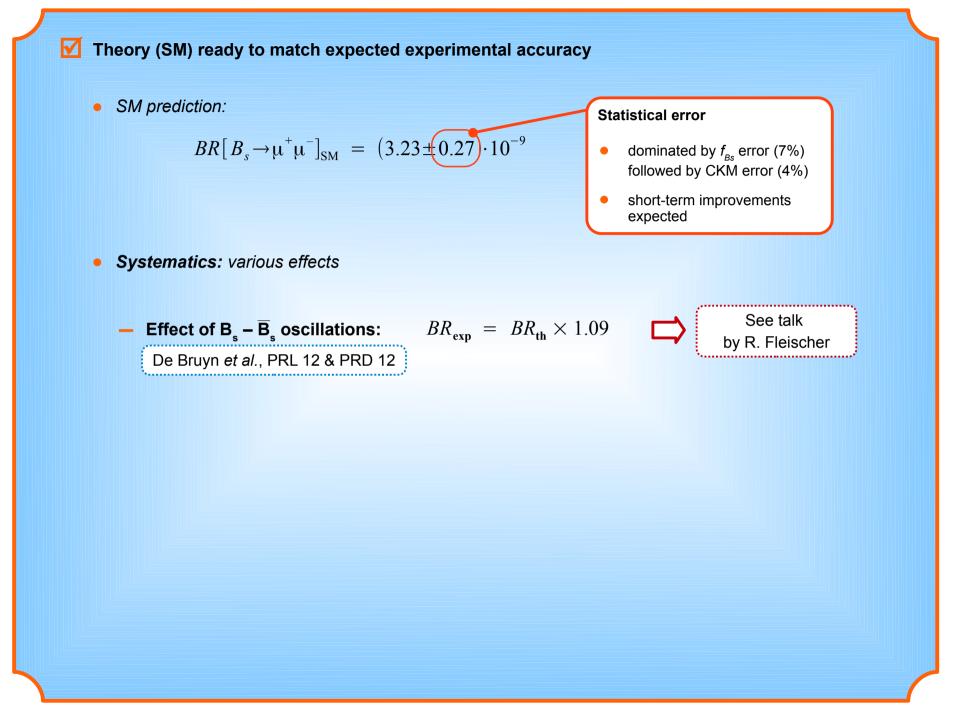
M Theory (SM) ready to match expected experimental accuracy

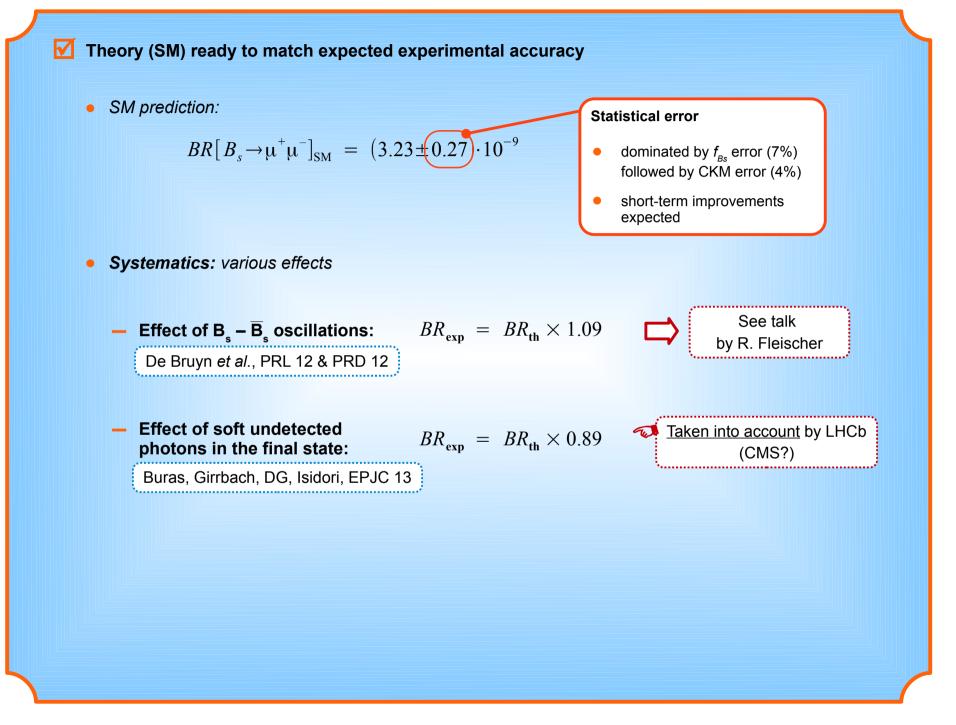
• SM prediction:

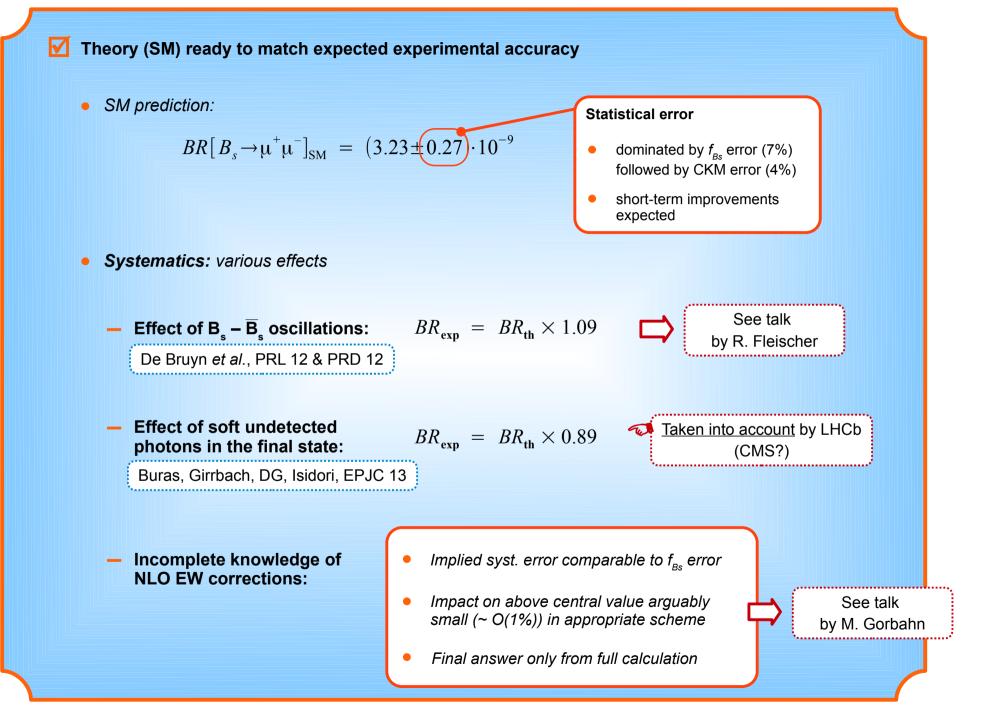
$$BR[B_s \rightarrow \mu^+ \mu^-]_{SM} = (3.23 \pm 0.27) \cdot 10^{-9}$$

Statistical error

- dominated by f_{Bs} error (7%) followed by CKM error (4%)
- short-term improvements expected







D. Guadagnoli, Portoroz 2013

$B_s \rightarrow \mu\mu$ and new physics

Model-independent approach: effective operators

Beyond the SM, a total of 6 operators can contribute:

(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator	
$(O_A \equiv (\bar{b} \gamma_L^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_5 \mu)$	$O'_{A} \equiv \left(\bar{b} \gamma_{R}^{\alpha} s\right) (\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu)$
$O_s \equiv (\overline{b} P_L s)(\overline{\mu}\mu)$	$O'_{s} \equiv (\overline{b} P_{R} s)(\overline{\mu} \mu)$
$O_P \equiv (\bar{b} P_L s)(\bar{\mu} \gamma_5 \mu)$	$O'_{P} \equiv (\bar{b}P_{R}s)(\bar{\mu}\gamma_{5}\mu)$

$BR[B_s \rightarrow \mu^+ \mu^-]$ beyond the SM

Model-independent approach: effective operators

Beyond the SM, a total of 6 operators can contribute:

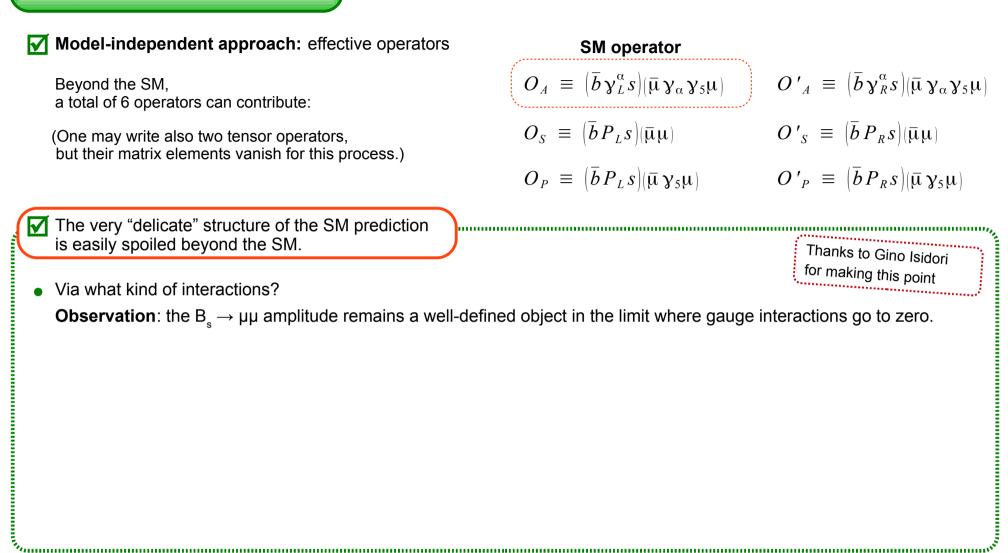
(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator $O_A \equiv (\bar{b} \gamma_L^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_5 \mu)$ $O'_A \equiv (\bar{b} \gamma_R^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_5 \mu)$ $O_S \equiv (\bar{b} P_L s)(\bar{\mu} \mu)$ $O'_S \equiv (\bar{b} P_R s)(\bar{\mu} \mu)$ $O'_P \equiv (\bar{b} P_R s)(\bar{\mu} \gamma_5 \mu)$

The very "delicate" structure of the SM prediction is easily spoiled beyond the SM.

·

• Via what kind of interactions?



Model-independent approach: effective operators SM operator $O_{A} \equiv (\overline{b} \gamma_{L}^{\alpha} s)(\overline{\mu} \gamma_{\alpha} \gamma_{5} \mu) \qquad O'_{A} \equiv (\overline{b} \gamma_{R}^{\alpha} s)(\overline{\mu} \gamma_{\alpha} \gamma_{5} \mu)$ Beyond the SM, a total of 6 operators can contribute: $O_S \equiv (\bar{b}P_L s)(\bar{\mu}\mu)$ $O'_S \equiv (\bar{b}P_R s)(\bar{\mu}\mu)$ (One may write also two tensor operators, but their matrix elements vanish for this process.) $O_P \equiv (\bar{b} P_L s)(\bar{\mu} \gamma_5 \mu) \qquad O'_P \equiv (\bar{b} P_R s)(\bar{\mu} \gamma_5 \mu)$ The very "delicate" structure of the SM prediction is easily spoiled beyond the SM. Thanks to Gino Isidori for making this point Via what kind of interactions? **Observation**: the $B_s \rightarrow \mu\mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero. $A_{B_s \to \mu\mu} \propto G_F \cdot \alpha_{e.m.} \cdot Y(M_t^2/M_W^2)$ with $Y(\frac{M_t^2}{M_W^2}) \sim \frac{M_t^2}{M_W^2}$ because of GIM

Model-independent approach: effective operators SM operator $O_{A} \equiv (\bar{b} \gamma_{L}^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu) \qquad O'_{A} \equiv (\bar{b} \gamma_{R}^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu)$ Beyond the SM, a total of 6 operators can contribute: $O_s \equiv (\bar{b}P_L s)(\bar{\mu}\mu)$ $O'_s \equiv (\bar{b}P_R s)(\bar{\mu}\mu)$ (One may write also two tensor operators, but their matrix elements vanish for this process.) $O_P \equiv (\bar{b} P_L s)(\bar{\mu} \gamma_5 \mu) \qquad O'_P \equiv (\bar{b} P_R s)(\bar{\mu} \gamma_5 \mu)$ The very "delicate" structure of the SM prediction is easily spoiled beyond the SM. Thanks to Gino Isidori for making this point Via what kind of interactions? **Observation**: the $B_s \rightarrow \mu\mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero. $A_{B_s \to \mu\mu} \propto G_F \cdot \alpha_{e.m.} \cdot Y(M_t^2/M_W^2)$ with $Y(\frac{M_t^2}{M_W^2}) \sim \frac{M_t^2}{M_W^2}$ because of GIM $A_{B_s \to \mu\mu} \propto \frac{1}{v^2} \cdot g^2 \cdot \frac{M_t^2}{M_w^2}$ Hence the relevant proportionality is:

Model-independent approach: effective operators SM operator $O_{A} \equiv (\bar{b} \gamma_{L}^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu) \qquad O'_{A} \equiv (\bar{b} \gamma_{R}^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu)$ Beyond the SM, a total of 6 operators can contribute: $O_s \equiv (\bar{b}P_L s)(\bar{\mu}\mu)$ $O'_s \equiv (\bar{b}P_R s)(\bar{\mu}\mu)$ (One may write also two tensor operators, but their matrix elements vanish for this process.) $O_P \equiv (\bar{b}P_L s)(\bar{\mu}\gamma_5\mu) \qquad O'_P \equiv (\bar{b}P_R s)(\bar{\mu}\gamma_5\mu)$ The very "delicate" structure of the SM prediction is easily spoiled beyond the SM. Thanks to Gino Isidori for making this point Via what kind of interactions? **Observation**: the $B_s \rightarrow \mu\mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero. $A_{B_s \to \mu\mu} \propto G_F \cdot \alpha_{e.m.} \cdot Y(M_t^2/M_W^2)$ with $Y(\frac{M_t^2}{M_W^2}) \sim \frac{M_t^2}{M_W^2}$ because of GIM $g^2 \cdot \frac{M_t^2}{M_W^2} \propto \frac{y_t}{v^2}$ Hence the relevant $A_{B_s \to \mu\mu} \propto \frac{1}{v^2}$ proportionality is: the q² dependence cancels out

Model-independent approach: effective operators **SM** operator $O_A \equiv (\bar{b} \gamma^{\alpha}_L s)(\bar{\mu} \gamma_{\alpha} \gamma_5 \mu)$ $O'_{A} \equiv \left(\bar{b} \gamma_{R}^{\alpha} s\right) (\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu)$ Beyond the SM, a total of 6 operators can contribute: $O_{S} \equiv (\bar{b}P_{L}s)(\bar{\mu}\mu) \qquad \qquad O'_{S} \equiv (\bar{b}P_{R}s)(\bar{\mu}\mu)$ (One may write also two tensor operators, but their matrix elements vanish for this process.) $O_P \equiv (\bar{b} P_L s)(\bar{\mu} \gamma_5 \mu) \qquad O'_P \equiv (\bar{b} P_R s)(\bar{\mu} \gamma_5 \mu)$ The very "delicate" structure of the SM prediction is easily spoiled beyond the SM. Thanks to Gino Isidori for making this point Via what kind of interactions? **Observation**: the $B_s \rightarrow \mu\mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero. $A_{B_s \to \mu\mu} \propto G_F \cdot \alpha_{e.m.} \cdot Y(M_t^2/M_W^2)$ with $Y(\frac{M_t^2}{M_W^2}) \sim \frac{M_t^2}{M_W^2}$ because of GIM $g^2 \cdot \frac{M_t^2}{M_W^2}$ Hence the relevant $\propto \frac{y_t}{x^2}$ $A_{B_s \to \mu\mu} \propto \frac{1}{v^2}$ So this process is a genuine probe proportionality is: of Yukawa interactions i.e. of the scalar-fermion sector the q² dependence cancels out

Model-independent approach: effective operators SM operator $O_A \equiv (\bar{b} \gamma_L^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_5 \mu)$ $O'_{A} \equiv (\bar{b} \gamma_{R}^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu)$ Bevond the SM. a total of 6 operators can contribute: $O_{S} \equiv (\bar{b} P_{L} s)(\bar{\mu} \mu) \qquad O'_{S} \equiv (\bar{b} P_{R} s)(\bar{\mu} \mu)$ (One may write also two tensor operators. but their matrix elements vanish for this process.) $O'_P \equiv (\bar{b}P_R s)(\bar{\mu}\gamma_5 \mu)$ $O_P \equiv (\bar{b} P_L s)(\bar{\mu} \gamma_5 \mu)$ The very "delicate" structure of the SM prediction is easily spoiled beyond the SM. Thanks to Gino Isidori for making this point Via what kind of interactions? **Observation**: the $B_{a} \rightarrow \mu\mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero. $A_{B_s \to \mu\mu} \propto G_F \cdot \alpha_{e.m.} \cdot Y(M_t^2/M_W^2)$ with $Y(\frac{M_t^2}{M_W^2}) \sim \frac{M_t^2}{M_W^2}$ because of GIM Hence the relevant $A_{B_s \to \mu\mu} \propto \frac{1}{v^2} \cdot \frac{g^2 \cdot \frac{W_t}{M_W^2}}{\sum w^2} \propto \frac{y_t}{v^2}$ So this process is a genuine probe proportionality is: of Yukawa interactions i.e. of the scalar-fermion sector the q² dependence cancels out Effectively tree-level diagrams: $\tan^2\beta$ $\stackrel{D_R}{\longrightarrow}$ h^0, H^0, A^0 \leftarrow $\tan\beta$ Enhancement going as: One famous example: $BR[B_s \rightarrow \mu^+ \mu^-] \propto A_t^2 \frac{\tan^6 \beta}{M_t^4}$ the MSSM with large tanß

D. Guadagnoli, Portoroz 2013

$BR[B_s \rightarrow \mu\mu]$	as an	EW precis	sion test
------------------------------	-------	-----------	-----------

DG, Isidori, 1302.3909

 \fbox $B_s \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs

DG, Isidori, 1302.3909

 \blacksquare B_s $\rightarrow \mu\mu$ is more than 'just' a probe of new scalars mediating FCNCs

 d_{j} $Z \sim \overline{d}_i$

Consider the $Z - \overline{d}_i - d_j$ coupling:

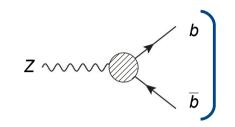
DG Isid	1302
DG, Isidori,	1302.3909

 \blacksquare B_s $\rightarrow \mu\mu$ is more than 'just' a probe of new scalars mediating FCNCs

Consider the $Z - \overline{d}_i - d_j$ coupling:

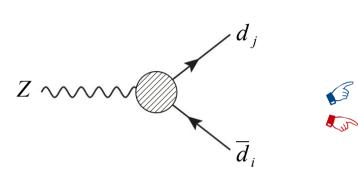
 d_{j} $Z \sim$ S \overline{d}_{i}

Flavor-diag: *i* = *j* (= 3) Affects LEP-measured $Z \rightarrow b \overline{b}$ observables: R_{b} , A_{b} , A_{FB}^{b}

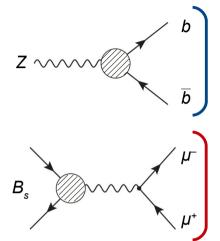


 \blacksquare B_s $\rightarrow \mu\mu$ is more than 'just' a probe of new scalars mediating FCNCs

Consider the $Z - \overline{d}_i - d_j$ coupling:

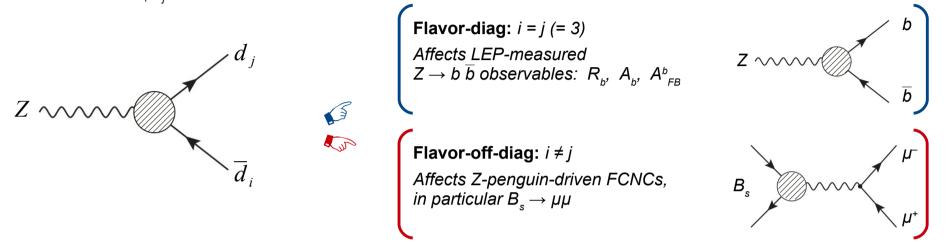


Flavor-diag: i = j (= 3)Affects LEP-measured $Z \rightarrow b \overline{b}$ observables: R_{b} , A_{b} , A_{FB}^{b} **Flavor-off-diag:** $i \neq j$ Affects Z-penguin-driven FCNCs, in particular $B_s \rightarrow \mu\mu$



 $\mathbf{N}_{s} \rightarrow \mu\mu$ is more than 'just' a probe of new scalars mediating FCNCs

Consider the $Z - \overline{d}_i - d_i$ coupling:

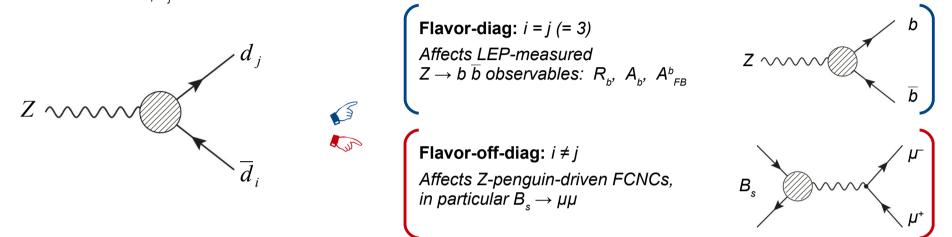


At the Lagrangian leven, these coupling modifications may be parameterized as follows

$$L_{\rm eff}^{Zdd} = \frac{g}{c_W} Z_{\mu} \overline{d^i} \gamma^{\mu} \left[\left(g_L^{ij} + \delta g_L^{ij} \right) P_L + \left(g_R^{ij} + \delta g_R^{ij} \right) P_R \right] d^j$$

 $\mathbf{M} = \mathbf{B}_{s} \rightarrow \mu \mu$ is more than 'just' a probe of new scalars mediating FCNCs

Consider the $Z - \overline{d}_i - d_i$ coupling:



At the Lagrangian leven, these coupling modifications may be parameterized as follows

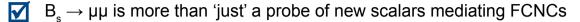
$$L_{\text{eff}}^{Zdd} = \frac{g}{c_W} Z_{\mu} \overline{d^i} \gamma^{\mu} \left[\left(g_L^{ij} + \delta g_L^{ij} \right) P_L + \left(g_R^{ij} + \delta g_R^{ij} \right) P_R \right] d^j$$

where:

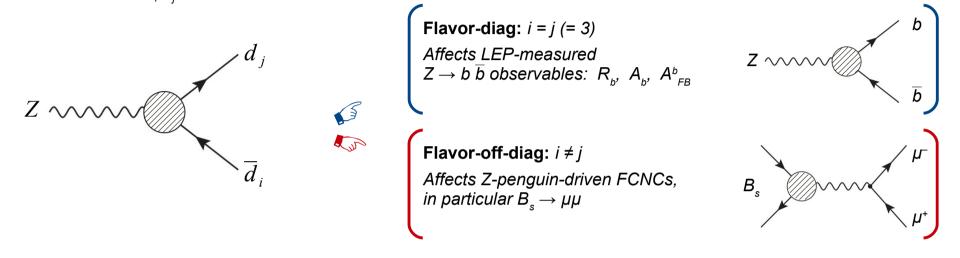
SM couplings

$$g_{L}^{ii} = -\frac{1}{2} + \frac{1}{3}s_{W}^{2} + \text{loops}$$

 $g_{R}^{ii} = \frac{1}{3}s_{W}^{2} + \text{loops}$ $g_{L,R}^{ij} = 0 + \text{loops}$



Consider the $Z - \overline{d}_i - d_i$ coupling:



At the Lagrangian leven, these coupling modifications may be parameterized as follows

where:

$$L_{\text{eff}}^{Zdd} = \frac{g}{c_{W}} Z_{\mu} \overline{d^{i}} \gamma^{\mu} \left[\left(g_{L}^{ij} + \delta g_{L}^{ij} P_{L} + \left(g_{R}^{ij} + \delta g_{R}^{ij} P_{R} \right) d^{j} \right] d^{j}$$

$$g_{L}^{ii} = -\frac{1}{2} + \frac{1}{3} s_{W}^{2} + \text{loops}$$

$$g_{R}^{ii} = \frac{1}{3} s_{W}^{2} + \text{loops}$$

$$g_{L,R}^{ij} = 0 + \text{loops}$$

DG, Isidori, 1302.3909

.....

Shifts in Zdd couplings can be implemented as contributions from effective operators (\rightarrow minimal model dep.)

.....

The only operators relevant to the problem are of the form:

```
Operators ~ (\overline{d}_i \ \gamma^{\mu} \ X^{ij} \ d_j)(H^{\dagger}D_{\mu}H)
```

neory

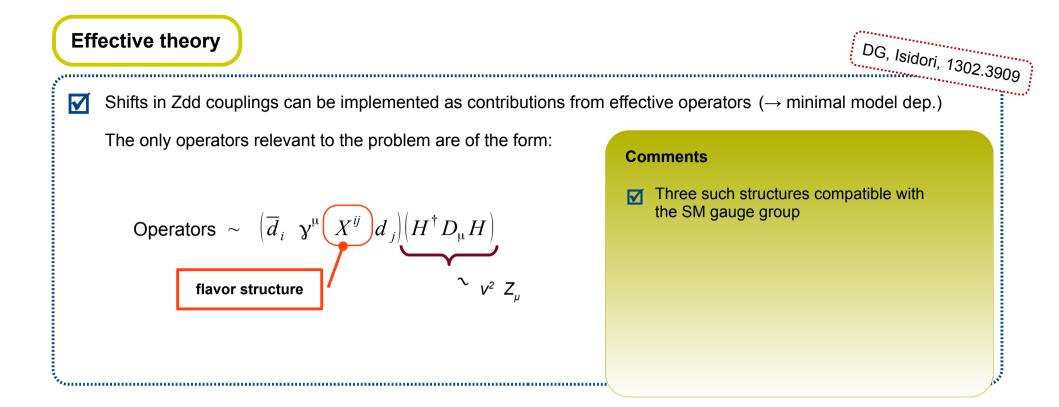
Shifts in Zdd couplings can be implemented as contributions from effective operators (\rightarrow minimal model dep.)

......

The only operators relevant to the problem are of the form:

Operators ~ $(\overline{d}_i \ \gamma^{\mu} \ X^{ij} \ d_j) (H^{\dagger} D_{\mu} H)$ $\checkmark v^2 \ Z_{\mu}$

Effective theory $D_{G, \ Isigori, \ 1302.3909}$ $\overrightarrow{D}_{G, \ Isigori, \ 1302.3909}$ $\overrightarrow{D}_{G, \ Isigori, \ 1302.3909}$ The only operators relevant to the problem are of the form: Operators $\sim (\overrightarrow{d}_i \ \gamma^{\mu} (X^{ij} d_j) (H^{\dagger} D_{\mu} H))$ $\overrightarrow{Iavor structure} \ \gamma^{\nu} Z_{\mu}$



DG, Isidori, 1302.3909

Shifts in Zdd couplings can be implemented as contributions from effective operators (\rightarrow minimal model dep.)

......

The only operators relevant to the problem are of the form:

Operators ~
$$(\overline{d}_{i} \ \gamma^{\mu} X^{ij} d_{j}) (H^{\dagger} D_{\mu} H)$$

flavor structure $v^{2} Z_{\mu}$

Comments

- Three such structures compatible with the SM gauge group
- $\label{eq:constraint} \begin{tabular}{|c|c|c|c|} \hline \hline & Other operators yield negligible effects in either Z-peak obs or in B_s \rightarrow \mu\mu \end{tabular}$
 - 4-fermion ops. negligible in Zbb
 - ops. involving field-strength tensors negligible in $B_s \rightarrow \mu\mu$

DG, Isidori, 1302.3909

Shifts in Zdd couplings can be implemented as contributions from effective operators (\rightarrow minimal model dep.)

.....

The only operators relevant to the problem are of the form:

Operators ~
$$(\overline{d}_i \ \gamma^{\mu} X^{ij} d_j) (H^{\dagger} D_{\mu} H)$$

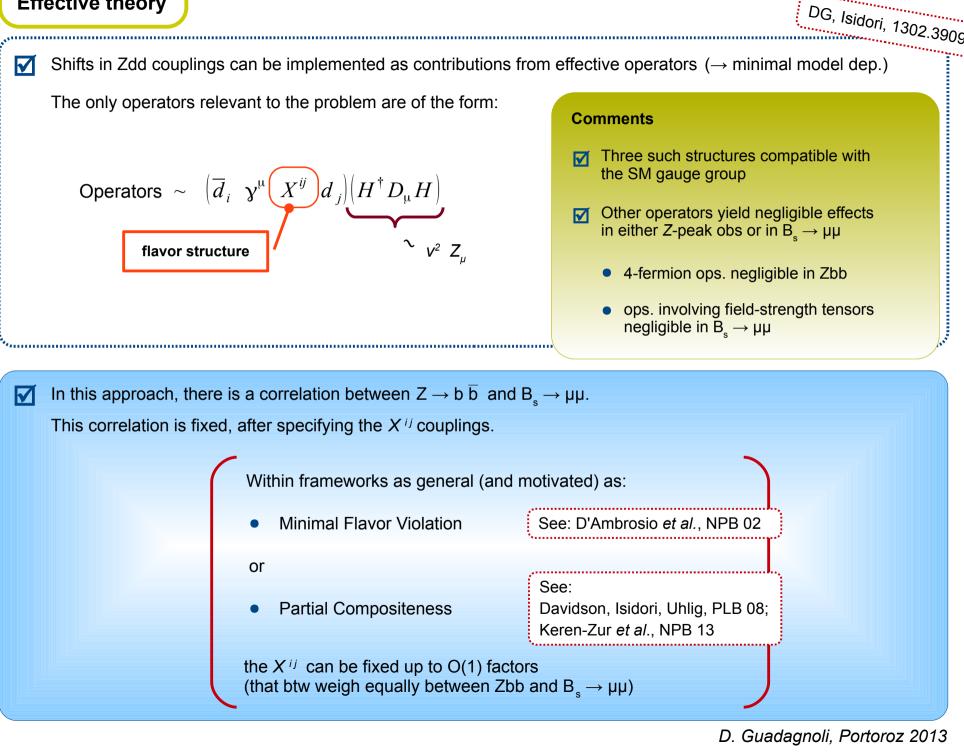
flavor structure $\sim v^2 Z_{\mu}$

Comments

- Three such structures compatible with the SM gauge group
- $\label{eq:constraint} \begin{tabular}{|c|c|c|c|} \hline \hline & Other operators yield negligible effects in either Z-peak obs or in B_s \end{tabular} \rightarrow \mu\mu$
 - 4-fermion ops. negligible in Zbb
 - ops. involving field-strength tensors negligible in $B_s \rightarrow \mu\mu$

In this approach, there is a correlation between $Z \rightarrow b \ \overline{b}$ and $B_s \rightarrow \mu\mu$.

This correlation is fixed, after specifying the X^{ij} couplings.



MFV is the statement that – even beyond the SM – the only structures that break the flavor symmetry are the SM Yukawa couplings

This statement fixes the flavor structure of new operators.

MFV is the statement that – even beyond the SM – the only structures that break the flavor symmetry are the SM Yukawa couplings

This statement fixes the flavor structure of new operators.

Example: operators with the bilinear $\overline{Q}_{L}^{i} \chi^{\mu} X_{ij} Q_{L}^{j}$

$$X_{ij} = O(1) \times (Y_u Y_u^{\dagger})_{ij}$$

MFV is the statement that – even beyond the SM – the only structures that break the flavor symmetry are the SM Yukawa couplings

This statement fixes the flavor structure of new operators.

Example: operators with the bilinear $\overline{Q}_{L}^{i} \gamma^{\mu} X_{ij}$

$$Q_L^j \qquad \square \qquad X_{ij} = O(1) \times (Y_u Y_u^\dagger)_{ij}$$

This fixes the flavor structure of the Z $\overline{d}_i d_j$ coupling δg_L^{ij}

MFV is the statement that – even beyond the SM – the only structures that break the flavor symmetry are the SM Yukawa couplings

This statement fixes the flavor structure of new operators.

Example: operators with the bilinear $\overline{Q}_{L}^{i} \gamma^{\mu} X_{ij} Q_{L}^{j}$ $\longrightarrow X_{ij} = O(1) \times (Y_{u} Y_{u}^{\dagger})_{ij}$

This fixes the flavor structure of the Z $\overline{d}_i d_i$ coupling δg_L^{ij}

E.g., in the basis where $Y_{u} = V^{\dagger} \hat{Y}_{u}$ and $Y_{d} = \hat{Y}_{d}$ one has:

 $\delta g_L^{ij} \propto V_{ti}^* V_{tj}$

MFV is the statement that – even beyond the SM – the only structures that break the flavor symmetry are the SM Yukawa couplings

This statement fixes the flavor structure of new operators.

Example: operators with the bilinear $\overline{Q}_{L}^{i} \gamma^{\mu} X_{ij} Q_{L}^{j}$ $\longrightarrow X_{ij} = O(1) \times (Y_{u} Y_{u}^{\dagger})_{ij}$

This fixes the flavor structure of the Z $\overline{\mathsf{d}}_{\mathsf{i}}\,\mathsf{d}_{\mathsf{j}}$ coupling $\,\delta\,g_{L}^{ij}$

E.g., in the basis where $Y_u = V^{\dagger} \hat{Y}_u$ and $Y_d = \hat{Y}_d$ one has:

$$\delta g_L^{ij} \propto V_{ti}^* V_{tj}$$

Most relevantly, this fixes univocally the <u>correlation</u> between the flavor-off-diag. and the flavor-diag. coupling:

$$\delta g_{L}^{32} = \frac{V_{tb}^{*} V_{ts}}{|V_{tb}|^{2}} \delta g_{L}$$

MFV is the statement that – even beyond the SM – the only structures that break the flavor symmetry are the SM Yukawa couplings

This statement fixes the flavor structure of new operators.

Example: operators with the bilinear $\overline{Q}_{L}^{i} \, y^{\mu} \, X_{ij} \, Q_{L}^{j}$ $\longrightarrow X_{ij} = O(1) \times (Y_{u} \, Y_{u}^{\dagger})_{ij}$

This fixes the flavor structure of the Z $\overline{\mathsf{d}}_{\mathsf{i}}\,\mathsf{d}_{\mathsf{j}}$ coupling $\,\delta\,g_{L}^{ij}$

E.g., in the basis where $Y_u = V^{\dagger} \hat{Y}_u$ and $Y_d = \hat{Y}_d$ one has:

$$\delta g_L^{ij} \propto V_{ti}^* V_{tj}$$

Most relevantly, this fixes univocally the <u>correlation</u> between the flavor-off-diag. and the flavor-diag. coupling:

$$\delta g_{L}^{32} = \frac{V_{tb}^{*} V_{ts}}{|V_{tb}|^{2}} \delta g_{L}$$
shift in the Zbs coupling:
affects B_s $\rightarrow \mu\mu$

MFV is the statement that – even beyond the SM – the only structures that break the flavor symmetry are the SM Yukawa couplings

This statement fixes the flavor structure of new operators.

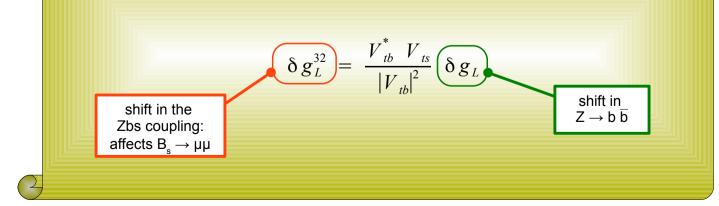
Example: operators with the bilinear $\overline{Q}_{L}^{i} \gamma^{\mu} X_{ij} Q_{L}^{j}$ $\longrightarrow X_{ij} = O(1) \times (Y_{u} Y_{u}^{\dagger})_{ij}$

This fixes the flavor structure of the Z $\overline{\mathsf{d}}_{\mathsf{i}}\,\mathsf{d}_{\mathsf{i}}$ coupling $\,\delta\,g_{\,L}^{ij}$

E.g., in the basis where $Y_u = V^{\dagger} \hat{Y}_u$ and $Y_d = \hat{Y}_d$ one has:

$$\delta g_L^{ij} \propto V_{ti}^* V_{tj}$$

Most relevantly, this fixes univocally the <u>correlation</u> between the flavor-off-diag. and the flavor-diag. coupling:



MFV is the statement that – even beyond the SM – the only structures that break the flavor symmetry are the SM Yukawa couplings

This statement fixes the flavor structure of new operators.

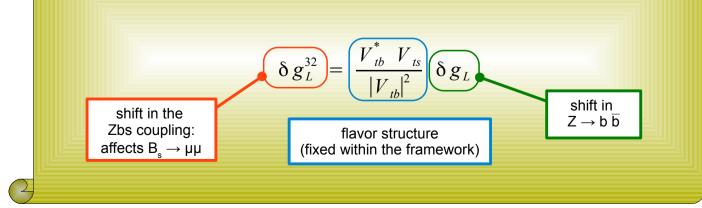
Example: operators with the bilinear $\overline{Q}_{L}^{i} \gamma^{\mu} X_{ij} Q_{L}^{j}$ $\longrightarrow X_{ij} = O(1) \times (Y_{u} Y_{u}^{\dagger})_{ij}$

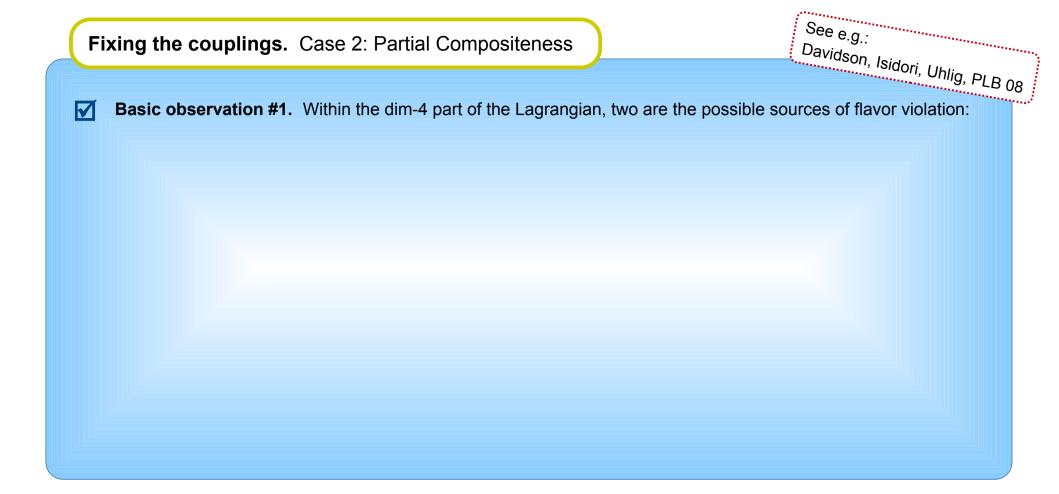
This fixes the flavor structure of the Z $\overline{\mathsf{d}}_{\mathsf{i}}\,\mathsf{d}_{\mathsf{i}}$ coupling $\,\delta\,g_{\,L}^{ij}$

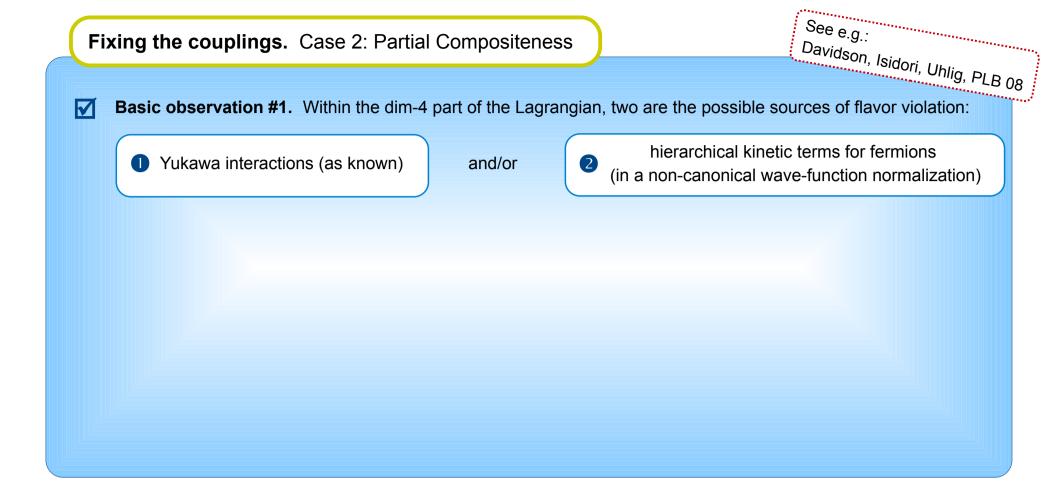
E.g., in the basis where $Y_u = V^{\dagger} \hat{Y}_u$ and $Y_d = \hat{Y}_d$ one has:

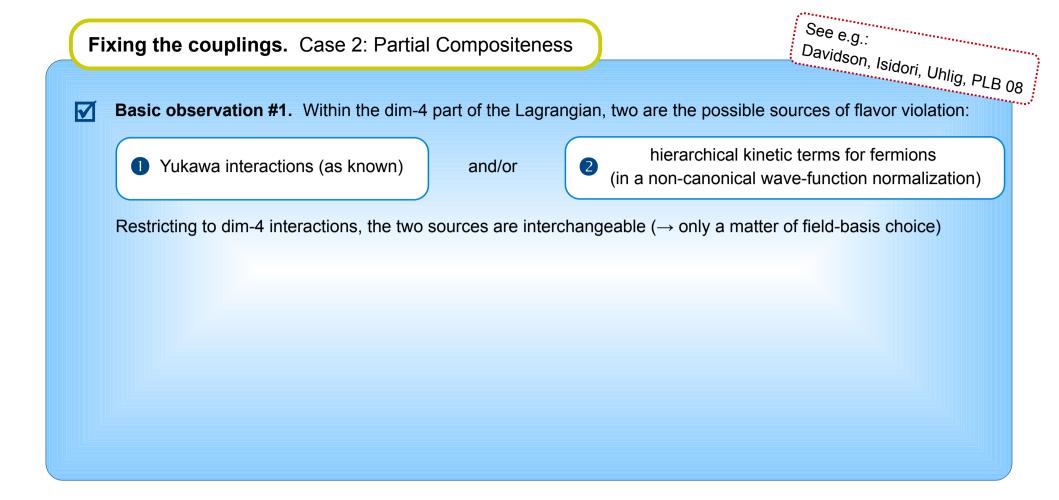
$$\delta g_L^{ij} \propto V_{ti}^* V_{tj}$$

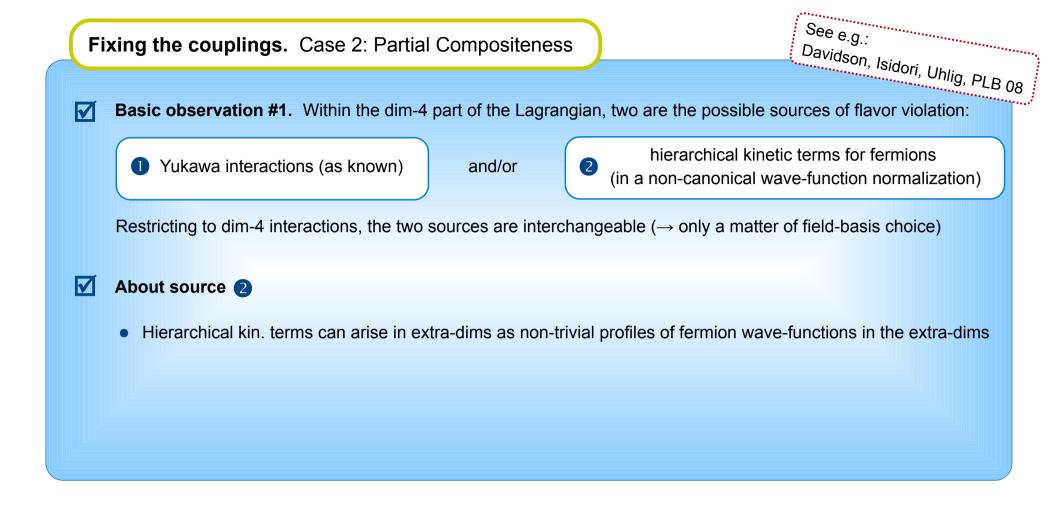
Most relevantly, this fixes univocally the <u>correlation</u> between the flavor-off-diag. and the flavor-diag. coupling:

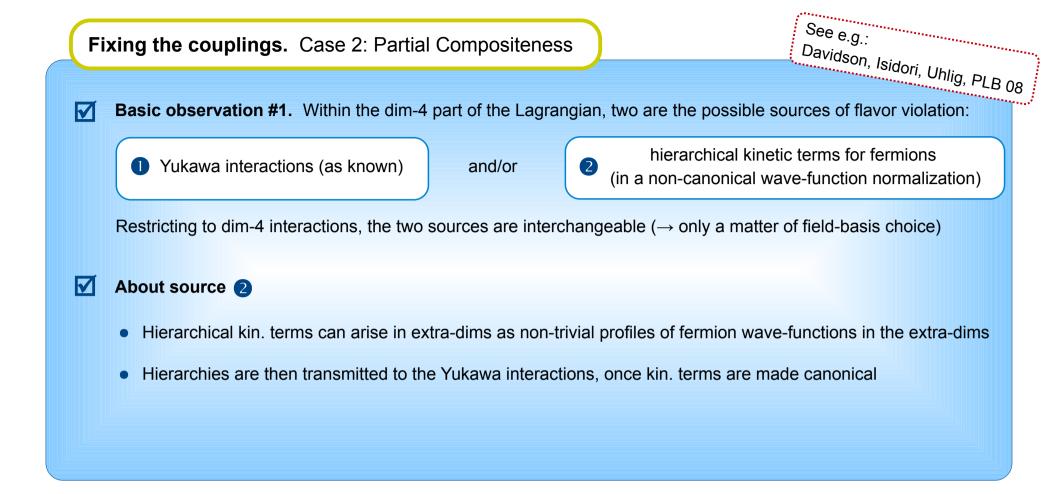


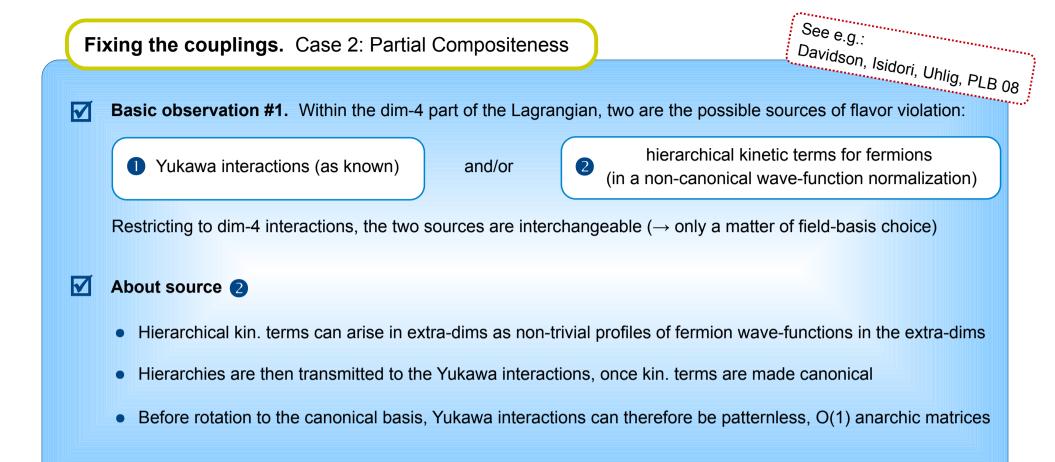


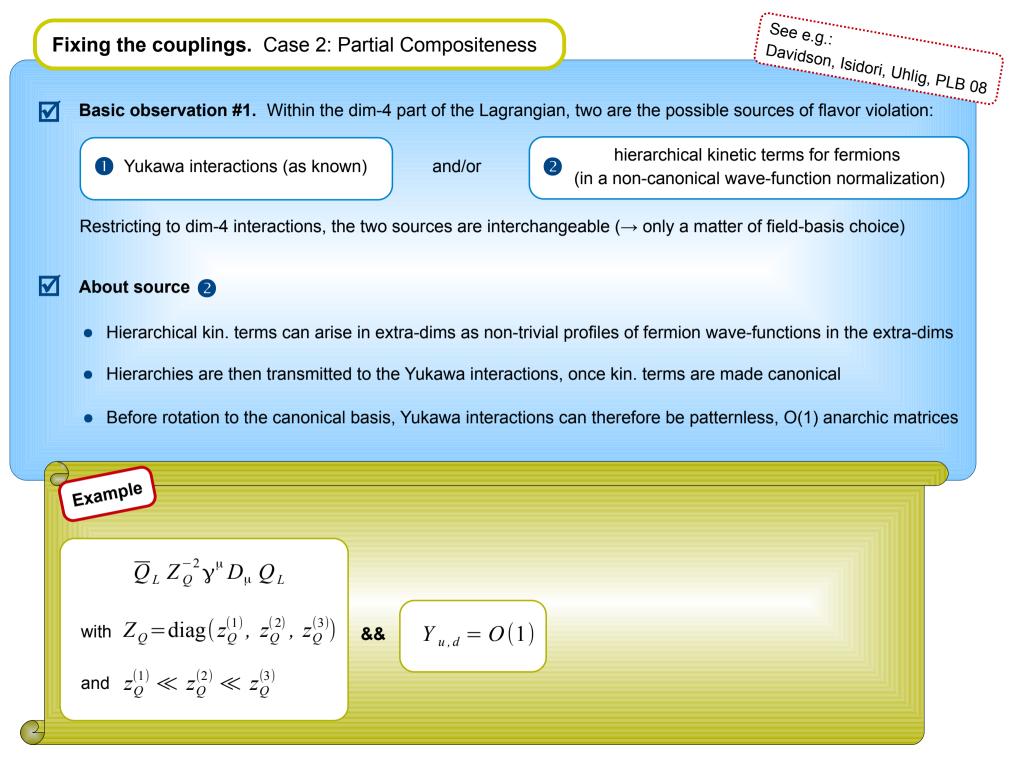


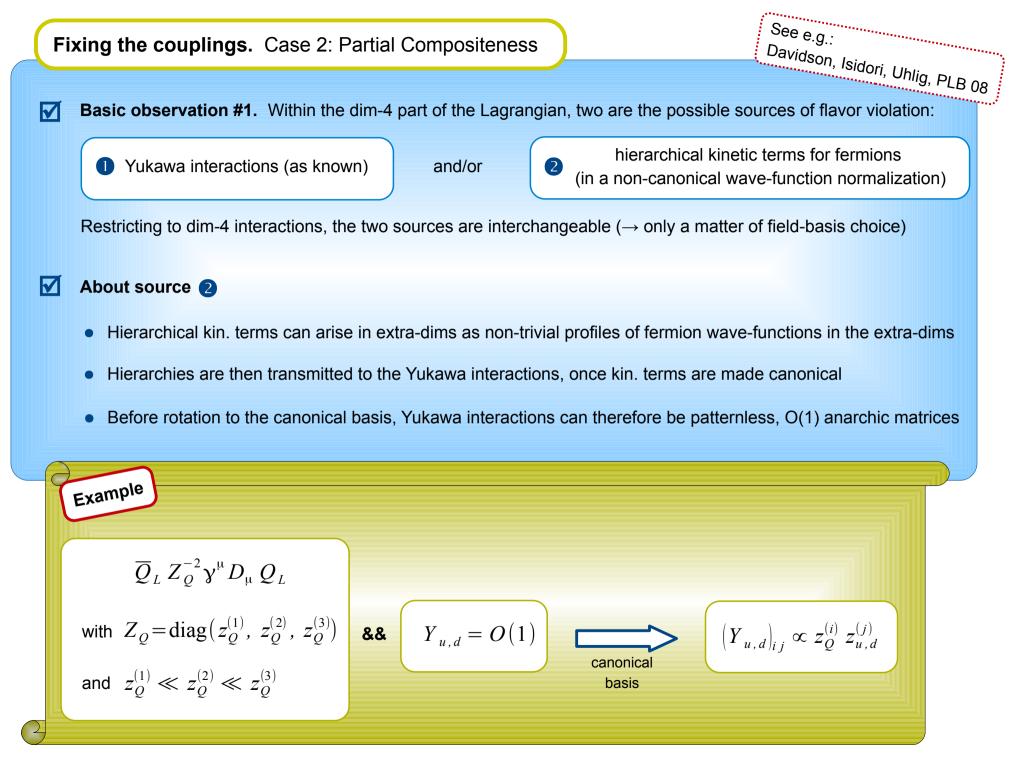


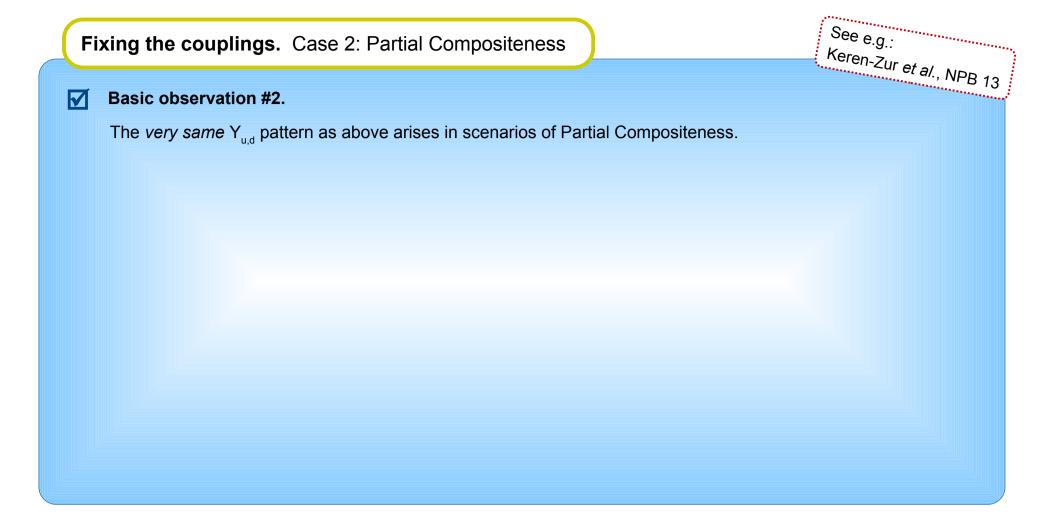


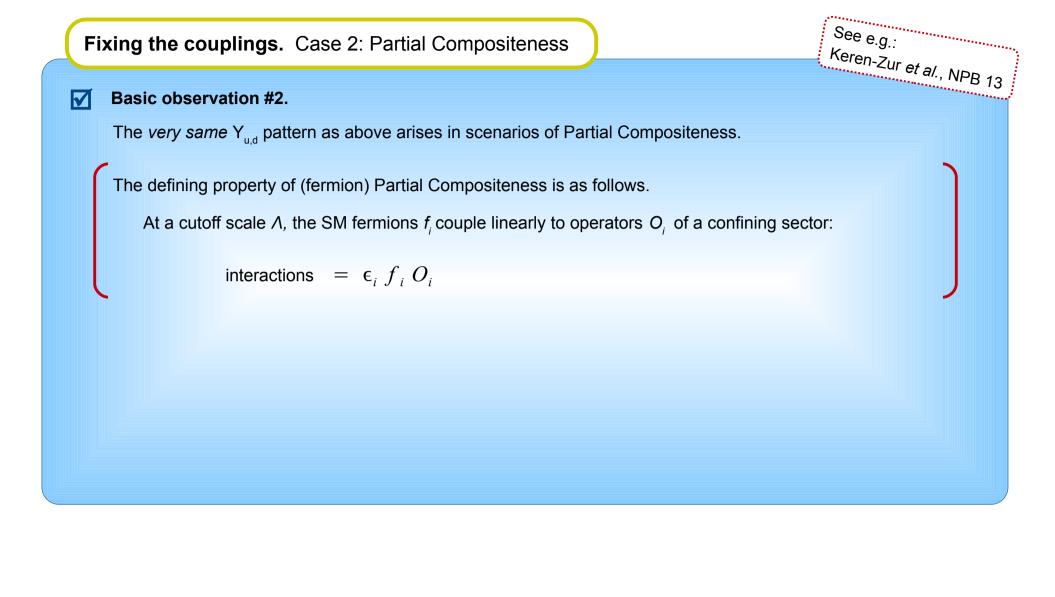


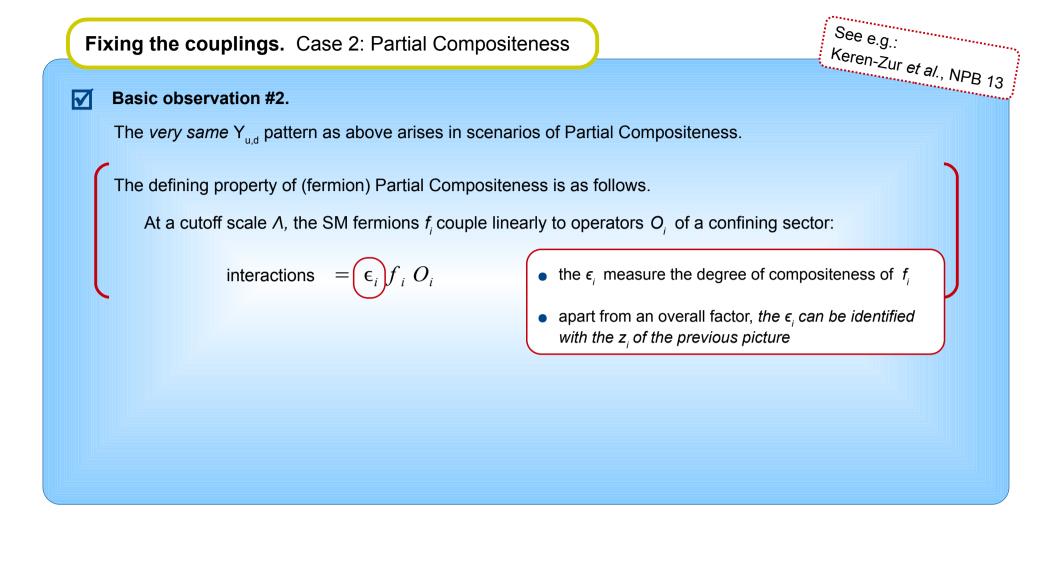


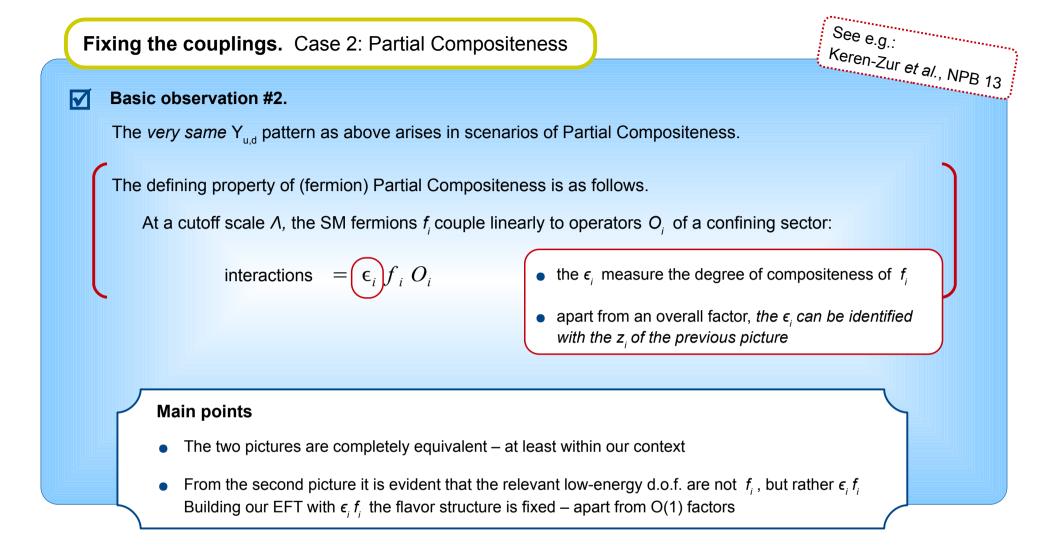


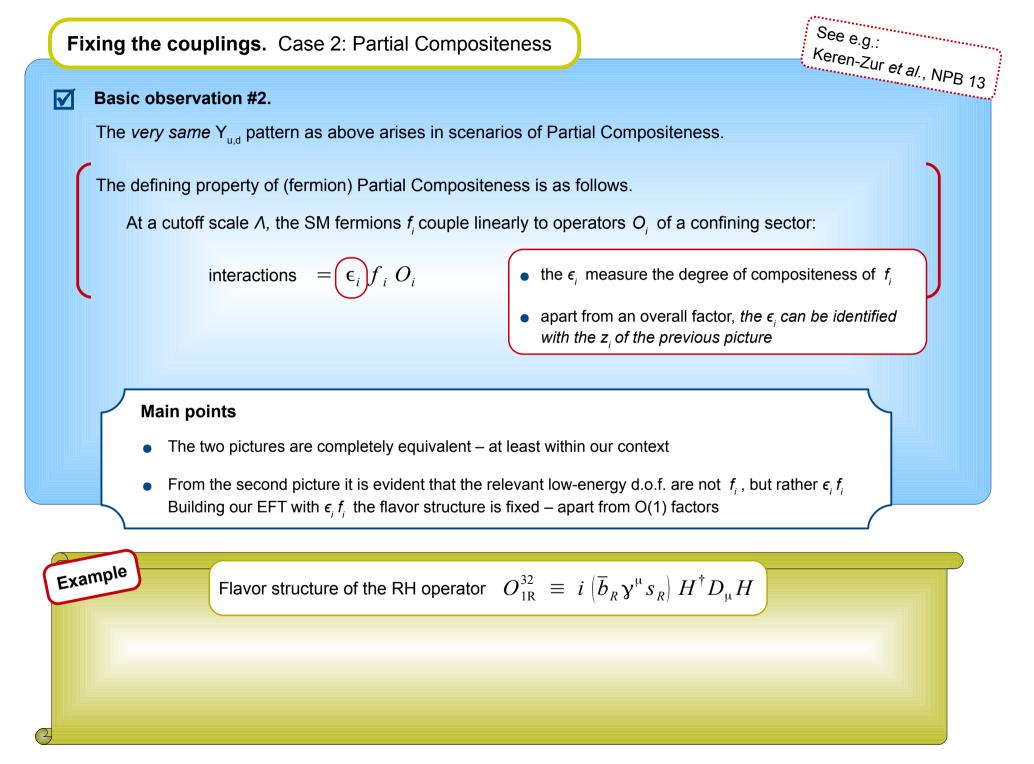


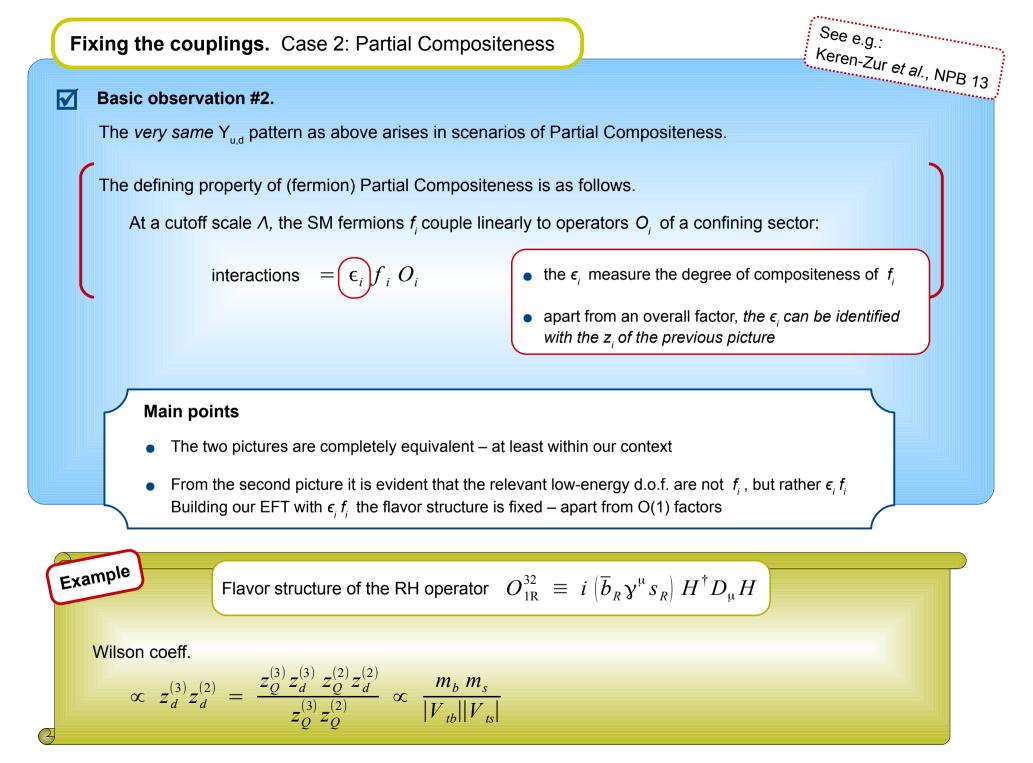


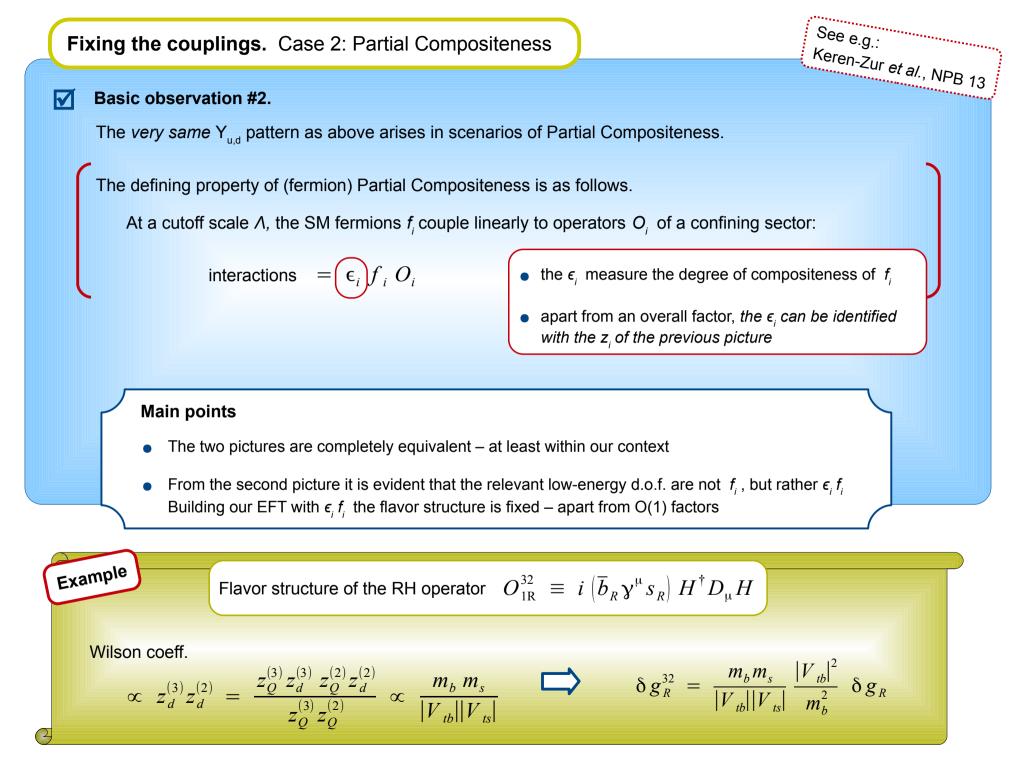






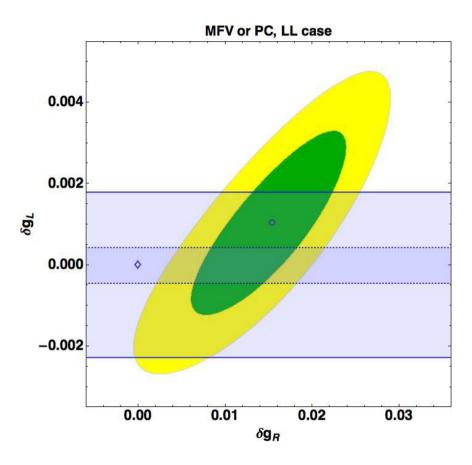






 $\text{BR[B}_{s} \rightarrow \mu\mu\text{]}$ as an EWPT: results

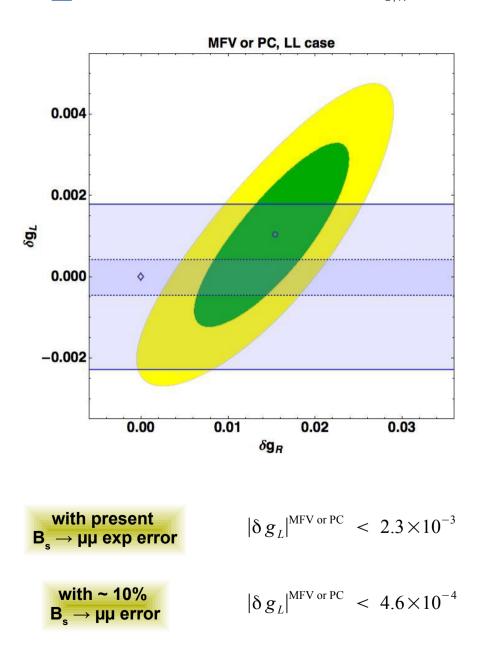
 $\fbox{One can then compare the limits on } \delta g_{L,R} \text{ obtained from } Z \text{-peak obs with those obtained from } B_s \to \mu \mu$



 $BR[B_s \rightarrow \mu\mu]$ as an EWPT: results

DG, Isidori, 1302.3909

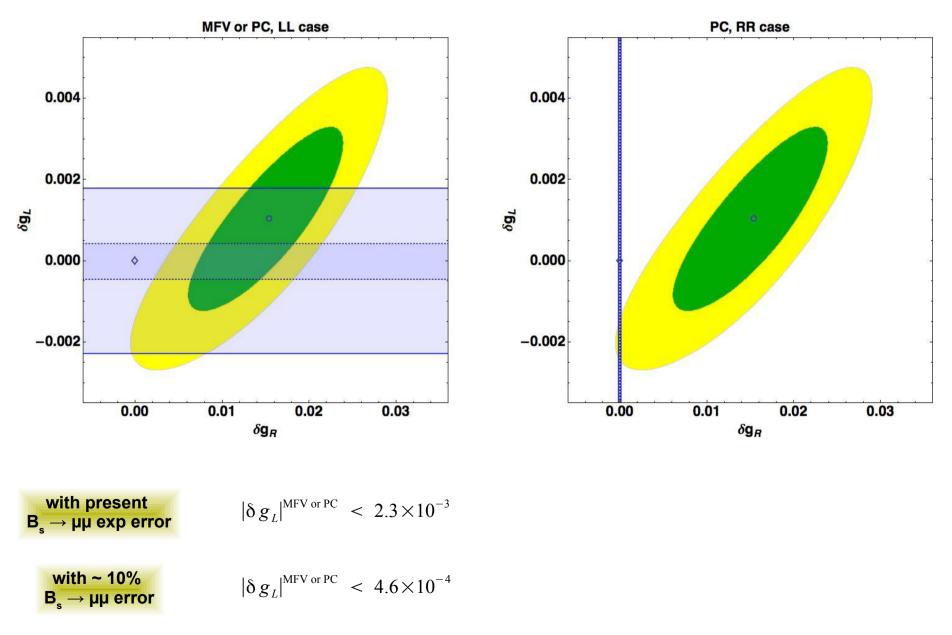
 \checkmark One can then compare the limits on $\delta g_{L,R}$ obtained from Z-peak obs with those obtained from $B_s \rightarrow \mu\mu$



 $BR[B_s \rightarrow \mu\mu]$ as an EWPT: results

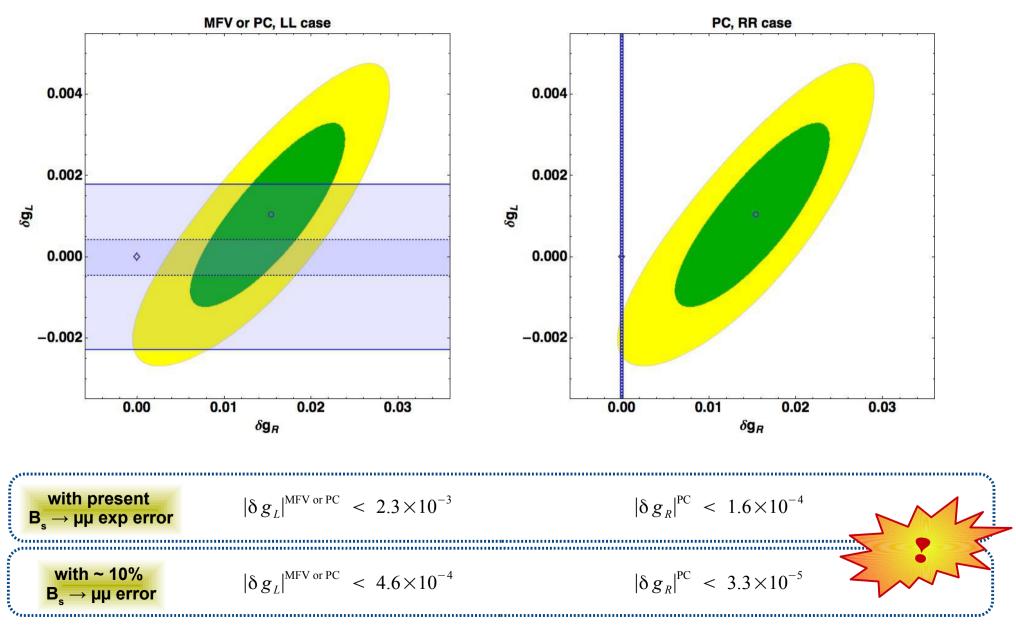
DG, Isidori, 1302.3909

 \checkmark One can then compare the limits on $\delta g_{L,R}$ obtained from Z-peak obs with those obtained from $B_s \rightarrow \mu \mu$



 $\text{BR[B}_{s} \rightarrow \mu\mu\text{]}$ as an EWPT: results

 \checkmark One can then compare the limits on $\delta g_{L,R}$ obtained from Z-peak obs with those obtained from $B_s \rightarrow \mu \mu$



Conclusions

$\mathbf{M} = \mathbf{B}_{s} \rightarrow \mu\mu$: SM vs. exp

- Parametric error (f_{Bs} , CKM) likely to improve soon
- (Known) sources of systematics under control, or going to become so
- Overall accuracy expected at ~ 10% by 2018 (dominated by exp)

Conclusions

- $\mathbf{M}_{s} \rightarrow \mu\mu$: SM vs. exp
 - Parametric error (f_{Rs}, CKM) likely to improve soon
 - (Known) sources of systematics under control, or going to become so
 - Overall accuracy expected at ~ 10% by 2018 (dominated by exp)

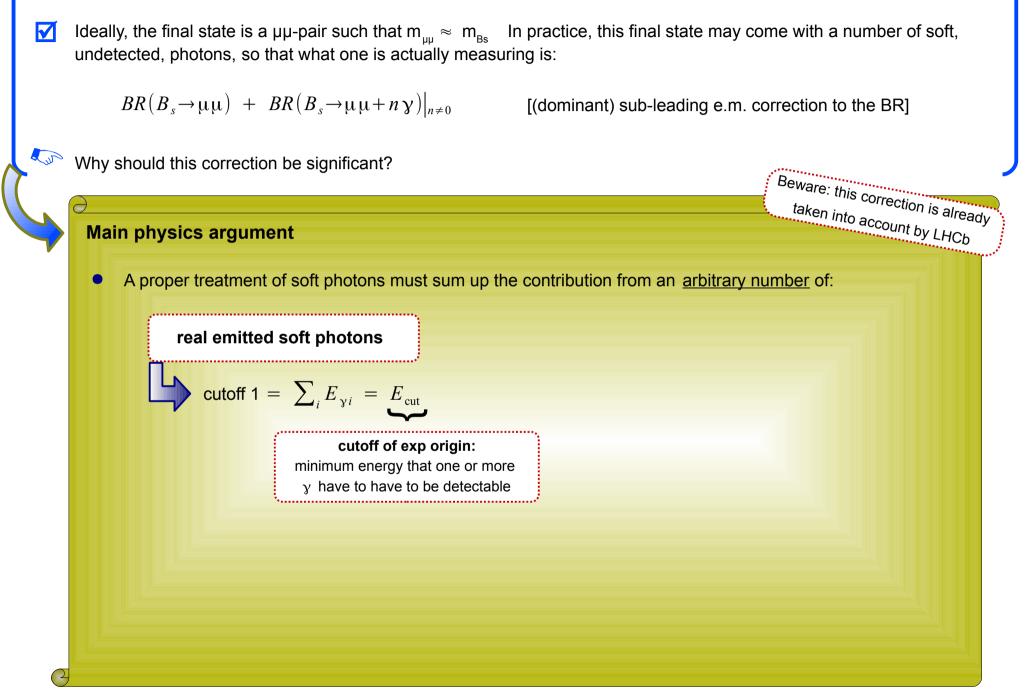
\blacksquare B_s \rightarrow µµ and new physics

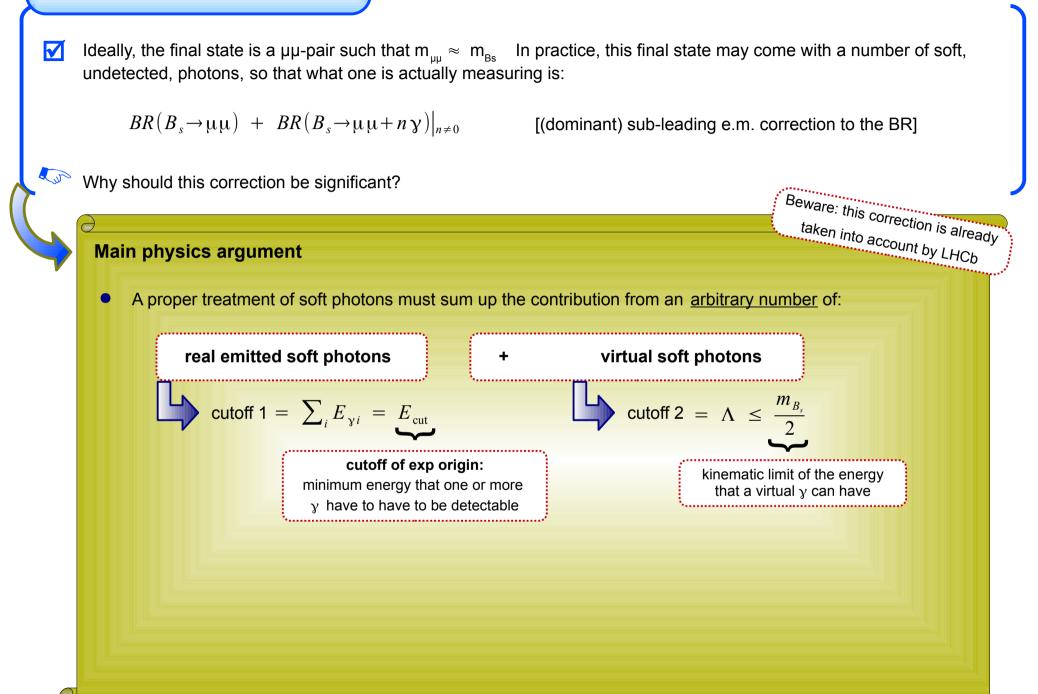
- To the extent that no deviations wrt the SM prediction are observed, it is a (formidable) <u>null test</u> of new physics
- One example of $B_s \rightarrow \mu\mu$ constraining power:
 - able to test even tiny deviations in Z-down-quark couplings
 - *– E.g., within generic partial compositeness:*
 - O(10-5) deviations in couplings to RH down-quarks: way more stringent than EWPO

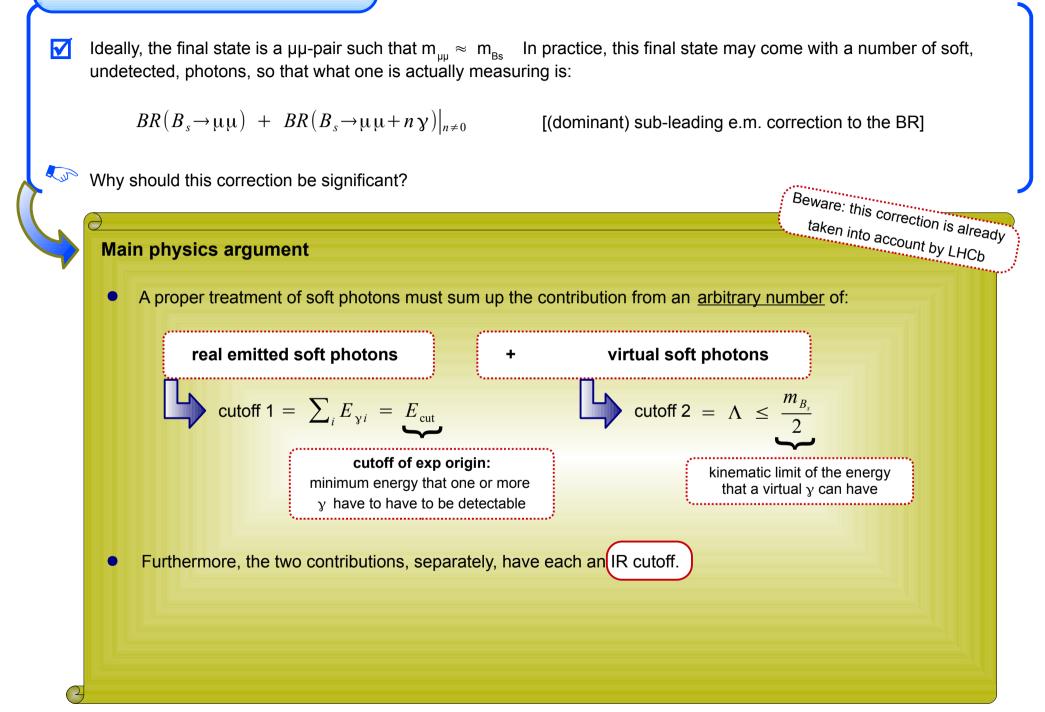
Ideally, the final state is a $\mu\mu$ -pair such that $m_{\mu\mu} \approx m_{Bs}$ In practice, this final state may come with a number of soft, undetected, photons, so that what one is actually measuring is:

 $BR(B_s \rightarrow \mu\mu) + BR(B_s \rightarrow \mu\mu + n\gamma)|_{n \neq 0}$ Why should this correction be significant?

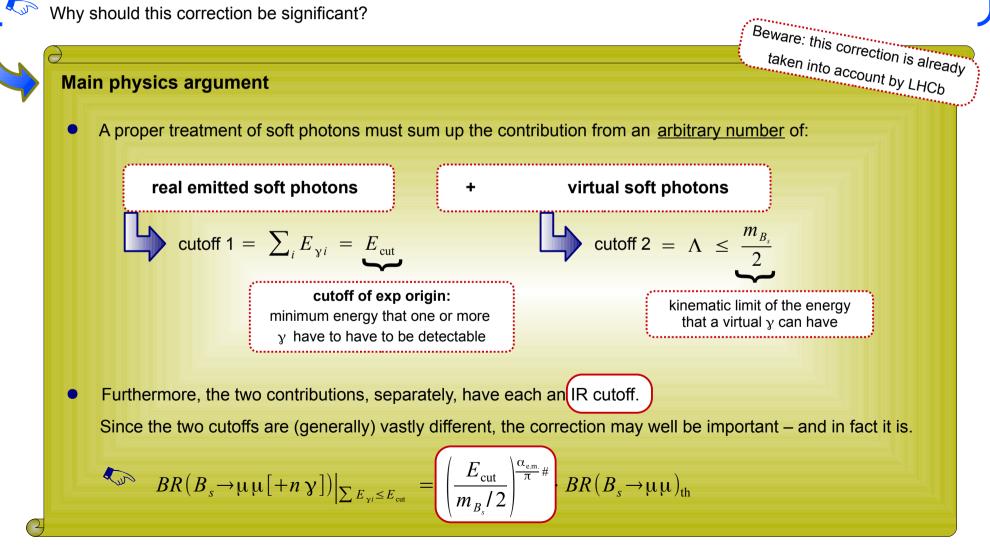
[(dominant) sub-leading e.m. correction to the BR]







Ideally, the final state is a $\mu\mu$ -pair such that $m_{\mu\mu} \approx m_{Bs}$ In practice, this final state may come with a number of soft, undetected, photons, so that what one is actually measuring is: $BR(B_s \rightarrow \mu\mu) + BR(B_s \rightarrow \mu\mu + n\gamma)|_{n \neq 0}$ [(dominant) sub-leading e.m. correction to the BR]



Ideally, the final state is a $\mu\mu$ -pair such that $m_{\mu\mu} \approx m_{Bs}$ In practice, this final state may come with a number of soft, undetected, photons, so that what one is actually measuring is:

 $BR(B_s \rightarrow \mu\mu) + BR(B_s \rightarrow \mu\mu + n\gamma)|_{n\neq 0}$

[(dominant) sub-leading e.m. correction to the BR]

