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Outline

☑ Th ↔ Exp Issues

Based on:
• Buras, Girrbach,  DG, Isidori, EPJC 13
• DG, Isidori, 1302.3909

☑ Impact on new physics within an effective-theory approach

With minimal assumptions, possible to correlate B
s
 → µµ  to  Z-peak observables from LEP

One-slide summary about what theory calculates vs. what exp measures
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SM prediction:
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Impact on above central value arguably 
small (~ O(1%)) in appropriate scheme

Final answer only from full calculation

See talk 
by M. Gorbahn
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B
s
 → µµ and new physics



  

BR[B
s
→+-]  beyond the SM

Beyond the SM, 
a total of 6 operators can contribute:

(One may write also two tensor operators,
 but their matrix elements vanish for this process.)

Model-independent approach: effective operators☑
O A ≡ ( b̄γL

α s ) (μ̄ γα γ5μ ) O ' A ≡ ( b̄γR
α s ) (μ̄ γαγ5μ )

O ' S ≡ (b̄ PR s ) (μ̄μ )OS ≡ ( b̄ PL s ) (μ̄μ )

O ' P ≡ ( b̄ PR s ) (μ̄ γ5μ )O P ≡ ( b̄ PL s ) (μ̄ γ5μ )

SM operator
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 Effective theory

☑ Shifts in Zdd couplings can be implemented as contributions from effective operators (→ minimal model dep.)

The only operators relevant to the problem are of the form:
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Comments

Three such structures compatible with 
the SM gauge group

Other operators yield negligible effects 
in either Z-peak obs or in B

s
 → µµ
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The only operators relevant to the problem are of the form:

4-fermion ops. negligible in Zbb

ops. involving field-strength tensors 
negligible in B

s
 → µµ

●

●

☑

☑

☑ In this approach, there is a correlation between Z → b b  and B
s
 → µµ.

Within frameworks as general (and motivated) as:

Minimal Flavor Violation●

Partial Compositeness●

or

the X i j  can be fixed up to O(1) factors 
(that btw weigh equally between Zbb and B

s
 → µµ)

This correlation is fixed, after specifying the X i j couplings.

See: D'Ambrosio et al., NPB 02

See: 
Davidson, Isidori, Uhlig, PLB 08;
Keren-Zur et al., NPB 13
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☑ MFV is the statement that – even beyond the SM – the only structures that break the flavor symmetry 
are the SM Yukawa couplings

 Fixing the couplings.  Case 1: MFV

This statement fixes the flavor structure of new operators.☑
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† Ŷ u Y d=Ŷ d
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☑ MFV is the statement that – even beyond the SM – the only structures that break the flavor symmetry 
are the SM Yukawa couplings

 Fixing the couplings.  Case 1: MFV

This statement fixes the flavor structure of new operators.

X i j =O (1)×(Y u Y u
†)ij

☑

δ g L
32 =

V tb
* V ts

∣V tb∣
2

δ g L

flavor structure
(fixed within the framework)

Most relevantly, this fixes univocally the correlation between the flavor-off-diag.
and the flavor-diag. coupling:

shift in the 
Zbs coupling:

 affects B
s
 → µµ

shift in 
Z → b b

Example: operators with the bilinear Q L
i γμ X i j Q L

j
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 Fixing the couplings.  Case 2: Partial Compositeness
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☑ Basic observation #2.

 Fixing the couplings.  Case 2: Partial Compositeness
See e.g.:
Keren-Zur et al., NPB 13
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D. Guadagnoli, Portoroz 2013



  

☑ Basic observation #2.

 Fixing the couplings.  Case 2: Partial Compositeness
See e.g.:
Keren-Zur et al., NPB 13

The very same Y
u,d

 pattern as above arises in scenarios of Partial Compositeness.

The defining property of (fermion) Partial Compositeness is as follows.

At a cutoff scale Λ, the SM fermions f
i
 couple linearly to operators O

i
  of a confining sector: 

= ϵi f i Oiinteractions

D. Guadagnoli, Portoroz 2013



  

☑ Basic observation #2.

 Fixing the couplings.  Case 2: Partial Compositeness
See e.g.:
Keren-Zur et al., NPB 13

The very same Y
u,d

 pattern as above arises in scenarios of Partial Compositeness.

The defining property of (fermion) Partial Compositeness is as follows.

At a cutoff scale Λ, the SM fermions f
i
 couple linearly to operators O

i
  of a confining sector: 

= ϵi f i Oiinteractions ● the ϵ
i
  measure the degree of compositeness of  f

i

● apart from an overall factor, the ϵ
i
 can be identified 

with the z
i
 of the previous picture

D. Guadagnoli, Portoroz 2013



  

☑ Basic observation #2.

 Fixing the couplings.  Case 2: Partial Compositeness
See e.g.:
Keren-Zur et al., NPB 13

The very same Y
u,d

 pattern as above arises in scenarios of Partial Compositeness.

The defining property of (fermion) Partial Compositeness is as follows.

At a cutoff scale Λ, the SM fermions f
i
 couple linearly to operators O

i
  of a confining sector: 

= ϵi f i Oiinteractions ● the ϵ
i
  measure the degree of compositeness of  f

i

● apart from an overall factor, the ϵ
i
 can be identified 

with the z
i
 of the previous picture

The two pictures are completely equivalent – at least within our context

From the second picture it is evident that the relevant low-energy d.o.f. are not  f
i
 , but rather ϵ

i fi

Building our EFT with ϵ
i fi

  the flavor structure is fixed – apart from O(1) factors

Main points

●

●

D. Guadagnoli, Portoroz 2013



  

☑ Basic observation #2.

 Fixing the couplings.  Case 2: Partial Compositeness
See e.g.:
Keren-Zur et al., NPB 13

The very same Y
u,d

 pattern as above arises in scenarios of Partial Compositeness.

The defining property of (fermion) Partial Compositeness is as follows.

At a cutoff scale Λ, the SM fermions f
i
 couple linearly to operators O

i
  of a confining sector: 

= ϵi f i Oiinteractions ● the ϵ
i
  measure the degree of compositeness of  f

i

● apart from an overall factor, the ϵ
i
 can be identified 

with the z
i
 of the previous picture

The two pictures are completely equivalent – at least within our context

Example

From the second picture it is evident that the relevant low-energy d.o.f. are not  f
i
 , but rather ϵ

i fi

Building our EFT with ϵ
i fi

  the flavor structure is fixed – apart from O(1) factors

Main points

●

●

Flavor structure of the RH operator O1R
32 ≡ i (bRγ

μ sR ) H
†DμH

D. Guadagnoli, Portoroz 2013



  

☑ Basic observation #2.

 Fixing the couplings.  Case 2: Partial Compositeness
See e.g.:
Keren-Zur et al., NPB 13

The very same Y
u,d

 pattern as above arises in scenarios of Partial Compositeness.

The defining property of (fermion) Partial Compositeness is as follows.

At a cutoff scale Λ, the SM fermions f
i
 couple linearly to operators O

i
  of a confining sector: 

= ϵi f i Oiinteractions ● the ϵ
i
  measure the degree of compositeness of  f

i

● apart from an overall factor, the ϵ
i
 can be identified 

with the z
i
 of the previous picture

The two pictures are completely equivalent – at least within our context

Example

From the second picture it is evident that the relevant low-energy d.o.f. are not  f
i
 , but rather ϵ

i fi

Building our EFT with ϵ
i fi

  the flavor structure is fixed – apart from O(1) factors

Main points
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2

mb
2

δ g R

D. Guadagnoli, Portoroz 2013



  

  BR[B
s
 → µµ] as an EWPT: results

☑ One can then compare the limits on δg
L , R

 obtained from Z-peak obs with those obtained from B
s
 → µµ

DG, Isidori, 1302.3909
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B
s
 → µµ: SM vs. exp☑

Parametric error (f
Bs 

, CKM) likely to improve soon•

(Known) sources of systematics under control, or going to become so•

Overall accuracy expected at ~ 10% by 2018  (dominated by exp)•



  

Conclusions

B
s
 → µµ and new physics☑

To the extent that no deviations wrt the SM prediction are observed, 
it is a (formidable) null test of  new physics

•

One example of B
s
 → µµ constraining power:•

able to test even tiny deviations in Z-down-quark couplings

O(10-5) deviations in couplings to RH down-quarks: way more stringent than EWPO

–

E.g., within generic partial compositeness:–
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Systematics from soft radiation

Ideally, the final state is a µµ-pair such that m
µµ

 ≈  m
Bs

    In practice, this final state may come with a number of soft, 
undetected, photons, so that what one is actually measuring is:

☑

BR(B s→μμ) + BR(B s→μμ+nγ)∣n≠0 [(dominant) sub-leading e.m. correction to the BR] 
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real emitted soft photons

cutoff 1 = ∑i
E γ i = E cut{

cutoff of exp origin:
minimum energy that one or more 
γ have to have to be detectable

●

[(dominant) sub-leading e.m. correction to the BR] 


Beware: this correction is already 

taken into account by LHCb

D. Guadagnoli, Portoroz 2013



  

Systematics from soft radiation

Ideally, the final state is a µµ-pair such that m
µµ

 ≈  m
Bs

    In practice, this final state may come with a number of soft, 
undetected, photons, so that what one is actually measuring is:

☑

BR(B s→μμ) + BR(B s→μμ+nγ)∣n≠0

Why should this correction be significant?

Main physics argument

A proper treatment of soft photons must sum up the contribution from an arbitrary number of:

real emitted soft photons virtual soft photons+

cutoff 1 = ∑i
E γ i = E cut cutoff 2 = Λ ≤

mBs

2{ {

cutoff of exp origin:
minimum energy that one or more 
γ have to have to be detectable

kinematic limit of the energy 
that a virtual γ can have

●

[(dominant) sub-leading e.m. correction to the BR] 


Beware: this correction is already 

taken into account by LHCb

D. Guadagnoli, Portoroz 2013



  

Systematics from soft radiation

Ideally, the final state is a µµ-pair such that m
µµ

 ≈  m
Bs

    In practice, this final state may come with a number of soft, 
undetected, photons, so that what one is actually measuring is:

☑

BR(B s→μμ) + BR(B s→μμ+nγ)∣n≠0

Why should this correction be significant?

Main physics argument

A proper treatment of soft photons must sum up the contribution from an arbitrary number of:

real emitted soft photons virtual soft photons+

cutoff 1 = ∑i
E γ i = E cut cutoff 2 = Λ ≤

mBs

2{ {

cutoff of exp origin:
minimum energy that one or more 
γ have to have to be detectable

kinematic limit of the energy 
that a virtual γ can have

Furthermore, the two contributions, separately, have each an IR cutoff.

●

●

[(dominant) sub-leading e.m. correction to the BR] 


Beware: this correction is already 

taken into account by LHCb

D. Guadagnoli, Portoroz 2013



  

Systematics from soft radiation

Ideally, the final state is a µµ-pair such that m
µµ

 ≈  m
Bs

    In practice, this final state may come with a number of soft, 
undetected, photons, so that what one is actually measuring is:

☑

BR(B s→μμ) + BR(B s→μμ+nγ)∣n≠0

Why should this correction be significant?

Main physics argument

A proper treatment of soft photons must sum up the contribution from an arbitrary number of:

real emitted soft photons virtual soft photons+

cutoff 1 = ∑i
E γ i = E cut cutoff 2 = Λ ≤

mBs

2{ {

cutoff of exp origin:
minimum energy that one or more 
γ have to have to be detectable

kinematic limit of the energy 
that a virtual γ can have

Furthermore, the two contributions, separately, have each an IR cutoff.

●

●

[(dominant) sub-leading e.m. correction to the BR] 



BR(B s→μμ[+n γ])∣∑ E γ i≤E cut
= ( Ecut

mBs
/ 2 )

α e.m.

π #
⋅BR(Bs→μμ)th

Since the two cutoffs are (generally) vastly different, the correction may well be important – and in fact it is.
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