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MSSM with R-parity

the SU(4)L̂ symmetry it is always possible, without loss of generality, to redefine the L̂α

superfield in such a way that only the fourth component acquires a VEV. Then we define

operatively the Higgs in such a way that it corresponds to the component which develops

a VEV, ĥd ≡ L̂4, while the leptons do not, �̂i ≡ L̂i.

Despite our notation makes explicit the underlying non-abelian flavour symmetry

SU(3)
4 ⊗ SU(4), it is also useful to translate it into the more common SU(3)

5
language.

This connection is provided in Appendix A. Then we can formally split the superpotential

in Eq. (8) in an RPC and an RPV term
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and similarly for the soft terms (cf. again Appendix A).

The MFV expansion in Eq. (14) can be easily decomposed in the SU(3)
5

language by

means of the dictionary given in Eq. (49) of Appendix A
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where for simplicity we have truncated the expansion at the second order in the spurions.

If R-parity is an exact symmetry of the MSSM then neutrinos are massless and there

is no lepton flavor violation. Consequently the flavor violation in the lepton sector can

be linked to the amount of R-parity violation. For instance the RPV couplings in the

expansion of m̃2
� in Eq. (17) are responsible for flavour violating mass insertions leading

to processes like �i → �jγ.
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•Most generic superpotential

• B and L numbers violating couplings
• Dangerous contribution to the proton decay

Figure 6.5: Squarks would mediate disas-
trously rapid proton decay ifR-parity were
violated by both ∆B = 1 and ∆L = 1 in-
teractions. This example shows p → e+π0

mediated by a strange (or bottom) squark. u
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assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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where for simplicity we have truncated the expansion at the second order in the spurions.

If R-parity is an exact symmetry of the MSSM then neutrinos are massless and there

is no lepton flavor violation. Consequently the flavor violation in the lepton sector can

be linked to the amount of R-parity violation. For instance the RPV couplings in the

expansion of m̃2
� in Eq. (17) are responsible for flavour violating mass insertions leading

to processes like �i → �jγ.
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assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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• Possible solution: MSSM + R-parity

• Consequences:

in eq. (6.1.1) are allowed. This discrete symmetry commutes with supersymmetry, as all members of
a given supermultiplet have the same matter parity. The advantage of matter parity is that it can
in principle be an exact and fundamental symmetry, which B and L themselves cannot, since they
are known to be violated by non-perturbative electroweak effects. So even with exact matter parity
conservation in the MSSM, one expects that baryon number and total lepton number violation can
occur in tiny amounts, due to non-renormalizable terms in the Lagrangian. However, the MSSM does
not have renormalizable interactions that violate B or L, with the standard assumption of matter parity
conservation.

It is often useful to recast matter parity in terms of R-parity, defined for each particle as

PR = (−1)3(B−L)+2s (6.2.5)

where s is the spin of the particle. Now, matter parity conservation and R-parity conservation are
precisely equivalent, since the product of (−1)2s for the particles involved in any interaction vertex in
a theory that conserves angular momentum is always equal to +1. However, particles within the same
supermultiplet do not have the same R-parity. In general, symmetries with the property that fields
within the same supermultiplet have different transformations are called R symmetries; they do not
commute with supersymmetry. Continuous U(1) R symmetries were described in section 4.11, and are
often encountered in the model-building literature; they should not be confused with R-parity, which is
a discrete Z2 symmetry. In fact, the matter parity version of R-parity makes clear that there is really
nothing intrinsically “R” about it; in other words it secretly does commute with supersymmetry, so its
name is somewhat suboptimal. Nevertheless, the R-parity assignment is very useful for phenomenology
because all of the Standard Model particles and the Higgs bosons have even R-parity (PR = +1), while
all of the squarks, sleptons, gauginos, and higgsinos have odd R-parity (PR = −1).

The R-parity odd particles are known as “supersymmetric particles” or “sparticles” for short, and
they are distinguished by a tilde (see Tables 1.1 and 1.2). If R-parity is exactly conserved, then there can
be no mixing between the sparticles and the PR = +1 particles. Furthermore, every interaction vertex
in the theory contains an even number of PR = −1 sparticles. This has three extremely important
phenomenological consequences:

• The lightest sparticle with PR = −1, called the “lightest supersymmetric particle” or LSP, must
be absolutely stable. If the LSP is electrically neutral, it interacts only weakly with ordinary
matter, and so can make an attractive candidate [71] for the non-baryonic dark matter that
seems to be required by cosmology.

• Each sparticle other than the LSP must eventually decay into a state that contains an odd number
of LSPs (usually just one).

• In collider experiments, sparticles can only be produced in even numbers (usually two-at-a-time).

We define the MSSM to conserve R-parity or equivalently matter parity. While this decision seems
to be well-motivated phenomenologically by proton decay constraints and the hope that the LSP will
provide a good dark matter candidate, it might appear somewhat artificial from a theoretical point of
view. After all, the MSSM would not suffer any internal inconsistency if we did not impose matter
parity conservation. Furthermore, it is fair to ask why matter parity should be exactly conserved,
given that the discrete symmetries in the Standard Model (ordinary parity P , charge conjugation C,
time reversal T , etc.) are all known to be inexact symmetries. Fortunately, it is sensible to formulate
matter parity as a discrete symmetry that is exactly conserved. In general, exactly conserved, or
“gauged” discrete symmetries [72] can exist provided that they satisfy certain anomaly cancellation
conditions [73] (much like continuous gauged symmetries). One particularly attractive way this could
occur is if B−L is a continuous gauge symmetry that is spontaneously broken at some very high energy
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Figure 6.5: Squarks would mediate disas-
trously rapid proton decay ifR-parity were
violated by both ∆B = 1 and ∆L = 1 in-
teractions. This example shows p → e+π0

mediated by a strange (or bottom) squark. u
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assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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(i) Lightest SUSY particle stable, possible DM candidate
(ii) SUSY particle pair produced at colliders
(iii) Each S-particle decay chain ends with an odd numbers of LSP (missing energy @ LHC)
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3) R-Parity violation is welcome

R-parity conservation leads to the prototypical SUSY signal: missing energy.

mq̃, mg̃ � 1 TeV

Bounds can be relaxed in the presence of RPV
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Figure 10: Neutralino/gluino (left) and chargino (right) LSP decays.

left-right mass insertion. In this case, the partial widths Γ(b̃L → ūid̄j) are

Γij ∼
mb̃

8π
y2b |λ��

ij3|2 , (7.6)

giving a total lifetime

τb̃L ∼ (41 µm)

�
10

tan β

�6 �300 GeV

mb̃L

�
. (7.7)

Thus, displaced vertices are expected at low tanβ, as illustrated in Fig. 8. The phenomenol-
ogy is distinct from that of a stop LSP: roughly 99% of decays will be to top and strange
or top and down quarks, with less than one percent going to charm and strange quarks,
and a small fraction to other final states. Thus, an increase in top quark production is ex-
pected, with most SUSY events containing at least two top-jets. However, fewer b-jets will
be produced, except those arising from top decays.7

Otherwise, the LSP can be a chargino, a neutralino, or a slepton. Each of these will
give a distinct phenomenology. Assuming that the LSP is a neutralino, its decay will be
dominated by the diagram in Fig. 10. The width is approximately

ΓÑ ∼ mÑ

128 π3
|λ��

tsb|2 , (7.8)

where we estimate a phase-space suppression of 1/16π2 for each additional final state particle.
The lifetime is then

τÑ ∼ (12 µm)

�
20

tan β

�4 �300 GeV

mÑ

�
. (7.9)

As shown in Fig. 11, this scenario is much more likely to produce displaced vertices, although
they can still be avoided in a sizable region of parameter space. Thus, for the case of a
neutralino LSP the expected signal of SUSY would be an increase in the top production
cross section (since the LSP decay involves top quarks), including potentially same-sign
tops, and possibly also displaced vertices for the lights jets. A gluino LSP would decay in
a very similar fashion to a neutralino LSP, whereas a chargino LSP would have a similar
lifetime, but would usually decay via two b-jets without a top quark, as shown in Fig. 10.

The case of a chargino LSP is very similar to that of a neutralino. The one significant
difference, as can be seen from Fig. 10, is that in the chargino case we expect no top in the
final state, and instead expect more b jets.

7If mb̃
<∼ mt, the phenomenology will be different yet again, with displaced vertices more likely due the

reduced width, but no extra top production.
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Table 7.3
Direct decays of neutralinos and charginos with trilinear operators !ijkLiLj Ēk , !′

ijkLiQj D̄k and !′′
ijkŪi D̄j D̄k

Supersymmetric Couplings

particles !ijk !′
ijk !′′

ijk

"̃0 !+
i #̄j !−

k , !−
i #j !+

k , !+
i ūj dk, !−

i uj d̄k , ūi d̄j d̄k, uidj dk

#̄i!
+
j !−

k , #i!
−
j !+

k #̄i d̄j dk, #idj d̄k

"̃+ !+
i !+

j !−
k , !+

i #̄j #k !+
i d̄j dk, !+

i ūj uk uidj uk, uiuj dk

#̄i!
+
j #k, #i#j !+

k #̄i d̄j uk, #iuj d̄k d̄i d̄j d̄k

Fig. 7.1. Diagrams for the direct decays of the neutralino "̃0l via the coupling !ijk of the trilinear LiLj Ec
k interaction. The index l = 1 . . . 4

determines the mass eigenstate of the neutralino. The indices i, j, k = 1, 2, 3 correspond to the generation. Gauge invariance forbids i = j . The
index $ = 1, 2 gives the slepton mass eigenstate (i.e. the chirality of the Standard Model lepton partner in absence of mixing).

In the case of squarks or sleptons of the third generation, a possible mixing between supersymmetric partners of left-
and right-handed fermions has to be taken into account. For instance, the width of the lightest stop t̃1 writes [438]:

%(t̃1 → !+
i dk) = 1

16&
!′
ijk

′2cos2('t )mt̃1 , (7.4)

where 't is the mixing angle of top squarks. The case of the stop is somewhat special. The typical decay time of a
100GeV stop via a decay mode is roughly 3× 10−23 s for a coupling value of 10−1, and 3× 10−21 s for a coupling
value of 10−2. So the stop decay time is of the same order or even greater than its hadronization time which from
the strong interaction is O(10−23) s. Thus, the stop may hadronize before it decays.

7.3.2. Direct decays of gauginos–higgsinos
In a direct decay, the neutralino (chargino) decays into a fermion and a virtual sfermion with this virtual sfermion

subsequently decaying to standard fermions via a coupling. Thus, direct decays of gauginos–higgsinos are
characterized by three fermions in the final state with the fermion type depending on the dominant coupling. The
possible decays are listed in Table 7.3. The corresponding diagrams are shown for the LiLjE

c
k interactions in Figs. 7.1

and 7.2.
A collection of general expressions for three-body decays and matrix elements entering in the calculation of partial

widths can be found in Appendix C. In the case of a pure photino neutralino decaying with !ijk , the expression for the
partial width simplifies [34] to

% = !2ijk

$
128&2

m5
"̃01

m4
f̃

(7.5)

with mf̃ the mass of the virtual slepton in the decay. Further details can be found in Ref. [439].
In practice, the LSP lifetime is a crucial observable when discussing the final state topology to be expected for

supersymmetric events. The experimental sensitivity of collider experiments is often optimal if the LSP has a negligible

No missing 
energy!
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Thus, displaced vertices are expected at low tanβ, as illustrated in Fig. 8. The phenomenol-
ogy is distinct from that of a stop LSP: roughly 99% of decays will be to top and strange
or top and down quarks, with less than one percent going to charm and strange quarks,
and a small fraction to other final states. Thus, an increase in top quark production is ex-
pected, with most SUSY events containing at least two top-jets. However, fewer b-jets will
be produced, except those arising from top decays.7

Otherwise, the LSP can be a chargino, a neutralino, or a slepton. Each of these will
give a distinct phenomenology. Assuming that the LSP is a neutralino, its decay will be
dominated by the diagram in Fig. 10. The width is approximately
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As shown in Fig. 11, this scenario is much more likely to produce displaced vertices, although
they can still be avoided in a sizable region of parameter space. Thus, for the case of a
neutralino LSP the expected signal of SUSY would be an increase in the top production
cross section (since the LSP decay involves top quarks), including potentially same-sign
tops, and possibly also displaced vertices for the lights jets. A gluino LSP would decay in
a very similar fashion to a neutralino LSP, whereas a chargino LSP would have a similar
lifetime, but would usually decay via two b-jets without a top quark, as shown in Fig. 10.

The case of a chargino LSP is very similar to that of a neutralino. The one significant
difference, as can be seen from Fig. 10, is that in the chargino case we expect no top in the
final state, and instead expect more b jets.

7If mb̃
<∼ mt, the phenomenology will be different yet again, with displaced vertices more likely due the
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In the case of squarks or sleptons of the third generation, a possible mixing between supersymmetric partners of left-
and right-handed fermions has to be taken into account. For instance, the width of the lightest stop t̃1 writes [438]:
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where 't is the mixing angle of top squarks. The case of the stop is somewhat special. The typical decay time of a
100GeV stop via a decay mode is roughly 3× 10−23 s for a coupling value of 10−1, and 3× 10−21 s for a coupling
value of 10−2. So the stop decay time is of the same order or even greater than its hadronization time which from
the strong interaction is O(10−23) s. Thus, the stop may hadronize before it decays.

7.3.2. Direct decays of gauginos–higgsinos
In a direct decay, the neutralino (chargino) decays into a fermion and a virtual sfermion with this virtual sfermion

subsequently decaying to standard fermions via a coupling. Thus, direct decays of gauginos–higgsinos are
characterized by three fermions in the final state with the fermion type depending on the dominant coupling. The
possible decays are listed in Table 7.3. The corresponding diagrams are shown for the LiLjE
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k interactions in Figs. 7.1

and 7.2.
A collection of general expressions for three-body decays and matrix elements entering in the calculation of partial

widths can be found in Appendix C. In the case of a pure photino neutralino decaying with !ijk , the expression for the
partial width simplifies [34] to
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with mf̃ the mass of the virtual slepton in the decay. Further details can be found in Ref. [439].
In practice, the LSP lifetime is a crucial observable when discussing the final state topology to be expected for
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Thus, displaced vertices are expected at low tanβ, as illustrated in Fig. 8. The phenomenol-
ogy is distinct from that of a stop LSP: roughly 99% of decays will be to top and strange
or top and down quarks, with less than one percent going to charm and strange quarks,
and a small fraction to other final states. Thus, an increase in top quark production is ex-
pected, with most SUSY events containing at least two top-jets. However, fewer b-jets will
be produced, except those arising from top decays.7

Otherwise, the LSP can be a chargino, a neutralino, or a slepton. Each of these will
give a distinct phenomenology. Assuming that the LSP is a neutralino, its decay will be
dominated by the diagram in Fig. 10. The width is approximately
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As shown in Fig. 11, this scenario is much more likely to produce displaced vertices, although
they can still be avoided in a sizable region of parameter space. Thus, for the case of a
neutralino LSP the expected signal of SUSY would be an increase in the top production
cross section (since the LSP decay involves top quarks), including potentially same-sign
tops, and possibly also displaced vertices for the lights jets. A gluino LSP would decay in
a very similar fashion to a neutralino LSP, whereas a chargino LSP would have a similar
lifetime, but would usually decay via two b-jets without a top quark, as shown in Fig. 10.

The case of a chargino LSP is very similar to that of a neutralino. The one significant
difference, as can be seen from Fig. 10, is that in the chargino case we expect no top in the
final state, and instead expect more b jets.

7If mb̃
<∼ mt, the phenomenology will be different yet again, with displaced vertices more likely due the

reduced width, but no extra top production.

23

R. Barbier et al. / Physics Reports 420 (2005) 1–195 121

Table 7.3
Direct decays of neutralinos and charginos with trilinear operators !ijkLiLj Ēk , !′
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where 't is the mixing angle of top squarks. The case of the stop is somewhat special. The typical decay time of a
100GeV stop via a decay mode is roughly 3× 10−23 s for a coupling value of 10−1, and 3× 10−21 s for a coupling
value of 10−2. So the stop decay time is of the same order or even greater than its hadronization time which from
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Thus, displaced vertices are expected at low tanβ, as illustrated in Fig. 8. The phenomenol-
ogy is distinct from that of a stop LSP: roughly 99% of decays will be to top and strange
or top and down quarks, with less than one percent going to charm and strange quarks,
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ΓÑ ∼ mÑ
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As shown in Fig. 11, this scenario is much more likely to produce displaced vertices, although
they can still be avoided in a sizable region of parameter space. Thus, for the case of a
neutralino LSP the expected signal of SUSY would be an increase in the top production
cross section (since the LSP decay involves top quarks), including potentially same-sign
tops, and possibly also displaced vertices for the lights jets. A gluino LSP would decay in
a very similar fashion to a neutralino LSP, whereas a chargino LSP would have a similar
lifetime, but would usually decay via two b-jets without a top quark, as shown in Fig. 10.

The case of a chargino LSP is very similar to that of a neutralino. The one significant
difference, as can be seen from Fig. 10, is that in the chargino case we expect no top in the
final state, and instead expect more b jets.
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i ūj uk uidj uk, uiuj dk

#̄i!
+
j #k, #i#j !+

k #̄i d̄j uk, #iuj d̄k d̄i d̄j d̄k

Fig. 7.1. Diagrams for the direct decays of the neutralino "̃0l via the coupling !ijk of the trilinear LiLj Ec
k interaction. The index l = 1 . . . 4

determines the mass eigenstate of the neutralino. The indices i, j, k = 1, 2, 3 correspond to the generation. Gauge invariance forbids i = j . The
index $ = 1, 2 gives the slepton mass eigenstate (i.e. the chirality of the Standard Model lepton partner in absence of mixing).

In the case of squarks or sleptons of the third generation, a possible mixing between supersymmetric partners of left-
and right-handed fermions has to be taken into account. For instance, the width of the lightest stop t̃1 writes [438]:

%(t̃1 → !+
i dk) = 1

16&
!′
ijk

′2cos2('t )mt̃1 , (7.4)

where 't is the mixing angle of top squarks. The case of the stop is somewhat special. The typical decay time of a
100GeV stop via a decay mode is roughly 3× 10−23 s for a coupling value of 10−1, and 3× 10−21 s for a coupling
value of 10−2. So the stop decay time is of the same order or even greater than its hadronization time which from
the strong interaction is O(10−23) s. Thus, the stop may hadronize before it decays.

7.3.2. Direct decays of gauginos–higgsinos
In a direct decay, the neutralino (chargino) decays into a fermion and a virtual sfermion with this virtual sfermion

subsequently decaying to standard fermions via a coupling. Thus, direct decays of gauginos–higgsinos are
characterized by three fermions in the final state with the fermion type depending on the dominant coupling. The
possible decays are listed in Table 7.3. The corresponding diagrams are shown for the LiLjE

c
k interactions in Figs. 7.1

and 7.2.
A collection of general expressions for three-body decays and matrix elements entering in the calculation of partial

widths can be found in Appendix C. In the case of a pure photino neutralino decaying with !ijk , the expression for the
partial width simplifies [34] to
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with mf̃ the mass of the virtual slepton in the decay. Further details can be found in Ref. [439].
In practice, the LSP lifetime is a crucial observable when discussing the final state topology to be expected for

supersymmetric events. The experimental sensitivity of collider experiments is often optimal if the LSP has a negligible
•Requiring a prompt decay (ex. Neutralino LSP)
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Figure 10: Neutralino/gluino (left) and chargino (right) LSP decays.

left-right mass insertion. In this case, the partial widths Γ(b̃L → ūid̄j) are
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giving a total lifetime
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Thus, displaced vertices are expected at low tanβ, as illustrated in Fig. 8. The phenomenol-
ogy is distinct from that of a stop LSP: roughly 99% of decays will be to top and strange
or top and down quarks, with less than one percent going to charm and strange quarks,
and a small fraction to other final states. Thus, an increase in top quark production is ex-
pected, with most SUSY events containing at least two top-jets. However, fewer b-jets will
be produced, except those arising from top decays.7

Otherwise, the LSP can be a chargino, a neutralino, or a slepton. Each of these will
give a distinct phenomenology. Assuming that the LSP is a neutralino, its decay will be
dominated by the diagram in Fig. 10. The width is approximately

ΓÑ ∼ mÑ

128 π3
|λ��

tsb|2 , (7.8)

where we estimate a phase-space suppression of 1/16π2 for each additional final state particle.
The lifetime is then

τÑ ∼ (12 µm)

�
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�
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As shown in Fig. 11, this scenario is much more likely to produce displaced vertices, although
they can still be avoided in a sizable region of parameter space. Thus, for the case of a
neutralino LSP the expected signal of SUSY would be an increase in the top production
cross section (since the LSP decay involves top quarks), including potentially same-sign
tops, and possibly also displaced vertices for the lights jets. A gluino LSP would decay in
a very similar fashion to a neutralino LSP, whereas a chargino LSP would have a similar
lifetime, but would usually decay via two b-jets without a top quark, as shown in Fig. 10.

The case of a chargino LSP is very similar to that of a neutralino. The one significant
difference, as can be seen from Fig. 10, is that in the chargino case we expect no top in the
final state, and instead expect more b jets.

7If mb̃
<∼ mt, the phenomenology will be different yet again, with displaced vertices more likely due the

reduced width, but no extra top production.
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ijkŪi D̄j D̄k

Supersymmetric Couplings

particles !ijk !′
ijk !′′

ijk

"̃0 !+
i #̄j !−

k , !−
i #j !+

k , !+
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Fig. 7.1. Diagrams for the direct decays of the neutralino "̃0l via the coupling !ijk of the trilinear LiLj Ec
k interaction. The index l = 1 . . . 4

determines the mass eigenstate of the neutralino. The indices i, j, k = 1, 2, 3 correspond to the generation. Gauge invariance forbids i = j . The
index $ = 1, 2 gives the slepton mass eigenstate (i.e. the chirality of the Standard Model lepton partner in absence of mixing).

In the case of squarks or sleptons of the third generation, a possible mixing between supersymmetric partners of left-
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where 't is the mixing angle of top squarks. The case of the stop is somewhat special. The typical decay time of a
100GeV stop via a decay mode is roughly 3× 10−23 s for a coupling value of 10−1, and 3× 10−21 s for a coupling
value of 10−2. So the stop decay time is of the same order or even greater than its hadronization time which from
the strong interaction is O(10−23) s. Thus, the stop may hadronize before it decays.

7.3.2. Direct decays of gauginos–higgsinos
In a direct decay, the neutralino (chargino) decays into a fermion and a virtual sfermion with this virtual sfermion

subsequently decaying to standard fermions via a coupling. Thus, direct decays of gauginos–higgsinos are
characterized by three fermions in the final state with the fermion type depending on the dominant coupling. The
possible decays are listed in Table 7.3. The corresponding diagrams are shown for the LiLjE
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with mf̃ the mass of the virtual slepton in the decay. Further details can be found in Ref. [439].
In practice, the LSP lifetime is a crucial observable when discussing the final state topology to be expected for

supersymmetric events. The experimental sensitivity of collider experiments is often optimal if the LSP has a negligible
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I. INTRODUCTION

Supersymmetric scenarios without R-parity have re-
ceived a renewed interest after the negative results of
SUSY searches at the LHC [1–6]. R-parity accounts
for the stability of the lightest supersymmetric particle
(LSP), whose escape from the detector gives rise to the
prototypical supersymmetry signal: missing energy. R-
parity violation (RPV) may allow supersymmetric par-
ticles to evade the latter, stringent searches. In particu-
lar, it has been argued that scenarios in which R-parity
is violated through baryon-number-violating interactions
could be particularly suited to hide supersymmetric sig-
nals into QCD backgrounds, thus implying a significant
reduction of the current LHC lower bounds on the mass
of the superpartners. Hence the intense research activity
on the subject in the last year [7–26].

In order for baryon number violating RPV operators
to be sizeable enough to hide supersymmetric particles,
lepton nunber violating operators should be very sup-
pressed, possibly absent. The simultaneous presence of
∆B �= 0 and∆L �= 0 interactions is in fact extremely con-
strained by matter stability. Let us remind in fact that
R-parity was originally introduced in order to obtain (ac-
cidental) lepton and baryon number conservation in the
MSSM, thus protecting it from renormalizable sources of
potentially way too large proton decay rate and neutrino
masses. However, it is known that it suffices to assume
the absence of R-parity lepton number violating opera-
tors, by means of a “leptonic R-parity”, to get rid of such
sources [].

Introducing baryonic RPV is therefore relatively safe
if leptonic RPV is absent. On the other hand, one can
wonder whether such an asymmetry between lepton and
baryon number violating operators is compatible with
grand unification theories (GUTs). After all, one of the
motivations to persist on supersymmetric models despite
the squeezing of the allowed, natural parameter space
is the very success of supersymmetric grand unification.
This is the issue we would like to address in this paper.
While leptonic RPV in GUTs has been investigated in a
number of papers, see e.g. [5, 27–34], much less attention
was devoted to baryonic RPV.

In the presence of grand unification, the natural expec-
tation is that baryonic and leptonic RPV couplings are
either absent or simultaneously present, as quarks and
leptons share the same grand-unified multiplets [35–40].
Indeed, SU(5) invariance forces baryonic RPV to be ac-
companied by leptonic RPV. However, a source of the
asymmetry between the two types of RPV can be gener-
ated by SU(5) breaking.

To be more specific let us state our problem in the
following terms: we would like to find a supersymmetric

GUT whose low-energy limit, well below the unification
scale MG, is described by the MSSM field content and
gauge group and by a superpotential whose renormaliz-
able part is given by

W ren
eff = WMSSM + λ��

ijku
c
id

c
jd

c
k, (1)

where λ��
ijk is antisymmetric in the flavour indices j, k.

The extra operator violates R-parity and baryon number
(∆B = −1). Since grand unified gauge groups trans-
forms leptons into baryons (preserving B−L in the min-
imal case of SU(5)), one would expect that operator to
be accompanied by RPV and lepton-number violating
(∆L = 1) operators such as λijkeci lj lk and λ�

ijkqid
c
j lk.

Indeed, in minimal SU(5) grand unification dci and li are
unified in a 5i and qi, uc

i , e
c
i are unified in a 10i and the

three above operators all come from Λijk10i5j5k, which
gives λijk = 1

2λ
�
ijk = λ��

ijk = Λijk. In this case, the
bounds from matter stability require Λijk to be smaller
than at least 10−10 for any value of i, j, k and for su-
perpartners around the TeV scale [28]. Such a tiny cou-
pling would be irrelevant for collider physics since the
LSP would be stable on the scale of the detector size.
Hence, obtaining sizeable λ�� in the presence of vanishing
λ, λ� is not a trivial task.

To our knowledge, such a problem was only considered
in the context of SU(5) by Smirnov and Vissani [28] and
by Tamvakis [41]1. In [28], the vanishing of λ and λ� was
achieved through by fine-tuning independent parameters,
similar to the one necessary to achieve doublet-triplet
splitting in the Higgs sector. In ref. [41], a mechanism
similar to the missing-partner solution of the 2–3 splitting
in SU(5) [42, 43] was considered, at the price of introduc-
ing a number of relatively large representations. In this
paper we will show that the superpotential in Eq. (1) can
be obtained without the need of fine-tuning in a relatively
simple SO(10) model involving only fundamental, spino-
rial, and adjoint representations, provided that a vev for
the adjoint along the T3R direction can be achieved.

Also, we point out some phenomenological conse-
quences of the non-generic flavour structure of the GUT-
induced λ�� couplings. In particular, just due to some
mild minimality assumptions, in a large class of GUT
models where λ�� is generated without fine-tuning one
ends up with a flavour structure of the type λ��

ijk ∝
αi(βjγk − βkγj), where αi, βj and γk are 3-vectors in
flavour space, thus leading to specific correlations among
the low-energy couplings.

1 There also exist models of baryonic R-parity violation in Flipped-
SU(5) [32, 41] and SU(5)⊗ SU(3) [22].
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1 There also exist models of baryonic R-parity violation in Flipped-
SU(5) [32, 41] and SU(5)⊗ SU(3) [22].

•In minimal SU(5), at the renormalizable level the only term able to generate 
RPV is Λijk 5i5j10k
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motivations to persist on supersymmetric models despite
the squeezing of the allowed, natural parameter space
is the very success of supersymmetric grand unification.
This is the issue we would like to address in this paper.
While leptonic RPV in GUTs has been investigated in a
number of papers, see e.g. [5, 27–34], much less attention
was devoted to baryonic RPV.

In the presence of grand unification, the natural expec-
tation is that baryonic and leptonic RPV couplings are
either absent or simultaneously present, as quarks and
leptons share the same grand-unified multiplets [35–40].
Indeed, SU(5) invariance forces baryonic RPV to be ac-
companied by leptonic RPV. However, a source of the
asymmetry between the two types of RPV can be gener-
ated by SU(5) breaking.

To be more specific let us state our problem in the
following terms: we would like to find a supersymmetric

GUT whose low-energy limit, well below the unification
scale MG, is described by the MSSM field content and
gauge group and by a superpotential whose renormaliz-
able part is given by

W ren
eff = WMSSM + λ��

ijku
c
id

c
jd

c
k, (1)

where λ��
ijk is antisymmetric in the flavour indices j, k.

The extra operator violates R-parity and baryon number
(∆B = −1). Since grand unified gauge groups trans-
forms leptons into baryons (preserving B−L in the min-
imal case of SU(5)), one would expect that operator to
be accompanied by RPV and lepton-number violating
(∆L = 1) operators such as λijkeci lj lk and λ�

ijkqid
c
j lk.

Indeed, in minimal SU(5) grand unification dci and li are
unified in a 5i and qi, uc

i , e
c
i are unified in a 10i and the

three above operators all come from Λijk10i5j5k, which
gives λijk = 1

2λ
�
ijk = λ��

ijk = Λijk. In this case, the
bounds from matter stability require Λijk to be smaller
than at least 10−10 for any value of i, j, k and for su-
perpartners around the TeV scale [28]. Such a tiny cou-
pling would be irrelevant for collider physics since the
LSP would be stable on the scale of the detector size.
Hence, obtaining sizeable λ�� in the presence of vanishing
λ, λ� is not a trivial task.

To our knowledge, such a problem was only considered
in the context of SU(5) by Smirnov and Vissani [28] and
by Tamvakis [41]1. In [28], the vanishing of λ and λ� was
achieved through by fine-tuning independent parameters,
similar to the one necessary to achieve doublet-triplet
splitting in the Higgs sector. In ref. [41], a mechanism
similar to the missing-partner solution of the 2–3 splitting
in SU(5) [42, 43] was considered, at the price of introduc-
ing a number of relatively large representations. In this
paper we will show that the superpotential in Eq. (1) can
be obtained without the need of fine-tuning in a relatively
simple SO(10) model involving only fundamental, spino-
rial, and adjoint representations, provided that a vev for
the adjoint along the T3R direction can be achieved.

Also, we point out some phenomenological conse-
quences of the non-generic flavour structure of the GUT-
induced λ�� couplings. In particular, just due to some
mild minimality assumptions, in a large class of GUT
models where λ�� is generated without fine-tuning one
ends up with a flavour structure of the type λ��

ijk ∝
αi(βjγk − βkγj), where αi, βj and γk are 3-vectors in
flavour space, thus leading to specific correlations among
the low-energy couplings.

1 There also exist models of baryonic R-parity violation in Flipped-
SU(5) [32, 41] and SU(5)⊗ SU(3) [22].

•In minimal SU(5), at the renormalizable level the only term able to generate 
RPV is Λijk 5i5j10k

•Decomposed in terms of MSSM superfields, we obtain

•Strong bounds due to proton decay |Λijk| < 10−10� 10−3

Λijk ec
i�j�k + 2Λijk qid

c
j�k + Λijk uc
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c
jd
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k
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masses. However, it is known that it suffices to assume
the absence of R-parity lepton number violating opera-
tors, by means of a “leptonic R-parity”, to get rid of such
sources [].

Introducing baryonic RPV is therefore relatively safe
if leptonic RPV is absent. On the other hand, one can
wonder whether such an asymmetry between lepton and
baryon number violating operators is compatible with
grand unification theories (GUTs). After all, one of the
motivations to persist on supersymmetric models despite
the squeezing of the allowed, natural parameter space
is the very success of supersymmetric grand unification.
This is the issue we would like to address in this paper.
While leptonic RPV in GUTs has been investigated in a
number of papers, see e.g. [5, 27–34], much less attention
was devoted to baryonic RPV.

In the presence of grand unification, the natural expec-
tation is that baryonic and leptonic RPV couplings are
either absent or simultaneously present, as quarks and
leptons share the same grand-unified multiplets [35–40].
Indeed, SU(5) invariance forces baryonic RPV to be ac-
companied by leptonic RPV. However, a source of the
asymmetry between the two types of RPV can be gener-
ated by SU(5) breaking.

To be more specific let us state our problem in the
following terms: we would like to find a supersymmetric

GUT whose low-energy limit, well below the unification
scale MG, is described by the MSSM field content and
gauge group and by a superpotential whose renormaliz-
able part is given by

W ren
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where λ��
ijk is antisymmetric in the flavour indices j, k.

The extra operator violates R-parity and baryon number
(∆B = −1). Since grand unified gauge groups trans-
forms leptons into baryons (preserving B−L in the min-
imal case of SU(5)), one would expect that operator to
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than at least 10−10 for any value of i, j, k and for su-
perpartners around the TeV scale [28]. Such a tiny cou-
pling would be irrelevant for collider physics since the
LSP would be stable on the scale of the detector size.
Hence, obtaining sizeable λ�� in the presence of vanishing
λ, λ� is not a trivial task.

To our knowledge, such a problem was only considered
in the context of SU(5) by Smirnov and Vissani [28] and
by Tamvakis [41]1. In [28], the vanishing of λ and λ� was
achieved through by fine-tuning independent parameters,
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1. ∆B = 1 operator generation

Since the first term in Eq. (34) is irrelevant for our

discussion, we focus directly on the second one which

leads to the∆B = 1 RPV operator upon GUT-symmetry

breaking. In particular, the matching with Eq. (1)

yields12

λ��
ijk

=
V 2
R
V16

2µ2
16 µ10

η αiα[jβk] , (36)

where the square brackets stand for anti-symmetrization.

Notice also that the result in Eq. (36) can be readily

understood in terms of a diagrammatic language (cf. the

diagram in Fig. 1).

FIG. 1: SO(10) super-diagram leading to the uc

id
c

jd
c

k operator

in the effective MSSM theory. The vertices and propagators

are specified by the superpotential in Eq. (29), while �45R� ≡
VR and �16H� ≡ V16.

It should be noted that EW symmetry breaking effects
are responsible for different unitary matrices Vuc and Vdc

which rotate the current eigenstates into the basis where

the fermionic components of the superfields uc and dc

have diagonal Yukawa couplings. This is indeed the basis

where the low-energy bounds on λ�� are extracted. After

taking this into account one gets

λ��
ijk

∝ αiα[jβk] → (Vuc)
l

i
(Vdc)

m

[j (Vdc)
n

k]αlαmβn , (37)

where the shape of the unitary matrices Vuc and Vdc is

encoded into the details of the SO(10) Yukawa sector.

2. Yukawa sector

Let us discuss now the effective Yukawa superpoten-

tial in Eq. (35). Denoting the up-quark, down-quark,

12 Notice that with respect to the last term in Eq. (34) there is an
extra multiplicity factor 2 (two 16’s) which cancels the 1

2 coming
from the anti-symmetrization in the indices j, k. Indeed, αjβk =
1
2α{jβk} + 1

2α[jβk] and the symmetric part (curly brackets) is
projected to zero due to the gauge contractions with dc

j
dc
k
.

charged-lepton and Dirac-neutrino mass matrices respec-

tively Mu, Md, Me and MD, Eq. (35) leads to the fol-

lowing effective mass sum rules after GUT- and EW-

symmetry breaking:

(Mu)ij = (yij − θR ziαj)vu , (38)

(Md)ij = (yij + θR ziαj)vd , (39)

(Me)ij = (yij + θR ziαj)vd , (40)

(MD)ij = (yij − θR ziαj)vu , (41)

where yij is a symmetric matrix, vu,d = �hu,d� and we

introduced the parameter θR = − VR
µ16

. Some comments

are in order:

a. Inferring the structure of Vuc and Vdc . A non-

trivial CKM mixing matrix can be generated due to the

SU(2)
R
-breaking parameter θR13, which weights in a dif-

ferent way the uc- and dc-like states. Working in the

basis where yij is diagonal and at the leading order in

the decoupling limit (small θR) we have

Vuc ≈
�
U 0

0 1

�
and Vdc ≈

�
D 0

0 1

�
, (42)

where U and D are 2× 2 unitary matrices.

b. b− τ unification. At the leading order in the de-

coupling limit one also predicts Md = Me, which is a

good starting point for the third generation eigenval-

ues. This has also a clear group theoretical interpretation

since the parameter θR preserves the Pati Salam (PS) fac-

tor SU(4)
PS

and the states q–l and dc–ec belong to the

same PS multiplets.

c. Quark-lepton asymmetry and (baryonic) R-parity
violation. In order to break the relation Md = Me,

which fails badly for the first two generations, we need

a source of SU(4)
PS

breaking. This is provided, for in-

stance, by the SU(5)-preserving VEV �16H� ≡ V16. On

general grounds, one expects that at higher orders in V/µ
or away from the decoupling limit the parameter V16/µ10

will enter the fermion-masses sum rules and break the

Md = Me relation. Notice, also, that the simultaneous

presence of VR/µ16 and V16/µ10, needed to break the

Md = Me relation is crucial in order to generate a non-

zero λ�� coupling (cf. Eq. (36)). This establishes an inter-

esting connection between the departure from the exact

relation Md = Me and the amount of baryonic R-parity

violation.

d. Majorana neutrinos. The relation Mu = MD im-

plies that the neutrino sector must be extended with a

Majorana mass terms. It is worth to recall that the issue

of neutrino masses is theories with large ∆B = 1 vio-

lating interactions must be carefully considered in con-

nection with the stability of matter. Since Dirac neu-

trinos are not phenomenologically viable in our case,

neutrino masses should arise either due to ∆L = 1 or

∆L = 2 interactions. The former case corresponds, for

13 Recall that VR preserves an SU(4)
PS

⊗SU(2)
L
⊗U(1)

R
algebra.
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suppression factor, for a cut-off Λ of the order of the
Planck scale, MP . Such a large suppression factor, can
be actually relaxed in the case in which the vector-like
states survive till to MG. The latter situation is, however,
unpleasant since the large field content above MG would
make the SU(5) gauge coupling to blow up before MP

and the model ceases to be perturbative.
These considerations bring us to explore alternative

and simpler solutions in SO(10) GUTs, with the aim of
obtaining large λ�� couplings within a perturbative unifi-
cation scheme.

2. SO(10)

The chiral superfield content of SO(10) is given by Ψ =
16i, with i spanning over the three families. Sticking
to representations with dimension d < 120 the states
containing dc- and uc-like multiplets are 10, 16 � dc and
16, 45 � uc7, while the fields which can acquire a SM-
invariant VEV are 16H , 16H , 45H and 54H .

In order to identify the suitable projectors one can
readily exclude the 16H (16H) VEV. The reason being
that the embedding of dc and uc in 10, 16 and 45 pro-
ceeds always through a 5 or a 10 of SU(5), which is also
the little group left invariant by �16H�. Analogously, the
direct inspection of the projectors induced by the VEV
of the 54H does not offer any viable option. Hence, we
are left with the VEV of the adjoint 45H , which leads,
however, to a set of interesting possibilities.

Notice, indeed, that the adjoint of SO(10) features
two independent SM-singlet directions which can be
parametrized, for instance, by the T3R and TB−L Cartan
generators of the SU(3)

C
⊗ SU(2)

L
⊗ SU(2)

R
⊗U(1)

B−L

subalgebra of SO(10). Since the action of the adjoint
on a given representation R, when projected onto the
representation R itself8, corresponds to the action of the
generators, it is enough to identify those SU(2)

L
doublets

in R with a zero T3R or TB−L eigenvalue (or any linear
combination of them). Denoting the VEV of the adjoint
Higgs representation along a generic X generator �45X�,
we find three possibilities:

(�45B−L�10)10 = dc ⊕ . . . , (12)
(�45R�16)16 = uc ⊕ dc ⊕ ec ⊕ νc ⊕ . . . , (13)
(�45Z��45)45 = uc ⊕ ec ⊕ . . . , (14)

where the subscripts denote the relevant SO(10) contrac-
tions and only the components with the same quantum
numbers of the MSSM field content (plus left-handed an-
tineutrinos) are retained on the right hand side. The

7 The possibility to have a non-pure embedding of the light uc-like
states in 45 was discussed for instance in [44].

8 When this is not the case we find no solutions relevant for our
purposes.

generator Z � = 4T3R + 3TB−L is nothing but the exter-
nal U(1) factor of the flipped SU(5)� ⊗ U(1)Z� algebra
[45, 46].

IV. A MINIMAL SO(10) MODEL

We proceed now with the identification of the minimal
realization of our framework in SO(10). Let us start by
motivating in a constructive way the shape of the rele-
vant superpotential. The first step is to identify the min-
imal set of states V which contain uc- and dc-like states.
According to the discussion in Sect. III A 2 a minimal op-
tion would be V = 16⊕16, since 16 contains both uc and
dc. In turn this choice points towards the projector of
Eq. (13) in terms of 45R. Hence, in analogy to Eq. (4)
we consider the following superpotential:

W 16
non-pure = µ1616 16 + αi16i45R16

⊃ µ16

�
q16q16 + l16l16

�

+
�
µ16 dc

16 + VR αid
c

16i

�
d

c

16

+
�
µ16 uc

16 − VR αiu
c

16i

�
uc

16

+
�
µ16 ec

16 + VR αie
c

16i

�
ec

16 , (15)

where the subscripts denote the SO(10) origin and we set
the SU(4)

PS
⊗SU(2)

L
⊗U(1)

R
-preserving VEV �45R� ≡

VR. From Eq. (15) one can readily identify the heavy
components

qh = q16 , (16)
lh = l16 , (17)
dc

h
= cos θ dc

16 + sin θ α̂id
c

16i
, (18)

uc

h
= cos θ uc

16 − sin θ α̂iu
c

16i
, (19)

ec

h
= cos θ ec

16 + sin θ α̂ie
c

16i
, (20)

where tan θ = VRα/µ16 and, for convenience, we em-
ployed the normalized vectors α̂i ≡ αi/α, with α ≡��

i
α2

i
. It follows then that the orthogonal components

dc

� = − sin θ dc

16 + cos θ α̂id
c

16i
, (21)

uc

� = +sin θ uc

16 + cos θ α̂iu
c

16i
, (22)

ec

� = − sin θ ec

16 + cos θ α̂ie
c

16i
(23)

are massless up to EW-symmetry-breaking effects and
thus the 16 has a projection only onto the light fields dc

�,
uc

� and ec

�.
Therefore it would be enough to have a trilinear term

of the type 16 16 16i in order to generate exclusively the
sought uc

�d
c

�d
c

i
operator in the low-energy theory. Of

course, such a trilinear is not SO(10) invariant and in or-
der to have a renormalizable framework the theory must
be slightly extended. Since 16⊗ 16 = 10⊕ 120⊕ 126 and
dc ∈ 10, the simplest option is to add a 10 into the set of
vector-like states V . In particular, we need a non-pure
embedding mechanism such that the 10 has a projection
onto the light dc-like states. This can be easily obtained

16 ⊃ dc
light + uc

light + ec
light
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suppression factor, for a cut-off Λ of the order of the
Planck scale, MP . Such a large suppression factor, can
be actually relaxed in the case in which the vector-like
states survive till to MG. The latter situation is, however,
unpleasant since the large field content above MG would
make the SU(5) gauge coupling to blow up before MP

and the model ceases to be perturbative.
These considerations bring us to explore alternative

and simpler solutions in SO(10) GUTs, with the aim of
obtaining large λ�� couplings within a perturbative unifi-
cation scheme.

2. SO(10)

The chiral superfield content of SO(10) is given by Ψ =
16i, with i spanning over the three families. Sticking
to representations with dimension d < 120 the states
containing dc- and uc-like multiplets are 10, 16 � dc and
16, 45 � uc7, while the fields which can acquire a SM-
invariant VEV are 16H , 16H , 45H and 54H .

In order to identify the suitable projectors one can
readily exclude the 16H (16H) VEV. The reason being
that the embedding of dc and uc in 10, 16 and 45 pro-
ceeds always through a 5 or a 10 of SU(5), which is also
the little group left invariant by �16H�. Analogously, the
direct inspection of the projectors induced by the VEV
of the 54H does not offer any viable option. Hence, we
are left with the VEV of the adjoint 45H , which leads,
however, to a set of interesting possibilities.

Notice, indeed, that the adjoint of SO(10) features
two independent SM-singlet directions which can be
parametrized, for instance, by the T3R and TB−L Cartan
generators of the SU(3)
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on a given representation R, when projected onto the
representation R itself8, corresponds to the action of the
generators, it is enough to identify those SU(2)
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in R with a zero T3R or TB−L eigenvalue (or any linear
combination of them). Denoting the VEV of the adjoint
Higgs representation along a generic X generator �45X�,
we find three possibilities:

(�45B−L�10)10 = dc ⊕ . . . , (12)
(�45R�16)16 = uc ⊕ dc ⊕ ec ⊕ νc ⊕ . . . , (13)
(�45Z��45)45 = uc ⊕ ec ⊕ . . . , (14)

where the subscripts denote the relevant SO(10) contrac-
tions and only the components with the same quantum
numbers of the MSSM field content (plus left-handed an-
tineutrinos) are retained on the right hand side. The

7 The possibility to have a non-pure embedding of the light uc-like
states in 45 was discussed for instance in [44].

8 When this is not the case we find no solutions relevant for our
purposes.

generator Z � = 4T3R + 3TB−L is nothing but the exter-
nal U(1) factor of the flipped SU(5)� ⊗ U(1)Z� algebra
[45, 46].

IV. A MINIMAL SO(10) MODEL

We proceed now with the identification of the minimal
realization of our framework in SO(10). Let us start by
motivating in a constructive way the shape of the rele-
vant superpotential. The first step is to identify the min-
imal set of states V which contain uc- and dc-like states.
According to the discussion in Sect. III A 2 a minimal op-
tion would be V = 16⊕16, since 16 contains both uc and
dc. In turn this choice points towards the projector of
Eq. (13) in terms of 45R. Hence, in analogy to Eq. (4)
we consider the following superpotential:

W 16
non-pure = µ1616 16 + αi16i45R16

⊃ µ16

�
q16q16 + l16l16

�

+
�
µ16 dc

16 + VR αid
c

16i

�
d

c

16

+
�
µ16 uc

16 − VR αiu
c

16i

�
uc

16

+
�
µ16 ec

16 + VR αie
c

16i

�
ec

16 , (15)

where the subscripts denote the SO(10) origin and we set
the SU(4)

PS
⊗SU(2)

L
⊗U(1)

R
-preserving VEV �45R� ≡

VR. From Eq. (15) one can readily identify the heavy
components

qh = q16 , (16)
lh = l16 , (17)
dc

h
= cos θ dc

16 + sin θ α̂id
c

16i
, (18)

uc

h
= cos θ uc

16 − sin θ α̂iu
c

16i
, (19)

ec

h
= cos θ ec

16 + sin θ α̂ie
c

16i
, (20)

where tan θ = VRα/µ16 and, for convenience, we em-
ployed the normalized vectors α̂i ≡ αi/α, with α ≡��

i
α2

i
. It follows then that the orthogonal components

dc

� = − sin θ dc

16 + cos θ α̂id
c

16i
, (21)

uc

� = +sin θ uc

16 + cos θ α̂iu
c

16i
, (22)

ec

� = − sin θ ec

16 + cos θ α̂ie
c

16i
(23)

are massless up to EW-symmetry-breaking effects and
thus the 16 has a projection only onto the light fields dc

�,
uc

� and ec

�.
Therefore it would be enough to have a trilinear term

of the type 16 16 16i in order to generate exclusively the
sought uc

�d
c

�d
c

i
operator in the low-energy theory. Of

course, such a trilinear is not SO(10) invariant and in or-
der to have a renormalizable framework the theory must
be slightly extended. Since 16⊗ 16 = 10⊕ 120⊕ 126 and
dc ∈ 10, the simplest option is to add a 10 into the set of
vector-like states V . In particular, we need a non-pure
embedding mechanism such that the 10 has a projection
onto the light dc-like states. This can be easily obtained

16 ⊃ dc
light + uc

light + ec
light

•At term of the type 16 16 16 would do the job but is not SO(10) invariant

•We need to have MSSM light matter in the 10
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by means of the following superpotential

W 10
non-pure = µ1010 10 + βi16i16H10

⊃
�
2 µ10 dc

10 + V16 βid
c

16i

�
d

c

10

+
�
2 µ10 l10 + V16 βil

c

16i

�
l10 , (24)

where the subscripts denote the SO(10) origin and we set
the SU(5)-preserving VEV �16H� ≡ V16. From Eq. (24)
one can readily identify the heavy components9

dc

h� = cos φ dc

10 + sinφ β̂id
c

16i
, (25)

lh� = cos φ l10 + sinφ β̂il16i , (26)

where tanφ = 1
2V16β/µ10 and, analogously to the previ-

ous case, we employed the normalized vectors β̂i ≡ βi/β,
with β ≡

��
i
β2

i
. It follows then that the orthogonal

components

dc

�� = − sin φ dc

10 + cos φ β̂id
c

16i
, (27)

l�� = − sin φ l10 + cos φ β̂il16i , (28)

are massless up to EW-symmetry breaking effects and
thus the 10 has a projection only onto the light fields dc

��

and l�� .
Summarizing, we have 16 → dc

�, u
c

�, e
c

� and 10 → dc

�� , l�� ,
so that the operator 16 16 10 leads exclusively to uc

�d
c

�d
c

��

when 16 and 10 are projected onto the light states. [Met-
tere la struttura generale di λ�� = αβγ ???]

Collecting all the ingredients so far, we arrive to the
following superpotential

W∆B=1 = µ1616 16 + αi16i45R16
+ µ1010 10 + βi16i16H10 + η 16 16 10 , (29)

which defines the core of the ∆B = 1 operator genera-
tion. For completeness, the superpotential in Eq. (29)
should be augmented with

Wextra = WGUT-break + W2–3 + WY , (30)

where the extra terms provide the GUT-symmetry break-
ing, the standard 2–3 splitting and the Yukawa sector
responsible for the SM-fermion masses.

Let us briefly comment on the various terms. The
breaking of the SO(10) symmetry to the SM gauge group
can be obtained at the renormalizable level by consider-
ing the most general interactions among the representa-
tions 16H , 16H , 45H and 54H ∈ WGUT-break [40, 47, 48].
On the other hand the shape of W2–3 and WY are closely

9 Notice that the mass matrix for the dc-like states is 5 × 5 since
dc
16i

, dc
16 and dc

10 are mixed together upon GUT-symmetry
breaking. So, for instance, it is not true that two massless eigen-
states dc

� and dc
�� are projected separately onto dc

16 and dc
10. This

complication, however, does not change qualitatively our discus-
sion. The general mass matrix is reported for completeness in
Appendix A.

related, since they depend on the embedding of the Higgs
doublets developing the EW-symmetry-breaking VEV.
Were latter into a 10v one can refer to the standard ref-
erences for the 2–3 splitting (see e.g. [49, 50]), while the
Yukawa superpotential reads

WY = yij16i 16j 10v + zi16i16 10v , (31)

to be discussed in detail in Sect. IV A.
It is important to stress that the model specified in

Eqs. (29)–(30), although entirely realistic, is only “tech-
nically” natural, as every GUT. Indeed, in order to
achieve the splittings within the GUT multiplets, without
fine-tuning the parameters of the superpotential, one has
to forbid specific interactions. We do not entertain here
any symmetry argument behind the origin of the missing
interactions, but just notice that small parameters in the
superpotential are protected by supersymmetry10.

A. The decoupling limit

The implications of the minimal model of Eqs. (29)–
(30) can be best understood in the decoupling limit,
where the the vector-like states in V are decoupled with
respect to the GUT scale, namely µ10, µ16 � V16, VR.
In such a case one can formally integrate out the heavy
fields 10, 16 and 16 by imposing the equations of motion
at the SO(10) level11, thus obtaining at the leading order
in V/µ

10 ≈ − 1
2µ10

(βi16H16i)10 , (32)

16 ≈ − 1
µ16

(αi45R16i)16 , (33)

where the subscripts denote the proper SO(10) contrac-
tions and the 16 should be set to zero at this order. Sub-
stituting back Eqs. (32)–(33) into Eq. (29) and Eq. (31)
we get respectively

W eff
∆B=1 = − 1

4µ10
(βi16H16i)

2
10

− 1
2µ2

16µ10
η (αi45R16i)

2
16 (βk16H16k)10 , (34)

and

W eff
Y

= yij16i 16j 10v−zi16i

1
µ16

(αj45R16j)16 10v . (35)

Let us discuss in turn the two contributions.

10 At this point we are making a “philosophical” distinction be-
tween small parameters and fine-tuning between superpotential
parameters.

11 Namely ∂W
∂10 = ∂W

∂16 = ∂W
∂16

= 0.

10 ⊃ dc
light + �light
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suppression factor, for a cut-off Λ of the order of the
Planck scale, MP . Such a large suppression factor, can
be actually relaxed in the case in which the vector-like
states survive till to MG. The latter situation is, however,
unpleasant since the large field content above MG would
make the SU(5) gauge coupling to blow up before MP

and the model ceases to be perturbative.
These considerations bring us to explore alternative

and simpler solutions in SO(10) GUTs, with the aim of
obtaining large λ�� couplings within a perturbative unifi-
cation scheme.

2. SO(10)

The chiral superfield content of SO(10) is given by Ψ =
16i, with i spanning over the three families. Sticking
to representations with dimension d < 120 the states
containing dc- and uc-like multiplets are 10, 16 � dc and
16, 45 � uc7, while the fields which can acquire a SM-
invariant VEV are 16H , 16H , 45H and 54H .

In order to identify the suitable projectors one can
readily exclude the 16H (16H) VEV. The reason being
that the embedding of dc and uc in 10, 16 and 45 pro-
ceeds always through a 5 or a 10 of SU(5), which is also
the little group left invariant by �16H�. Analogously, the
direct inspection of the projectors induced by the VEV
of the 54H does not offer any viable option. Hence, we
are left with the VEV of the adjoint 45H , which leads,
however, to a set of interesting possibilities.

Notice, indeed, that the adjoint of SO(10) features
two independent SM-singlet directions which can be
parametrized, for instance, by the T3R and TB−L Cartan
generators of the SU(3)

C
⊗ SU(2)

L
⊗ SU(2)

R
⊗U(1)

B−L

subalgebra of SO(10). Since the action of the adjoint
on a given representation R, when projected onto the
representation R itself8, corresponds to the action of the
generators, it is enough to identify those SU(2)

L
doublets

in R with a zero T3R or TB−L eigenvalue (or any linear
combination of them). Denoting the VEV of the adjoint
Higgs representation along a generic X generator �45X�,
we find three possibilities:

(�45B−L�10)10 = dc ⊕ . . . , (12)
(�45R�16)16 = uc ⊕ dc ⊕ ec ⊕ νc ⊕ . . . , (13)
(�45Z��45)45 = uc ⊕ ec ⊕ . . . , (14)

where the subscripts denote the relevant SO(10) contrac-
tions and only the components with the same quantum
numbers of the MSSM field content (plus left-handed an-
tineutrinos) are retained on the right hand side. The

7 The possibility to have a non-pure embedding of the light uc-like
states in 45 was discussed for instance in [44].

8 When this is not the case we find no solutions relevant for our
purposes.

generator Z � = 4T3R + 3TB−L is nothing but the exter-
nal U(1) factor of the flipped SU(5)� ⊗ U(1)Z� algebra
[45, 46].

IV. A MINIMAL SO(10) MODEL

We proceed now with the identification of the minimal
realization of our framework in SO(10). Let us start by
motivating in a constructive way the shape of the rele-
vant superpotential. The first step is to identify the min-
imal set of states V which contain uc- and dc-like states.
According to the discussion in Sect. III A 2 a minimal op-
tion would be V = 16⊕16, since 16 contains both uc and
dc. In turn this choice points towards the projector of
Eq. (13) in terms of 45R. Hence, in analogy to Eq. (4)
we consider the following superpotential:

W 16
non-pure = µ1616 16 + αi16i45R16

⊃ µ16

�
q16q16 + l16l16

�

+
�
µ16 dc

16 + VR αid
c

16i

�
d

c

16

+
�
µ16 uc

16 − VR αiu
c

16i

�
uc

16

+
�
µ16 ec

16 + VR αie
c

16i

�
ec

16 , (15)

where the subscripts denote the SO(10) origin and we set
the SU(4)

PS
⊗SU(2)

L
⊗U(1)

R
-preserving VEV �45R� ≡

VR. From Eq. (15) one can readily identify the heavy
components

qh = q16 , (16)
lh = l16 , (17)
dc

h
= cos θ dc

16 + sin θ α̂id
c

16i
, (18)

uc

h
= cos θ uc

16 − sin θ α̂iu
c

16i
, (19)

ec

h
= cos θ ec

16 + sin θ α̂ie
c

16i
, (20)

where tan θ = VRα/µ16 and, for convenience, we em-
ployed the normalized vectors α̂i ≡ αi/α, with α ≡��

i
α2

i
. It follows then that the orthogonal components

dc

� = − sin θ dc

16 + cos θ α̂id
c

16i
, (21)

uc

� = +sin θ uc

16 + cos θ α̂iu
c

16i
, (22)

ec

� = − sin θ ec

16 + cos θ α̂ie
c

16i
(23)

are massless up to EW-symmetry-breaking effects and
thus the 16 has a projection only onto the light fields dc

�,
uc

� and ec

�.
Therefore it would be enough to have a trilinear term

of the type 16 16 16i in order to generate exclusively the
sought uc

�d
c

�d
c

i
operator in the low-energy theory. Of

course, such a trilinear is not SO(10) invariant and in or-
der to have a renormalizable framework the theory must
be slightly extended. Since 16⊗ 16 = 10⊕ 120⊕ 126 and
dc ∈ 10, the simplest option is to add a 10 into the set of
vector-like states V . In particular, we need a non-pure
embedding mechanism such that the 10 has a projection
onto the light dc-like states. This can be easily obtained

16 ⊃ dc
light + uc

light + ec
light

•At term of the type 16 16 16 would do the job but is not SO(10) invariant

•We need to have MSSM light matter in the 10
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by means of the following superpotential

W 10
non-pure = µ1010 10 + βi16i16H10

⊃
�
2 µ10 dc

10 + V16 βid
c

16i

�
d

c

10

+
�
2 µ10 l10 + V16 βil

c

16i

�
l10 , (24)

where the subscripts denote the SO(10) origin and we set
the SU(5)-preserving VEV �16H� ≡ V16. From Eq. (24)
one can readily identify the heavy components9

dc

h� = cos φ dc

10 + sinφ β̂id
c

16i
, (25)

lh� = cos φ l10 + sinφ β̂il16i , (26)

where tanφ = 1
2V16β/µ10 and, analogously to the previ-

ous case, we employed the normalized vectors β̂i ≡ βi/β,
with β ≡

��
i
β2

i
. It follows then that the orthogonal

components

dc

�� = − sin φ dc

10 + cos φ β̂id
c

16i
, (27)

l�� = − sin φ l10 + cos φ β̂il16i , (28)

are massless up to EW-symmetry breaking effects and
thus the 10 has a projection only onto the light fields dc

��

and l�� .
Summarizing, we have 16 → dc

�, u
c

�, e
c

� and 10 → dc

�� , l�� ,
so that the operator 16 16 10 leads exclusively to uc

�d
c

�d
c

��

when 16 and 10 are projected onto the light states. [Met-
tere la struttura generale di λ�� = αβγ ???]

Collecting all the ingredients so far, we arrive to the
following superpotential

W∆B=1 = µ1616 16 + αi16i45R16
+ µ1010 10 + βi16i16H10 + η 16 16 10 , (29)

which defines the core of the ∆B = 1 operator genera-
tion. For completeness, the superpotential in Eq. (29)
should be augmented with

Wextra = WGUT-break + W2–3 + WY , (30)

where the extra terms provide the GUT-symmetry break-
ing, the standard 2–3 splitting and the Yukawa sector
responsible for the SM-fermion masses.

Let us briefly comment on the various terms. The
breaking of the SO(10) symmetry to the SM gauge group
can be obtained at the renormalizable level by consider-
ing the most general interactions among the representa-
tions 16H , 16H , 45H and 54H ∈ WGUT-break [40, 47, 48].
On the other hand the shape of W2–3 and WY are closely

9 Notice that the mass matrix for the dc-like states is 5 × 5 since
dc
16i

, dc
16 and dc

10 are mixed together upon GUT-symmetry
breaking. So, for instance, it is not true that two massless eigen-
states dc

� and dc
�� are projected separately onto dc

16 and dc
10. This

complication, however, does not change qualitatively our discus-
sion. The general mass matrix is reported for completeness in
Appendix A.

related, since they depend on the embedding of the Higgs
doublets developing the EW-symmetry-breaking VEV.
Were latter into a 10v one can refer to the standard ref-
erences for the 2–3 splitting (see e.g. [49, 50]), while the
Yukawa superpotential reads

WY = yij16i 16j 10v + zi16i16 10v , (31)

to be discussed in detail in Sect. IV A.
It is important to stress that the model specified in

Eqs. (29)–(30), although entirely realistic, is only “tech-
nically” natural, as every GUT. Indeed, in order to
achieve the splittings within the GUT multiplets, without
fine-tuning the parameters of the superpotential, one has
to forbid specific interactions. We do not entertain here
any symmetry argument behind the origin of the missing
interactions, but just notice that small parameters in the
superpotential are protected by supersymmetry10.

A. The decoupling limit

The implications of the minimal model of Eqs. (29)–
(30) can be best understood in the decoupling limit,
where the the vector-like states in V are decoupled with
respect to the GUT scale, namely µ10, µ16 � V16, VR.
In such a case one can formally integrate out the heavy
fields 10, 16 and 16 by imposing the equations of motion
at the SO(10) level11, thus obtaining at the leading order
in V/µ

10 ≈ − 1
2µ10

(βi16H16i)10 , (32)

16 ≈ − 1
µ16

(αi45R16i)16 , (33)

where the subscripts denote the proper SO(10) contrac-
tions and the 16 should be set to zero at this order. Sub-
stituting back Eqs. (32)–(33) into Eq. (29) and Eq. (31)
we get respectively

W eff
∆B=1 = − 1

4µ10
(βi16H16i)

2
10

− 1
2µ2

16µ10
η (αi45R16i)

2
16 (βk16H16k)10 , (34)

and

W eff
Y

= yij16i 16j 10v−zi16i

1
µ16

(αj45R16j)16 10v . (35)

Let us discuss in turn the two contributions.

10 At this point we are making a “philosophical” distinction be-
tween small parameters and fine-tuning between superpotential
parameters.

11 Namely ∂W
∂10 = ∂W

∂16 = ∂W
∂16

= 0.

10 ⊃ dc
light + �light



Yukawa sector
•MSSM chiral superfields are in non pure embedding of 16i ⊕ 16⊕ 16⊕ 10

•Assuming that the Higgs up and down are in       , we get at the ren. level10v
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by means of the following superpotential

W 10
non-pure = µ1010 10 + βi16i16H10

⊃
�
2 µ10 dc

10 + V16 βid
c

16i

�
d

c

10

+
�
2 µ10 l10 + V16 βil

c

16i

�
l10 , (24)

where the subscripts denote the SO(10) origin and we set
the SU(5)-preserving VEV �16H� ≡ V16. From Eq. (24)
one can readily identify the heavy components9

dc

h� = cos φ dc

10 + sinφ β̂id
c

16i
, (25)

lh� = cos φ l10 + sinφ β̂il16i , (26)

where tanφ = 1
2V16β/µ10 and, analogously to the previ-

ous case, we employed the normalized vectors β̂i ≡ βi/β,
with β ≡

��
i
β2

i
. It follows then that the orthogonal

components

dc

�� = − sin φ dc

10 + cos φ β̂id
c

16i
, (27)

l�� = − sin φ l10 + cos φ β̂il16i , (28)

are massless up to EW-symmetry breaking effects and
thus the 10 has a projection only onto the light fields dc

��

and l�� .
Summarizing, we have 16 → dc

�, u
c

�, e
c

� and 10 → dc

�� , l�� ,
so that the operator 16 16 10 leads exclusively to uc

�d
c

�d
c

��

when 16 and 10 are projected onto the light states. [Met-
tere la struttura generale di λ�� = αβγ ???]

Collecting all the ingredients so far, we arrive to the
following superpotential

W∆B=1 = µ1616 16 + αi16i45R16
+ µ1010 10 + βi16i16H10 + η 16 16 10 , (29)

which defines the core of the ∆B = 1 operator genera-
tion. For completeness, the superpotential in Eq. (29)
should be augmented with

Wextra = WGUT-break + W2–3 + WY , (30)

where the extra terms provide the GUT-symmetry break-
ing, the standard 2–3 splitting and the Yukawa sector
responsible for the SM-fermion masses.

Let us briefly comment on the various terms. The
breaking of the SO(10) symmetry to the SM gauge group
can be obtained at the renormalizable level by consider-
ing the most general interactions among the representa-
tions 16H , 16H , 45H and 54H ∈ WGUT-break [40, 47, 48].
On the other hand the shape of W2–3 and WY are closely

9 Notice that the mass matrix for the dc-like states is 5 × 5 since
dc
16i

, dc
16 and dc

10 are mixed together upon GUT-symmetry
breaking. So, for instance, it is not true that two massless eigen-
states dc

� and dc
�� are projected separately onto dc

16 and dc
10. This

complication, however, does not change qualitatively our discus-
sion. The general mass matrix is reported for completeness in
Appendix A.

related, since they depend on the embedding of the Higgs
doublets developing the EW-symmetry-breaking VEV.
Were latter into a 10v one can refer to the standard ref-
erences for the 2–3 splitting (see e.g. [49, 50]), while the
Yukawa superpotential reads

WY = yij16i 16j 10v + zi16i16 10v , (31)

to be discussed in detail in Sect. IV A.
It is important to stress that the model specified in

Eqs. (29)–(30), although entirely realistic, is only “tech-
nically” natural, as every GUT. Indeed, in order to
achieve the splittings within the GUT multiplets, without
fine-tuning the parameters of the superpotential, one has
to forbid specific interactions. We do not entertain here
any symmetry argument behind the origin of the missing
interactions, but just notice that small parameters in the
superpotential are protected by supersymmetry10.

A. The decoupling limit

The implications of the minimal model of Eqs. (29)–
(30) can be best understood in the decoupling limit,
where the the vector-like states in V are decoupled with
respect to the GUT scale, namely µ10, µ16 � V16, VR.
In such a case one can formally integrate out the heavy
fields 10, 16 and 16 by imposing the equations of motion
at the SO(10) level11, thus obtaining at the leading order
in V/µ

10 ≈ − 1
2µ10

(βi16H16i)10 , (32)

16 ≈ − 1
µ16

(αi45R16i)16 , (33)

where the subscripts denote the proper SO(10) contrac-
tions and the 16 should be set to zero at this order. Sub-
stituting back Eqs. (32)–(33) into Eq. (29) and Eq. (31)
we get respectively

W eff
∆B=1 = − 1

4µ10
(βi16H16i)

2
10

− 1
2µ2

16µ10
η (αi45R16i)

2
16 (βk16H16k)10 , (34)

and

W eff
Y

= yij16i 16j 10v−zi16i

1
µ16

(αj45R16j)16 10v . (35)

Let us discuss in turn the two contributions.

10 At this point we are making a “philosophical” distinction be-
tween small parameters and fine-tuning between superpotential
parameters.

11 Namely ∂W
∂10 = ∂W

∂16 = ∂W
∂16

= 0.

•Remember that light MSSM chiral superfields are “selected” by

•Possibility to fit the mass texture of quarks and charged leptons at the 
renormalizable level

µ1616 16 + µ1010 10 + αi16i45R16 + βi16i16H10
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by means of the following superpotential

W 10
non-pure = µ1010 10 + βi16i16H10
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2 µ10 dc
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16i
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+
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2 µ10 l10 + V16 βil

c

16i
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l10 , (24)

where the subscripts denote the SO(10) origin and we set
the SU(5)-preserving VEV �16H� ≡ V16. From Eq. (24)
one can readily identify the heavy components9

dc
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10 + sinφ β̂id
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16i
, (25)

lh� = cos φ l10 + sinφ β̂il16i , (26)

where tanφ = 1
2V16β/µ10 and, analogously to the previ-

ous case, we employed the normalized vectors β̂i ≡ βi/β,
with β ≡
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β2

i
. It follows then that the orthogonal

components
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�� = − sin φ dc

10 + cos φ β̂id
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16i
, (27)

l�� = − sin φ l10 + cos φ β̂il16i , (28)

are massless up to EW-symmetry breaking effects and
thus the 10 has a projection only onto the light fields dc

��

and l�� .
Summarizing, we have 16 → dc

�, u
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�, e
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� and 10 → dc

�� , l�� ,
so that the operator 16 16 10 leads exclusively to uc

�d
c

�d
c

��

when 16 and 10 are projected onto the light states. [Met-
tere la struttura generale di λ�� = αβγ ???]

Collecting all the ingredients so far, we arrive to the
following superpotential

W∆B=1 = µ1616 16 + αi16i45R16
+ µ1010 10 + βi16i16H10 + η 16 16 10 , (29)

which defines the core of the ∆B = 1 operator genera-
tion. For completeness, the superpotential in Eq. (29)
should be augmented with

Wextra = WGUT-break + W2–3 + WY , (30)

where the extra terms provide the GUT-symmetry break-
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nically” natural, as every GUT. Indeed, in order to
achieve the splittings within the GUT multiplets, without
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2
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1
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11 Namely ∂W
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•Remember that light MSSM chiral superfields are “selected” by

•Possibility to fit the mass texture of quarks and charged leptons at the 
renormalizable level
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•Size of baryonic RPV couplings is related to structure of the flavor sector 
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instance, to leptonic R-parity violation, while the lat-
ter to the standard seesaw mechanisms. Nevertheless,
kinematics and Lorentz invariance impose specific selec-
tion rules for matter stability. One can easily see that
while ∆B = 1 and ∆L = 1 interactions are severely con-
strained by proton decay, that is not the case for ∆B = 1
and ∆L = 2 processes14. Hence the type-I seesaw mech-
anism can be safely employed in SO(10) by providing a
large Majorana mass term for νcνc. In particular, stick-
ing to representations with dimension d < 120 this can
be achieved by means of an effective operator of the type
16i16j16H16H/Λ, where Λ is for instance the mass scale
of three SO(10) singlets interacting at the renormalizable
level or the Planck scale.

B. Phenomenological remarks

The flavour structure of the GUT-induced λ��
ijk

which
emerged from Sect. IV A is of the type

λ��
ijk
∝ αiβ[jγk] . (43)

In general the absolute size is arbitrary (up to order 1)
and αi, βj and γk are independent 3-vectors in the flavour
space. [Refer to the point were we prove/motivate this]
Such a flavour structure is non-generic and implies a set
of correlations among the RPV couplings which must be
confronted with the low-energy phenomenology.

A lower bound on the absolute size of the RPV cou-
plings can be obtain requiring a specific kind of LHC
physics. In particular, one could be interested in the case
in which the decay of the LSP is prompt, corresponding
to a decay length smaller than the typical spatial resolu-
tion of the ATLAS and CMS detectors, i.e. ≈ 100 µm15.
This is indeed the optimal scenario from the point of
view of naturalness: in this way supersymmetry can be
“hidden” into QCD backgrounds and the lower bounds
on superpartners can be relaxed with respect to the R-
parity conserving case. The decay length, however, cru-
cially depends on the nature of the LSP. For instance, in
the case of a right-handed squark LSP one gets

L = 100µm (βγ)
�

500 GeV
mq̃c

� �
4 · 10−7

λ��

�2

, (44)

where β is the velocity of the decaying particle and γ is
the Lorentz boost factor; while for a neutralino LSP the

14 The proof is as follows: being the proton the lightest baryon, due

to kinematics and spin conservation, it must decay into a lepton

(barring the presence of exotic light stuff like gravitinos, axinos,

etc.). Again, by spin conservation it must decay into an odd

number of fermions and hence this is not possible with ∆L = 2

interactions.
15 Larger decay lengths give rise to displaced vertices. See for in-

stance [34].

typical decay lenght is

L = 100µm (βγ)
� mq̃c

500 GeV

�4

×
�

100 GeV
mχ

�5 �
2 · 10−3

λ��

�2

. (45)

Thus, requiring a decay length smaller than ≈ 100 µm,
one gets a lower bound on at least one of the RPV cou-
plings of λ�� > O(10−7) and λ�� > O(10−3), respectively
for a right-handed squark LSP and a neutralino LSP.

On the other hand, there exist several kind of upper
bounds on the baryon-number RPV couplings coming
from indirect searches which can be crossed among each
other according to the GUT-induced relations. Rescal-
ing the bounds in ref. [51] for super-partners around 500
GeV16 and assuming a gravitino heavier than the proton
one gets:

|λ��112| < O(10−5) [NN → KK] , (46)
|λ��113| < O(10−2) [n− n] , (47)
|λ��312| < O(10−1) [n− n] , (48)
|λ��313| < O(10−1) [n− n] , (49)

for single couplings and

|λ��213 λ��223| < 1.5× 10−3 [K −K] , (50)
|λ��313 λ��323| < 1.5× 10−3 [K −K] , (51)
|λ��

i12 λ��
i13| < 0.8× 10−1 [B+ → K0π+] , (52)

|λ��
i12 λ��

i23| < 0.8× 10−3 [B− → φπ−] , (53)

for the product of two couplings.
Let us focus for definiteness on the case of a neutralino

LSP which implies the presence of at least one flavour
component with λ�� > O(10−3) in order to have a prompt
decay. It is clear then that any coupling could play this
role but λ��112. So, in the ideal limit λ��112 → 0 and im-
posing the GUT relations in Eq. (43) one finds only two
non-trivial solutions:

1. α1 = 0

λ��112 = 0 , λ��113 = 0 , λ��123 = 0 ,
λ��212 = α2β[1γ2] , λ��213 = α2β[1γ3] , λ��223 = α2β[2γ3] ,
λ��312 = α3β[1γ2] , λ��313 = α3β[1γ3] , λ��323 = α3β[2γ3] .

2. β1γ2 = β2γ1

λ��112 = 0 , λ��113 = α1β[1γ3] , λ��123 = α1β[2γ3] ,
λ��212 = 0 , λ��213 = α2β[1γ3] , λ��223 = α2β[2γ3] ,
λ��312 = 0 , λ��313 = α3β[1γ3] , λ��323 = α3β[2γ3] .

16 One should keep in mind that these bounds have a strong de-

pendence from the supersymmetric spectrum. For instance those

related to n − n oscillations (d = 9 operators at the SM level)

scale like m̃5/2 on the single λ�� coupling.
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Figure 6: The leading contribution to p → K+G̃ decay.

lower bound on m3/2:

m3/2 >∼ (300 KeV)

�
300 GeV

mq̃

�2 �
tan β

10

�4

, (6.15)

where we take Λ ∼ Λ̃ ∼ 250 MeV. This bound is illustrated in Fig. 5.

7 LSP decay and LHC phenomenology

The phenomenology of MFV SUSY models will be very different from the R-parity conserving

MSSM, and is distinctive among R-parity violating theories. In this section, we attempt

to explore the general phenomenological features of these models. The results depend on

the spectrum, and we will not attempt to exhaustively enumerate all possibilities, instead

focusing on the general features for various LSPs.

We will not assume that the LSP is electrically and color neutral; since it decays there

is no particular motivation for that requirement. Thus the LSP could be either a squark,

a slepton, a neutralino, a chargino, or the gluino. However, MFV places restrictions on the

squark and slepton masses. In particular, the mass matrix for up-type squarks must be of

the form

M2
Ũ
= m2

soft

�
1 + αYuY †

u + βYdY
†
d δ Yu

δ� Y †
u 1 + γY †

uYu

�
+ . . . , (7.1)

where the omitted terms are higher-order in the Yukawa couplings, δ is some combination

of holomorphic parameters specifying the left-right mixing (coming from the Yukawa and

A-terms), α and β are non-holomorphic parameters coming from the left-handed squark

masses, and γ is another non-holomorphic parameter coming from the right-handed squark

masses.

Naturalness, in this context, indicates that α, β, γ, and δ should be order-one numbers.

Thus, the leading deviations from universality will involve only the O(1) top Yukawa cou-

pling, and, in particular, it is very easy to make one of the stops very light. Since other

20

mf̃ = 500 GeV
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Figure 6: The leading contribution to p → K+G̃ decay.

lower bound on m3/2:

m3/2 >∼ (300 KeV)

�
300 GeV

mq̃

�2 �
tan β

10

�4

, (6.15)

where we take Λ ∼ Λ̃ ∼ 250 MeV. This bound is illustrated in Fig. 5.

7 LSP decay and LHC phenomenology

The phenomenology of MFV SUSY models will be very different from the R-parity conserving

MSSM, and is distinctive among R-parity violating theories. In this section, we attempt

to explore the general phenomenological features of these models. The results depend on

the spectrum, and we will not attempt to exhaustively enumerate all possibilities, instead

focusing on the general features for various LSPs.

We will not assume that the LSP is electrically and color neutral; since it decays there

is no particular motivation for that requirement. Thus the LSP could be either a squark,

a slepton, a neutralino, a chargino, or the gluino. However, MFV places restrictions on the

squark and slepton masses. In particular, the mass matrix for up-type squarks must be of

the form

M2
Ũ
= m2

soft

�
1 + αYuY †

u + βYdY
†
d δ Yu

δ� Y †
u 1 + γY †

uYu

�
+ . . . , (7.1)

where the omitted terms are higher-order in the Yukawa couplings, δ is some combination

of holomorphic parameters specifying the left-right mixing (coming from the Yukawa and

A-terms), α and β are non-holomorphic parameters coming from the left-handed squark

masses, and γ is another non-holomorphic parameter coming from the right-handed squark

masses.

Naturalness, in this context, indicates that α, β, γ, and δ should be order-one numbers.

Thus, the leading deviations from universality will involve only the O(1) top Yukawa cou-

pling, and, in particular, it is very easy to make one of the stops very light. Since other
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•GUT correlation λ��
ijk ∝ ai (bjck − bkcj)

•Natural to expect larger couplings with the heavier families like in MFV or 
Partial Compositeness [in progress]

λ��
i12

λ��
j12

=
λ��

i13

λ��
j13

=
λ��

i23

λ��
j23

mf̃ = 500 GeV



Conclusions

•Baryonic RPV and GUT are compatible

•General framework: vector-like families + splitting 
mechanism

•Simple models can be constructed

•Flavor structure of the BNV couplings is non generic


