Reconciliation of A_{FB} and A_C

with s-channel or t-channel NP

Jure Drobnak

16. 4. 2013, Portorož

Introduction

- ightharpoonup Exploring the $t\bar{t}$ production and possible NP effects.
- ▶ The persisting Tevatron $t\bar{t}$ production anomaly in A_{FB} .
- \blacktriangleright LHC measuring A_C in agreement with SM.

Reconciliation with two examples

- 1) How correlated are A_{FB} and A_C ? What kind of NP could accommodate both measurements? JD, Kamenik, Zupan 1205.4721
- 2) A novel consideration: $t\bar{t}$ observables are based on inclusive samples! What if there is considerable $t\bar{t}j$ contribution? JD, Kagan, Kamenik, Perez, Zupan 1205.4721
- Need of consistency with other collider observables $m_{t\bar{t}}$ spectrum, $\sigma_{t\bar{t}}$, di-jets, ...

$tar{t}$ production asymmetries

 $ightharpoonup tar{t}$ production is a QCD process

Only higher order quantum corrections give rise to charge asymmetries

$$\begin{split} & \text{Definition of asymmetries} \\ & A_{FB} = \frac{N[\Delta y > 0] - N[\Delta y < 0]}{N[\Delta y > 0] + N[\Delta y < 0]} \,, \qquad \Delta y = y_t - y_{\bar{t}} \\ & A_C = \frac{N[\Delta |y| > 0] - N[\Delta |y| < 0]}{N[\Delta |y| > 0] + N[\Delta |y| < 0]} \,, \quad \Delta |y| = |y_t| - |y_{\bar{t}}| \end{split}$$

$tar{t}$ production asymmetries

SM at NLO in QCD and EW.

Frixione et al. hep-ph/0204244, hep-ph/0305252 Hollik, Pagani 1107.2606 Kuhn, Rodrigo 1109.6830 Manohar, Trott 1201.3926

Comparing SM predictions with averaged Tevatron and LHC results

JD, Kagan, Kamenik, Perez, Zupan 1209.4872

SM vs Experiment				
	SM prediction	Experiment	Discrep.	
$\overline{A_{FB}}$	0.088 ± 0.006	0.174 ± 0.038	2.3σ	
$A_{FB}^{ m high}$	$0.129^{+0.008}_{-0.006}$	0.296 ± 0.067	2.5σ	
A_C	$(1.23 \pm 0.05)10^{-2}$	$(1.15 \pm 1.25)10^{-2}$	/	

- $lackbox{Models}$ addressing the A_{FB} puzzle typically predict non-negligible A_C in tension with LHC data. Kamenik et al. 1107.5257 Aguilar-Saavedra, Perez-Victoria 1105.4606
- ightharpoonup Should we conclude that observed A_{FB} is not due to NP but a statistical fluctuation?
- ▶ Through general considerations we investigate the correlation between A_{FB} and A_{C} to answer this question.

A_{FB} vs A_C

- ▶ At the partonic level A_{FB} and A_C are both due to the same charge asymmetric part of $q\bar{q} \to t\bar{t}$ cross-section (proportional to $\hat{t} \hat{u}$) (strong positive correlation).
- lacktriangle Different valence structure of par p and pp initial states

$$\sigma = \sum_{i,j} \int \frac{\mathrm{d}\hat{s}}{s} \mathrm{d}y \, \left(\frac{\mathrm{d}\mathcal{L}_{i,j}}{\mathrm{d}\hat{s}\mathrm{d}y}\right) \, \left(\hat{s}\hat{\sigma}_{ij}\right)$$

lackbox Correlation can be lost if NP couples to both u and d quarks significantly and with opposite sign.

A_{FB} vs A_C [effective theory]

- ▶ Interference of the leading order SM amplitudes and NP contributions.
- ▶ At $\mathcal{O}(\alpha_S \Lambda^{-2})$ there are only two relevant dimension 6 NP operators.

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_{q=u,d} \frac{C_A^{qt}}{\Lambda^2} (\bar{q}\gamma^\mu \gamma_5 q) (\bar{t}\gamma_\mu \gamma_5 t)$$

 \blacktriangleright Not affect the $t\bar{t}$ cross-section, while they do generate shifts in inclusive A_{FB} and A_{C}

$$\Delta A_{FB} = -10\% \times \left(0.84C_A^{ut} + 0.12C_A^{dt}\right) \left(1\text{TeV}/\Lambda\right)^2$$
$$\Delta A_C = -1\% \times \left(1.4C_A^{ut} + 0.52C_A^{dt}\right) \left(1\text{TeV}/\Lambda\right)^2$$

▶ A large A_{FB} and small or negative A_C are possible, if C_A^{dt} and C_A^{ut} have opposite signs and $|C_A^{dt}| \gtrsim |C_A^{ut}|$.

A_{FB} vs A_C [effective theory]

- ▶ Interference of the leading order SM amplitudes and NP contributions.
- ▶ At $\mathcal{O}(\alpha_S \Lambda^{-2})$ there are only two relevant dimension 6 NP operators.

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{q=u,d} \frac{C_A^{qt}}{\Lambda^2} (\bar{q}\gamma^\mu \gamma_5 q) (\bar{t}\gamma_\mu \gamma_5 t)$$

 \blacktriangleright Not affect the $t\bar{t}$ cross-section, while they do generate shifts in inclusive A_{FB} and A_{C}

- We present a study of a model that indeed resembles the presented EFT conditions.
- ► Simple modification of light axigluon model introduced by Tavares and Schmaltz Tavares, Schmaltz 1107 0079 .
- ▶ $SU(3)_L \times SU(3)_R$ gauge symmetry broken spontaneously via $\phi_{3,\bar{3}}$ scalar to diagonal $SU(3)_{\rm color}$.

$$\mathcal{L} = -\frac{1}{4}(G^a_{\mu\nu})^2 - \frac{1}{4}(\tilde{G}^a_{\mu\nu})^2 + \frac{\tilde{m}^2}{2}\tilde{A}^2_{\mu} + \bar{Q}(i\not{D} - \tilde{g}_Q\tilde{A})Q + \bar{U}(i\not{D} + \tilde{g}_U\tilde{A})U + \bar{D}(i\not{D} + \tilde{g}_D\tilde{A})D + \dots,$$

$$\mathcal{L} = \cdots + \bar{Q}(i\not\!\!D - \tilde{g}_Q\mathring{A})Q + \bar{U}(i\not\!\!D + \tilde{g}_U\mathring{A})U + \bar{D}(i\not\!\!D + \tilde{g}_D\mathring{A})D + \cdots$$

- lacktriangle Scan over the \tilde{g}_U and \tilde{g}_D shows points within 1σ experimental intervals (left).
- ▶ Further considerations reveal regions compatible with A_{FB} , A_{C} and σ_{tt} (right).
- ► Anticipated decorrelation indeed realized!

Compliance with other observables

- $ightharpoonup m_{tar{t}}$ spectrum $_{ ext{0903.2850}}^{ ext{CDF}}$
- ► Dijet production CDF 0812.4036
- ► Dijet pair production CMS EXO-11-016

Compliance with other observables

- $m_{tar{t}}$ spectrum $m_{0903.2850}$
- ► Dijet production CDF 0812.4036
- ▶ Dijet pair production CMS PAS EXO-11-016

lacktriangle Axigluon is light, $\tilde{m}=350~{\rm GeV}$ - below the $t\bar{t}$ threshold!

Compliance with other observables

- $ightharpoonup m_{tar{t}}$ spectrum $_{0903.2850}^{\text{CDF}}$
 - Dijet production $_{0812.4036}^{\text{CDF}}$ $\sqrt{}$
- ightharpoonup Dijet pair production $_{ ext{PAS EXO-}11\text{-}016}^{ ext{CMS}}$ $\sqrt{}$

lackbox To pass the test of dijet pairs $\tilde{\Gamma}\sim 0.2\tilde{m}$ is needed. Doable by setting

$$\tilde{g}_{D}^{(s)} = \tilde{g}_{D}^{(b)} = -3.7$$
 or $\tilde{g}_{D}^{(b)} = -5.1$

lacktriangle A direct consequence: prediction of large A_{FB} in $bar{b}!$

t-channel associated production

▶ Illustration of the mechanism with a simple Z' model.

$$\mathcal{L} = g_{ut} Z'_{\mu} \bar{u}_R \gamma^{\mu} t_R + \text{h.c.} + M_{Z'}^2 Z'_{\mu}^{\dagger} Z'^{\mu}$$

lacktriangle t-channel exchange leads to increased A_{FB} as well as A_C

Additional negative contribution to A_C can be obtained considering associated Z' production!

The mechanism

- ▶ The Z' decay yields a \bar{t} quark which tends to be boosted in the same direction as the incoming u quark.
- ightharpoonup PDF of u quark "harder" than PDF of the gluon.
- ▶ On average, \bar{t} produced with larger rapidity than $t \Rightarrow$ negative contribution to A_C .

The mechanism

- ▶ The Z' decay yields a \bar{t} quark which tends to be boosted in the same direction as the incoming u quark.
- ightharpoonup PDF of u quark "harder" than PDF of the gluon.
- ▶ On average, \bar{t} produced with larger rapidity than $t \Rightarrow$ negative contribution to A_C .

Benchmark points: χ^2 including total x-sections and asymmetries.

CDF

ATLAS

- ► Additional checks for compatibility with
 - $\diamond m_{t\bar{t}}$ spectrum at Tevatron and LHC
 - Atlas search for top-jet resonances
 - CMS jet multiplicity distribution in semileptonic $t\bar{t}$ events
 - Indirect constraint Atomic Parity Violation.

Compliance with other observables

- $ightharpoonup m_{tar{t}}$ spectrum $_{0903.2850}^{ ext{CDF}}$ $_{1207.5644}^{ ext{ATLAS}}$
- ► Jet multiplicities CMS
 PAS-TOP-11-003

12 / 13

Compliance with other observables

- $ightharpoonup m_{tar{t}}$ spectrum $_{0903.2850}^{ ext{CDF}}$ $_{1207.5644}^{ ext{ATLAS}}$ $\sqrt{}$
- ► Jet multiplicities CMS PAS-TOP-11-003

Conclusions

- ▶ NP can still accommodate both A_{FB} and A_{C} measurements.
- ▶ The strong correlation between A_{FB} and A_C can be removed due to the different valence quark structure of the pp and $p\bar{p}$
- ightharpoonup NP has to couples to u and d quarks substantially and with opposite sign.
- ▶ We have implemented this in an light axigluon model, which seems to survive all present experimental constraints and in addition predicts a large $b\bar{b}$ asymmetry.
- lacktriangle t-channel NP can resolve the A_{FB} and lead to significant increases in A_C predictions.
- \blacktriangleright Substantial associated NP production contributing to $t\bar t j$ final gives negative A_C contributions.
- ▶ This can reconcile the A_{FB} vs. A_C issue, leaving A_FB above SM and bringing A_C back down to SM value.
- ightharpoonup We have implemented the mechanism in form of a simple Z' model, checking the compatibility with other collider constraints.