Towards gauge coupling unification in minimal SU(5) at 3-loop accuracy

Portoroz 2013

Luca Di Luzio

Institut für Theoretische Teilchenphysik

In collaboration with Luminita Mihaila (TTP - KIT)

Outline

- Georgi-Glashow SU(5)
- A minimal extension
- Neutrino masses
- Unification
- Why 3-loop accuracy ?
- Results

VOLUME 32, NUMBER 8

PHYSICAL REVIEW LETTERS

25 FEBRUARY 1974

Unity of All Elementary-Particle Forces

Howard Georgi* and S. L. Glashow Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 10 January 1974)

Strong, electromagnetic, and weak forces are conjectured to arise from a single fundamental interaction based on the gauge group SU(5).

We present a series of hypotheses and speculations leading inescapably to the conclusion that SU(5) is the gauge group of the world—that all elementary particle forces (strong, weak, and electromagnetic) are different manifestations of the same fundamental interaction involving a single coupling strength, the fine-structure constant. Our hypotheses may be wrong and our speculations idle, but the uniqueness and simplicity of our scheme are reasons enough that it be taken seriously.

VOLUME 32, NUMBER 8

PHYSICAL REVIEW LETTERS

25 FEBRUARY 1974

Unity of All Elementary-Particle Forces

Howard Georgi* and S. L. Glashow Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 10 January 1974)

Strong, electromagnetic, and weak forces are conjectured to arise from a single fundamental interaction based on the gauge group SU(5).

We present a series of hypotheses and speculations leading inescapably to the conclusion that SU(5) is the gauge group of the world—that all elementary particle forces (strong, weak, and electromagnetic) are different manifestations of the same fundamental interaction involving a single coupling strength, the fine-structure constant. Our hypotheses may be wrong and our speculations idle, but the uniqueness and simplicity of our scheme are reasons enough that it be taken seriously.

- Particle content and SM embedding:
 - Gauge sector: $24_V = \underbrace{(1,1,0)_V}_B \oplus \underbrace{(1,3,0)_V}_W \oplus \underbrace{(8,1,0)_V}_G \oplus \underbrace{(3,2,-\frac{5}{6})_V}_X \oplus \underbrace{(\overline{3},2,+\frac{5}{6})_V}_{\overline{X}}$ - SM fermions: $\overline{5}_F = \underbrace{(\overline{3},1,+\frac{1}{3})_F}_{d^c} \oplus \underbrace{(1,2,-\frac{1}{2})_F}_{\ell}$ $10_F = \underbrace{(\overline{3},1,-\frac{2}{3})_F}_{u^c} \oplus \underbrace{(3,2,+\frac{1}{6})_F}_q \oplus \underbrace{(1,1,+1)_F}_{e^c}$

- Scalar sector: $5_{H} = \underbrace{(3, 1, -\frac{1}{3})_{H}}_{\mathcal{T}} \oplus \underbrace{(1, 2, +\frac{1}{2})_{H}}_{h}$ $24_{H} = \underbrace{(1, 1, 0)_{H}}_{S_{H}} \oplus \underbrace{(1, 3, 0)_{H}}_{T_{H}} \oplus \underbrace{(8, 1, 0)_{H}}_{O_{H}} \oplus \underbrace{(3, 2, -\frac{5}{6})_{H}}_{X_{H}} \oplus \underbrace{(\overline{3}, 2, +\frac{5}{6})_{H}}_{\overline{X}_{H}}$

- Particle content and SM embedding: 24_V , $\overline{5}_F$, 10_F , 5_H , 24_H
 - SU(5) breaking

$$SU(5) \xrightarrow[M_X]{\langle 24_H \rangle} SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \xrightarrow[M_Z]{\langle 5_H \rangle} SU(3)_C \otimes U(1)_Q$$

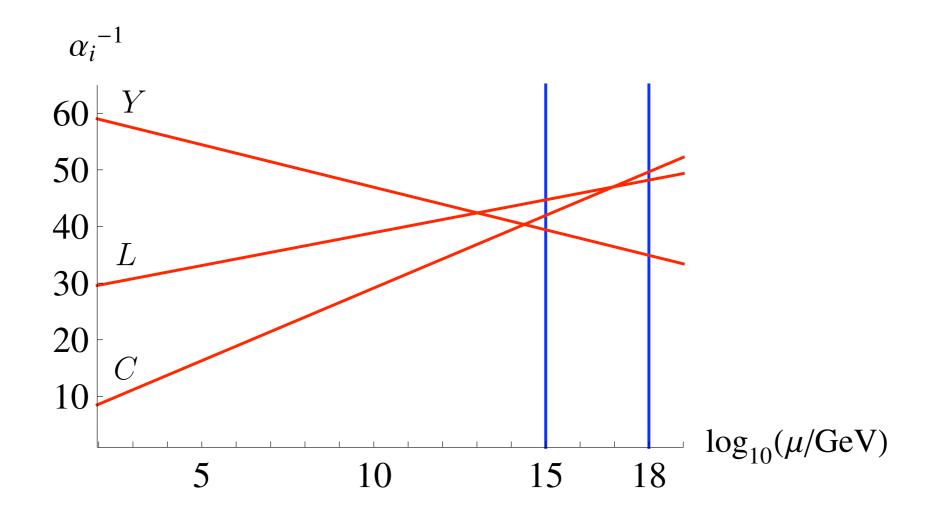
- B and L number violating currents: proton is unstable

$$p \begin{cases} \sqrt{x} & \tau_p^{exp} > 10^{34} \text{ yr} \quad \text{[Super-Kamiokande (2012)]} \\ & & \Rightarrow & M_X \gtrsim 10^{15.5} \text{ GeV} \end{cases}$$

$$\tau_p^{\text{th}} \approx \alpha_G^{-2} \frac{M_X^4}{m_p^5}$$

Why is the GG SU(5) ruled out ?

• Gauge couplings do not unify (even after including thresholds)



Why is the GG SU(5) ruled out ?

- Gauge couplings do not unify (even after including thresholds)
- Neutrinos are (practically) massless

$$\mathcal{L}_{Y} = Y_{1}\overline{5}_{F}10_{F}5_{H}^{*} + Y_{2}10_{F}10_{F}5_{H} + \frac{1}{\Lambda} \begin{bmatrix} Y_{3}\overline{5}_{F}\overline{5}_{F}5_{H}5_{H} + \dots \end{bmatrix}$$
$$M_{D} = M_{E}^{T} \qquad M_{U}$$
$$m_{\nu} \sim Y_{3}\frac{v^{2}}{\Lambda} \lesssim 10^{-4} \text{ eV} \qquad \longleftarrow \qquad m_{\nu_{3}} \gtrsim \sqrt{\Delta m_{\text{atm}}^{2}} \sim 0.05 \text{ eV}$$

for $\Lambda \approx 100 \times M_G \approx 10^{17} \text{ GeV}$ (b-tau + perturbativity)

Luca Di Luzio (KIT)

Add a fermionic 24_F

Solves both the problems at once*

[Bajc, Senjanovic (2006)] [Bajc, Nemevsek, Senjanovic (2007)]

$$24_F = \underbrace{(1,1,0)_F}_{S_F} \oplus \underbrace{(1,3,0)_F}_{T_F} \oplus \underbrace{(8,1,0)_F}_{O_F} \oplus \underbrace{(3,2,-\frac{5}{6})_F}_{X_F} \oplus \underbrace{(\overline{3},2,+\frac{5}{6})_F}_{\overline{X}_F}$$

- Neutrino masses through seesaw
- RGEs are modified

Luca Di Luzio (KIT)

*Minimal extension of GG SU(5) is not unique: e.g. add a 15_{H}

[Dorsner, Fileviez Perez (2005)]

04/15

[Dorsner, Fileviez Perez, Gonzalez Felipe (2005)]

Neutrino masses

• New Yukawa terms with 24_F

 $\delta \mathcal{L} = L_i \left(y_T^i T_F + y_S^i S_F \right) H + m_T T_F T_F + m_S S_F S_F + \text{h.c.}$

• Mixed type-III + type-I seesaw

• Two massive neutrinos: $(m_{\nu})^{ij} = v^2 \left(\frac{y_T^i y_T^j}{m_T} + \frac{y_S^i y_S^j}{m_S} \right)$

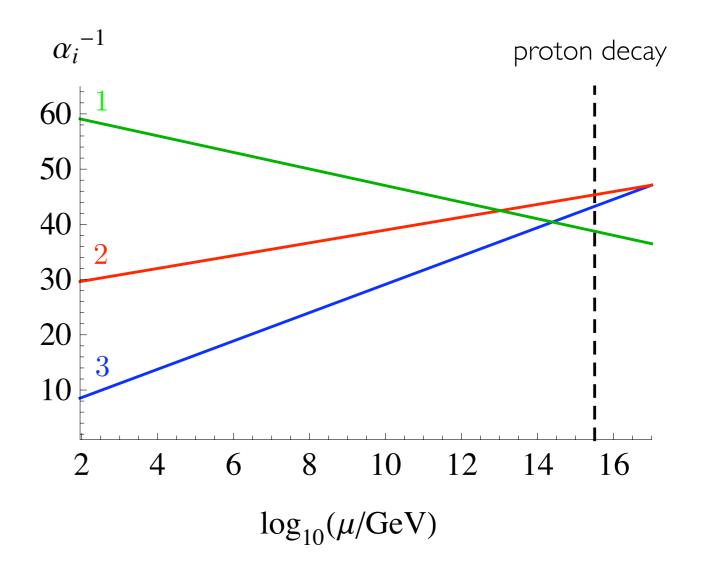
Luca Di Luzio (KIT)

Unification patterns

 \bullet Running btw M_Z and M_G :

$$\alpha_i^{-1}(\mu) = \alpha_i^{-1}(\mu_0) - \frac{a_i}{\pi} \log(\mu/\mu_0)$$

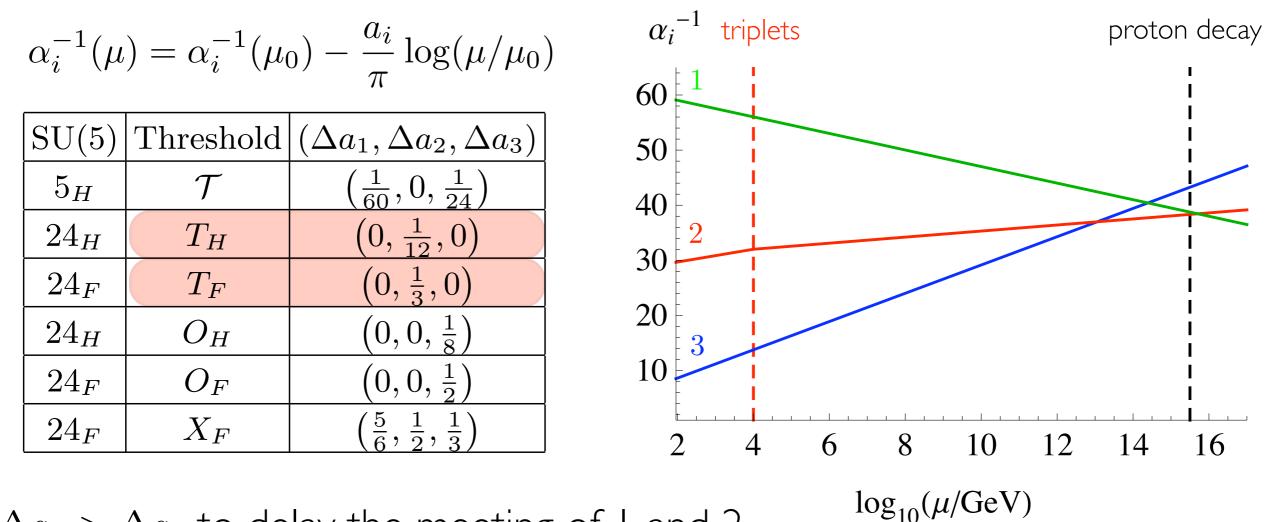
SU(5)	Threshold	$(\Delta a_1, \Delta a_2, \Delta a_3)$
5_H	\mathcal{T}	$\left(\frac{1}{60},0,\frac{1}{24}\right)$
24_H	T_H	$\left(0, \frac{1}{12}, 0\right)$
24_F	T_F	$\left(0, \frac{1}{3}, 0\right)$
24_H	O_H	$\left(0,0,\frac{1}{8}\right)$
24_F	O_F	$\left(0,0,\frac{1}{2}\right)$
24_F	X_F	$\left(rac{5}{6},rac{1}{2},rac{1}{3} ight)$



Unification patterns

 \bullet Running btw M_Z and M_G :

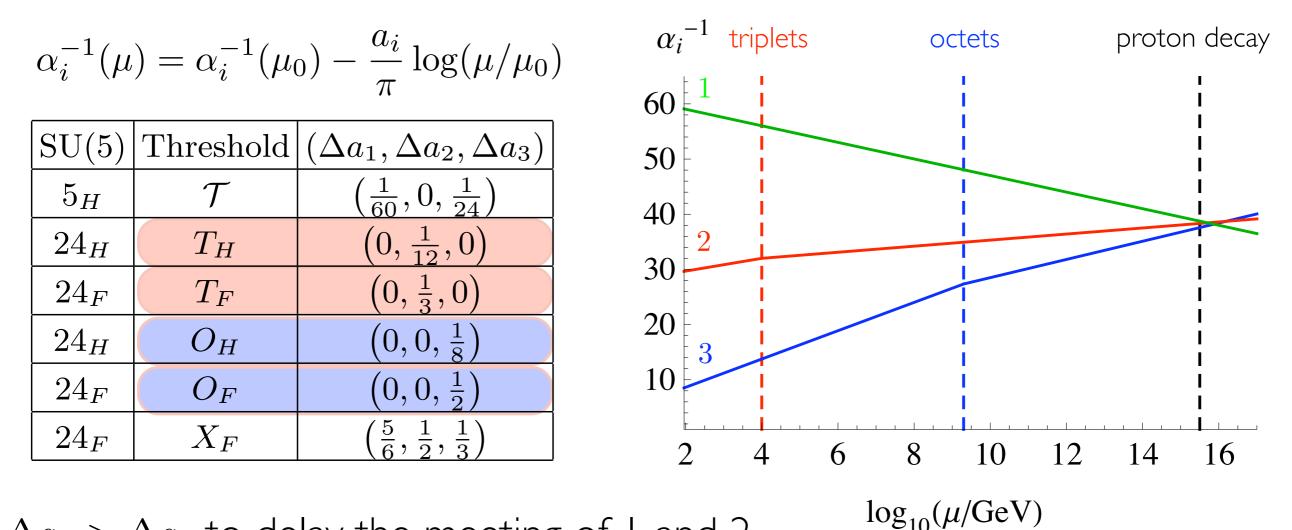
Luca Di Luzio (KIT)



• $\Delta a_2 > \Delta a_1$ to delay the meeting of 1 and 2

Unification patterns

 \bullet Running btw M_Z and M_G :



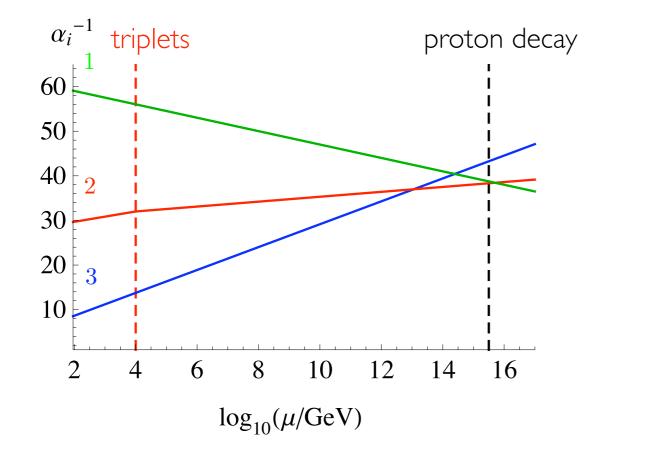
• $\Delta a_2 > \Delta a_1$ to delay the meeting of 1 and 2

- $\Delta a_3 > \Delta a_1, \Delta a_2$ for the convergence of 3 with 1 and 2
- unification patterns require $m_T \ll m_O \ll M_G$

Luca Di Luzio (KIT)

How heavy the triplets can be ?

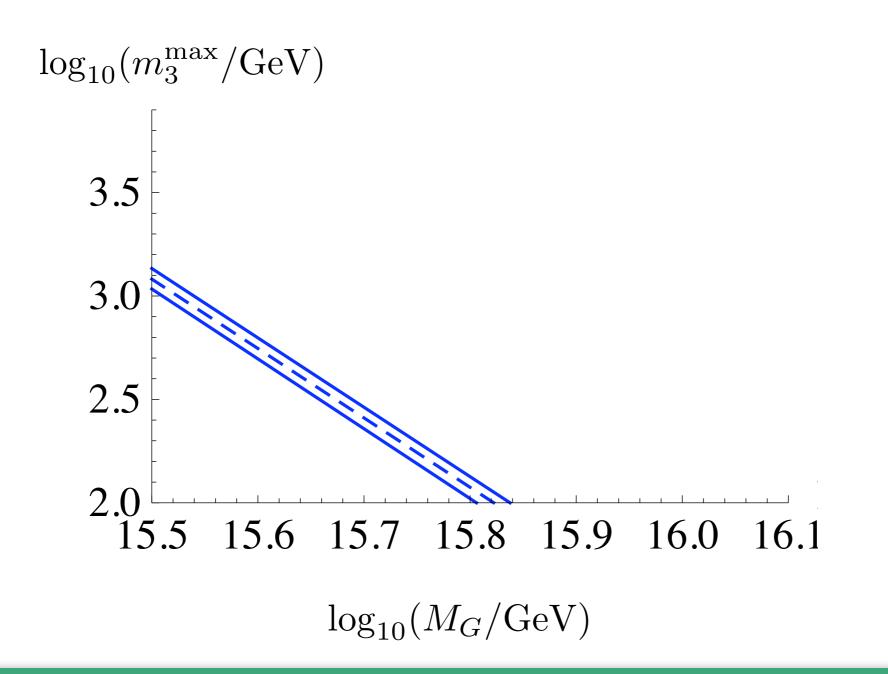
- RGEs can constrain max value of $m_3 = \left(m_{T_F}^4 m_{T_H}\right)^{1/5}$
 - maximize the mass of the extra thresholds with $\Delta a_1 > \Delta a_2$
 - m_3^{max} M_G correlation depends on the convergence of α_1 and α_2 : precision observable !



$$\frac{\Delta \alpha_1}{\alpha_1} (M_Z) \approx 0.02\%$$
$$\frac{\Delta \alpha_2}{\alpha_2} (M_Z) \approx 0.06\%$$
$$\frac{\Delta \alpha_3}{\alpha_3} (M_Z) \approx 0.6\%$$

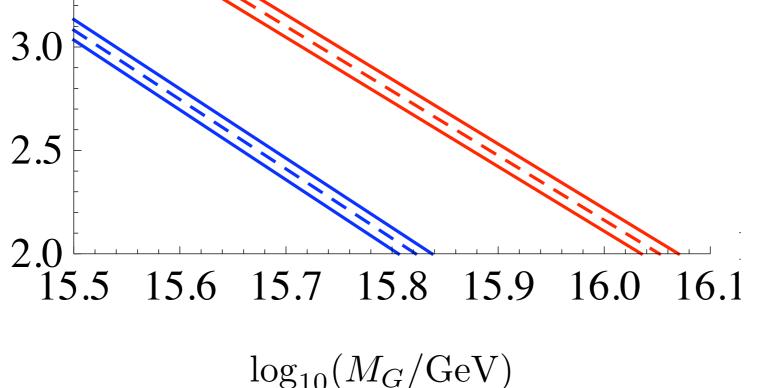
m₃^{max} - M_G correlation

• one-loop



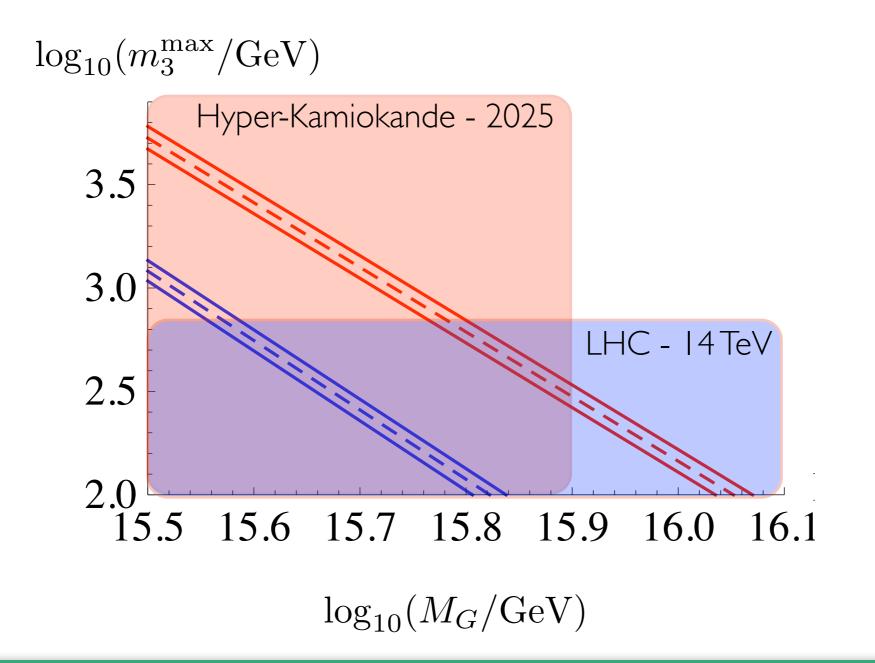
m₃^{max} - M_G correlation

• one-loop \longrightarrow two-loops $\left(\frac{\Delta m_3}{m_3}\right)^{1 \to 2-\text{loop}} = 340\%$ $\left(\frac{\Delta m_3}{m_3}\right)^{\exp} = 25\%$ $\log_{10}(m_3^{\max}/\text{GeV})$ • requires three-loop accuracy ! 3.5



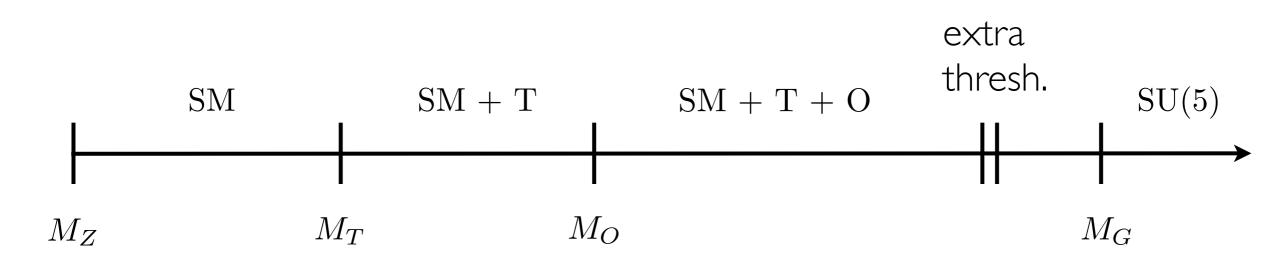
m₃^{max} - M_G correlation

• Interplay btw LHC and HK will cover most of the parameter space



Ingredients for a 3-loop analysis

• Effective field theories: n-loop running + (n-1)-loop matching



- 3-loop beta functions in the SM [Mihaila, Salomon, Steinhauser (2012)]
- 2-loop matching for SM \longrightarrow SM +T \longrightarrow SM +T + O (here)
- 3-loop beta functions in SM + T and SM + T + O (here)
- 2-loop matching at M_G (missing)

3-loop beta functions

• Dimensional regularization and MSbar scheme

$$u^{2} \frac{d}{d\mu^{2}} \frac{\alpha_{i}}{\pi} \equiv \beta_{i}(\{\alpha_{j}\}, \epsilon) = -\epsilon \frac{\alpha_{i}}{\pi} - \left(\frac{\alpha_{i}}{\pi}\right)^{2} \left[a_{i} + \sum_{j} \frac{\alpha_{i}}{\pi}b_{ij} + \sum_{jk} \frac{\alpha_{j}}{\pi} \frac{\alpha_{k}}{\pi}c_{ijk} + \dots\right]$$
$$\alpha_{i}^{\text{bare}} = \mu^{2\epsilon} Z_{\alpha_{i}}(\{\alpha_{j}\}, \epsilon) \alpha_{i} \xrightarrow{\frac{d}{d\mu}\alpha_{i}^{\text{bare}}} \beta_{i} = f(Z_{\alpha_{i}})$$

• Calculation of Z_{α_i} at 3 loops: O(10⁵) diagrams

• One non-zero external momentum & all masses set to zero

3-loop beta functions

• An example: triplets contribution to β_2

$$\mu^2 \frac{d}{d\mu^2} \frac{\alpha_i}{\pi} = \beta_i(\{\alpha_j\}, \epsilon)$$

$$\begin{split} \Delta\beta_{2} &= \frac{\alpha_{2}^{2}}{\pi^{2}} \left\{ \frac{1}{6} C\left(G_{L}\right) N_{T_{F}} + \frac{1}{24} C\left(G_{L}\right) N_{T_{H}} + \frac{\alpha_{2}}{\pi} \left(\frac{1}{3} C\left(G_{L}\right)^{2} N_{T_{F}} + \frac{7}{48} C\left(G_{L}\right)^{2} N_{T_{H}} \right) \right. \\ &+ \frac{\alpha_{2}^{2}}{\pi^{2}} \left[\left(\frac{247}{432} C\left(G_{L}\right)^{3} - \frac{7}{108} C\left(G_{L}\right)^{2} T\left(R_{L}\right) \left(N\left(R_{C}\right) N_{q} + N_{\ell}\right) - \frac{11}{576} C\left(G_{L}\right) C\left(R_{L}\right) T\left(R_{L}\right) \left(N\left(R_{C}\right) N_{q} + N_{\ell}\right) \right. \\ &- \frac{127}{3456} C\left(G_{L}\right)^{2} T\left(R_{L}\right) N_{h} - \frac{25}{576} C\left(G_{L}\right) C\left(R_{L}\right) T\left(R_{L}\right) N_{h} - \frac{145}{3456} C\left(G_{L}\right)^{3} N_{T_{F}} - \frac{277}{6912} C\left(G_{L}\right)^{3} N_{T_{H}} \right) N_{T_{F}} \\ &+ \left(\frac{2749}{6912} C\left(G_{L}\right)^{3} - \frac{13}{432} C\left(G_{L}\right)^{2} T\left(R_{L}\right) \left(N\left(R_{C}\right) N_{q} + N_{\ell}\right) - \frac{23}{2304} C\left(G_{L}\right) C\left(R_{L}\right) T\left(R_{L}\right) \left(N\left(R_{C}\right) N_{q} + N_{\ell}\right) \right. \\ &- \frac{143}{6912} C\left(G_{L}\right)^{2} T\left(R_{L}\right) N_{h} - \frac{49}{2304} C\left(G_{L}\right) C\left(R_{L}\right) T\left(R_{L}\right) N_{h} - \frac{145}{13824} C\left(G_{L}\right)^{3} N_{T_{H}} \right) N_{T_{H}} \right] \bigg\} \end{split}$$

3-loop beta functions

• An example: triplets contribution to β_2

$$\mu^2 \frac{d}{d\mu^2} \frac{\alpha_i}{\pi} = \beta_i(\{\alpha_j\}, \epsilon)$$

$$\begin{split} \Delta\beta_{2} &= \frac{\alpha_{2}^{2}}{\pi^{2}} \left\{ \frac{1}{6} C\left(G_{L}\right) N_{T_{F}} + \frac{1}{24} C\left(G_{L}\right) N_{T_{H}} + \frac{\alpha_{2}}{\pi} \left(\frac{1}{3} C\left(G_{L}\right)^{2} N_{T_{F}} + \frac{7}{48} C\left(G_{L}\right)^{2} N_{T_{H}} \right) \right. \\ &+ \frac{\alpha_{2}^{2}}{\pi^{2}} \left[\left(\frac{247}{432} C\left(G_{L}\right)^{3} - \frac{7}{108} C\left(G_{L}\right)^{2} T\left(R_{L}\right) \left(N\left(R_{C}\right) N_{q} + N_{\ell}\right) - \frac{11}{576} C\left(G_{L}\right) C\left(R_{L}\right) T\left(R_{L}\right) \left(N\left(R_{C}\right) N_{q} + N_{\ell}\right) \right. \\ &- \frac{127}{3456} C\left(G_{L}\right)^{2} T\left(R_{L}\right) N_{h} - \frac{25}{576} C\left(G_{L}\right) C\left(R_{L}\right) T\left(R_{L}\right) N_{h} - \frac{145}{3456} C\left(G_{L}\right)^{3} N_{T_{F}} - \frac{277}{6912} C\left(G_{L}\right)^{3} N_{T_{H}} \right) N_{T_{F}} \\ &+ \left(\frac{2749}{6912} C\left(G_{L}\right)^{3} - \frac{13}{432} C\left(G_{L}\right)^{2} T\left(R_{L}\right) \left(N\left(R_{C}\right) N_{q} + N_{\ell}\right) - \frac{23}{2304} C\left(G_{L}\right) C\left(R_{L}\right) T\left(R_{L}\right) \left(N\left(R_{C}\right) N_{q} + N_{\ell}\right) \\ &- \frac{143}{6912} C\left(G_{L}\right)^{2} T\left(R_{L}\right) N_{h} - \frac{49}{2304} C\left(G_{L}\right) C\left(R_{L}\right) T\left(R_{L}\right) N_{h} - \frac{145}{13824} C\left(G_{L}\right)^{3} N_{T_{H}} \right) N_{T_{H}} \right] \right\} \end{split}$$

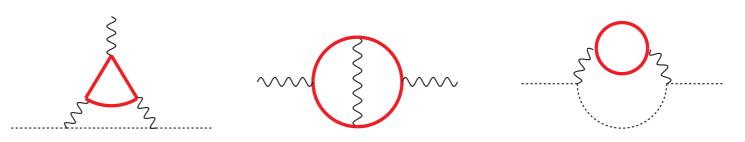
2-loop matching coefficients

• Matching of effective fields theories

Luca Di Luzio (KIT)

[Weinberg (1980), Hall (1981)]

• Match Green's functions of the light particles in the full and eff theory



• Zero external momenta & and all masses set to zero but M_{heavy} [Chetyrkin, Kniehl, Steinhauser (1998)]

2-loop matching coefficients

• An example: triplets contribution to ζ_{α_2}

 $\alpha_i^{(\text{eff})} = \zeta_i \, \alpha_i^{(\text{full})}$

$$\begin{aligned} \zeta_{\alpha_2} &= 1 + \frac{\alpha_2}{\pi} \left(-\frac{1}{6} C\left(G_L\right) \ln \frac{\mu^2}{m_{T_F}^2} N_{T_F} - \frac{1}{24} C\left(G_L\right) \ln \frac{\mu^2}{m_{T_H}^2} N_{T_H} \right) \\ &+ \frac{\alpha_2^2}{\pi^2} \left[\left(-\frac{7}{288} C\left(G_L\right)^2 - \frac{1}{12} C\left(G_L\right)^2 \ln \frac{\mu^2}{m_{T_F}^2} + \frac{1}{36} C\left(G_L\right)^2 \ln^2 \frac{\mu^2}{m_{T_F}^2} N_{T_F} \right) N_{T_F} \right. \\ &+ \left(\frac{37}{576} C\left(G_L\right)^2 - \frac{11}{96} C\left(G_L\right)^2 \ln \frac{\mu^2}{m_{T_H}^2} + \frac{1}{576} C\left(G_L\right)^2 \ln^2 \frac{\mu^2}{m_{T_H}^2} N_{T_H} \right) N_{T_H} \\ &+ \frac{1}{72} C\left(G_L\right)^2 \ln \frac{\mu^2}{m_{T_F}^2} \ln \frac{\mu^2}{m_{T_H}^2} N_{T_F} N_{T_H} \right] \end{aligned}$$

2-loop matching coefficients

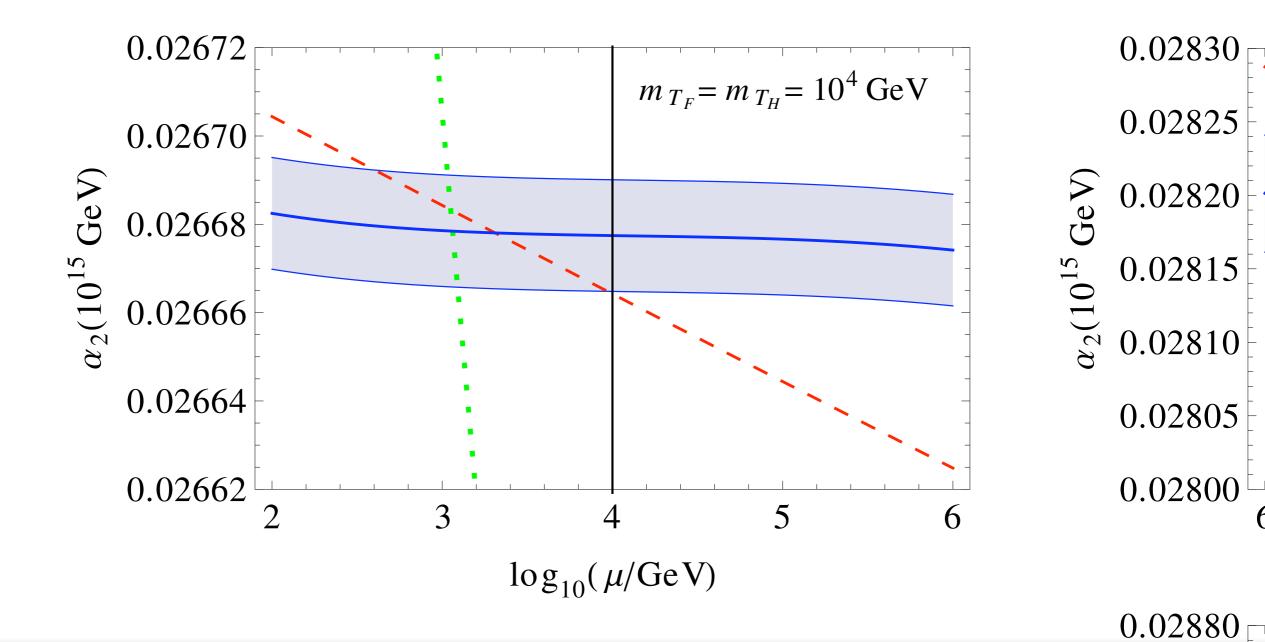
• An example: triplets contribution to ζ_{α_2}

 $\alpha_i^{(\text{eff})} = \zeta_i \, \alpha_i^{(\text{full})}$

$$\begin{aligned} \zeta_{\alpha_2} &= 1 + \frac{\alpha_2}{\pi} \left(-\frac{1}{6} C\left(G_L\right) \ln \frac{\mu^2}{m_{T_F}^2} N_{T_F} - \frac{1}{24} C\left(G_L\right) \ln \frac{\mu^2}{m_{T_H}^2} N_{T_H} \right) \\ &+ \frac{\alpha_2^2}{\pi^2} \left[\left(-\frac{7}{288} C\left(G_L\right)^2 - \frac{1}{12} C\left(G_L\right)^2 \ln \frac{\mu^2}{m_{T_F}^2} + \frac{1}{36} C\left(G_L\right)^2 \ln^2 \frac{\mu^2}{m_{T_F}^2} N_{T_F} \right) N_{T_F} \right. \\ &+ \left(\frac{37}{576} C\left(G_L\right)^2 - \frac{11}{96} C\left(G_L\right)^2 \ln \frac{\mu^2}{m_{T_H}^2} + \frac{1}{576} C\left(G_L\right)^2 \ln^2 \frac{\mu^2}{m_{T_H}^2} N_{T_H} \right) N_{T_H} \\ &+ \frac{1}{72} C\left(G_L\right)^2 \ln \frac{\mu^2}{m_{T_F}^2} \ln \frac{\mu^2}{m_{T_H}^2} N_{T_F} N_{T_H} \right] \end{aligned}$$

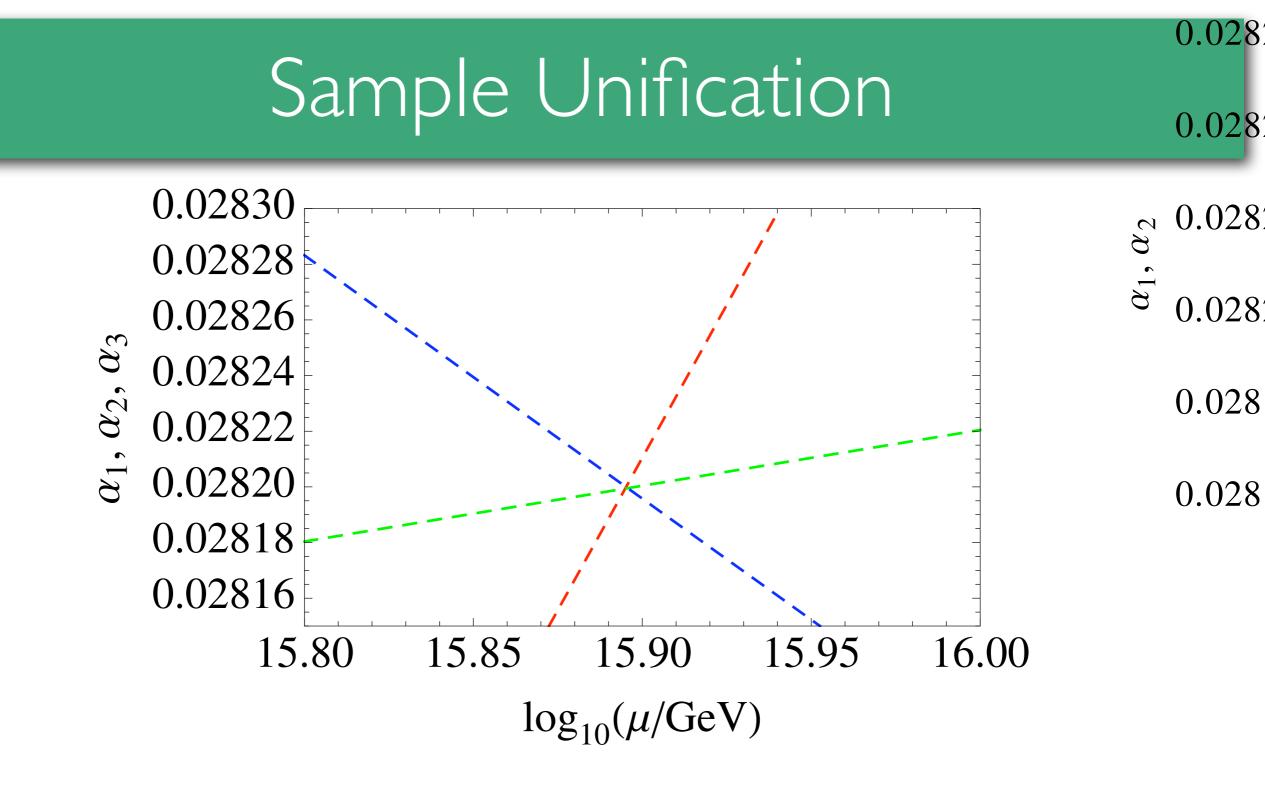
Scale dependence

 $SM \longrightarrow SM + triplets$

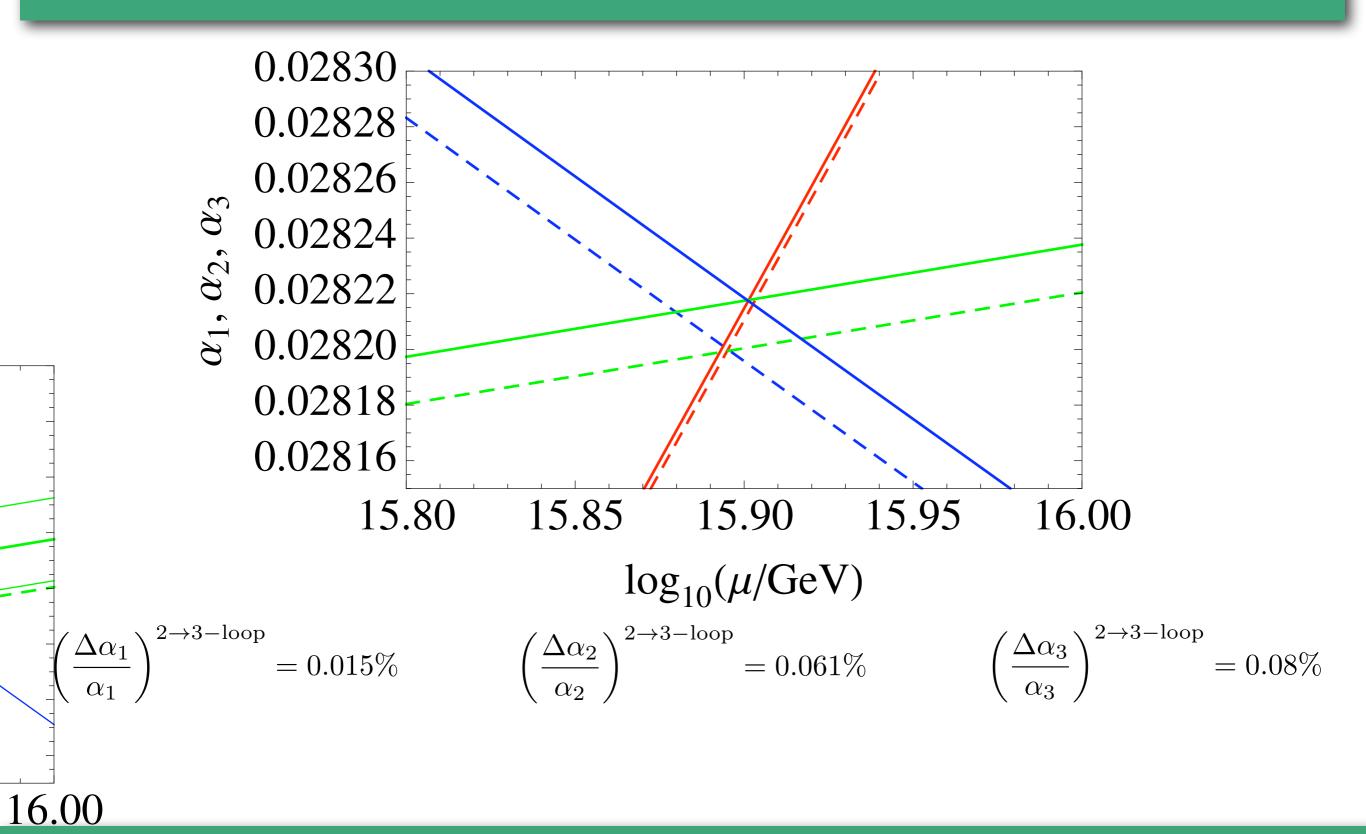


12/15

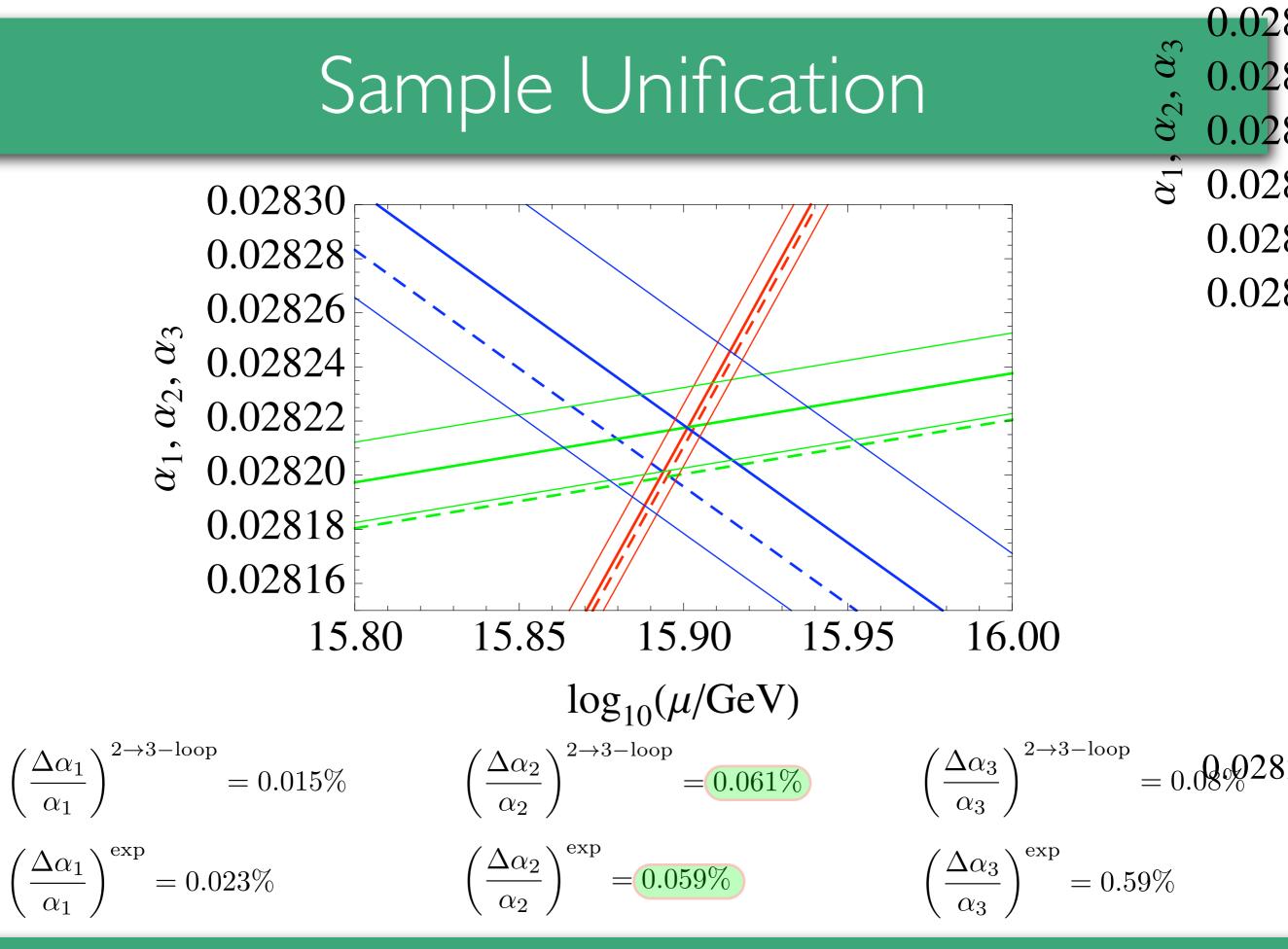
Luca Di Luzio (KIT)



Sample Unification



Luca Di Luzio (KIT)



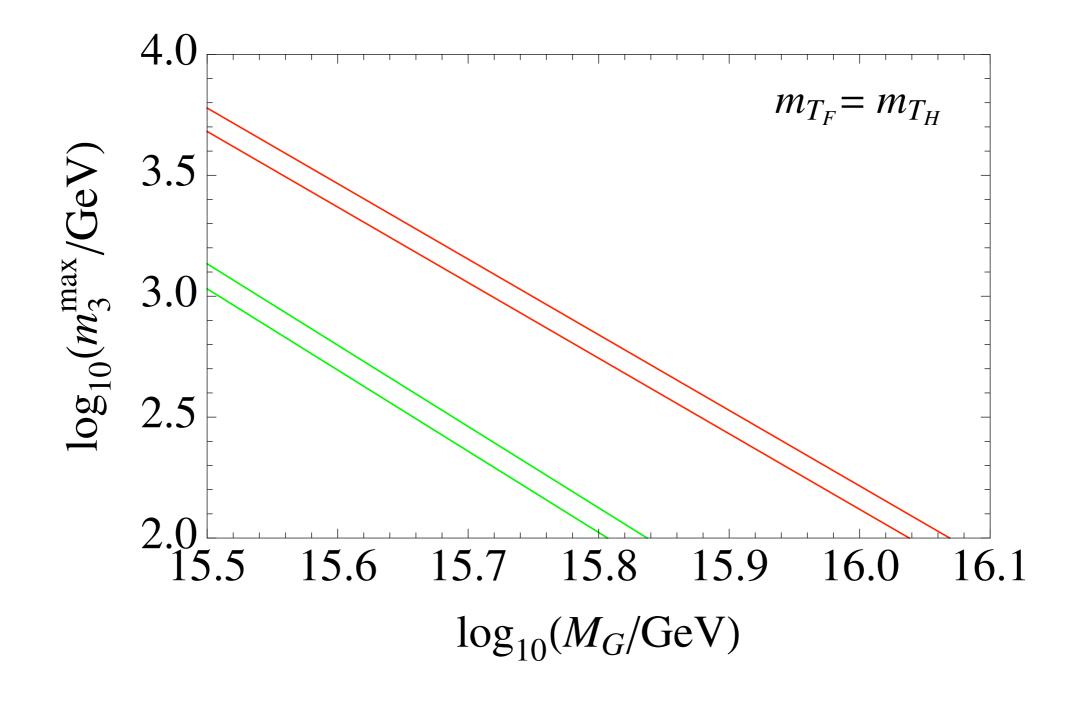
Luca Di Luzio (KIT)

|3/|5

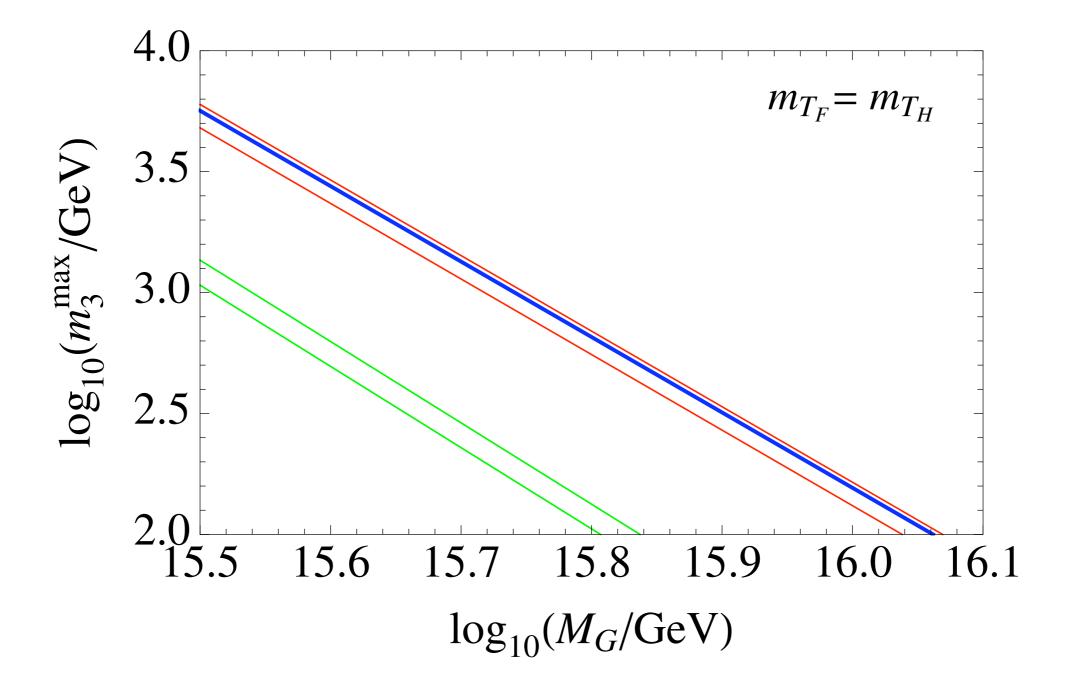
m₃max - M_G correlation @ 3-loops

15

15



m³^{max} - M_G correlation @ 3-loops



Conclusions

- Minimal extension of GG SU(5) with 24_F :
 - either light O(TeV) electroweak triplets
 - or unification scale $< 10^{16} \text{ GeV}$
- Joint effort btw experiments (LHC, HK, ...) and theory
- 3-loops needed to:
 - settle the convergence of the perturbative series
 - match exp precision