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s.l. decays determine |Vub| and |Vcb|

Since several years, exclusive decays prefer smaller |Vub|and |Vcb|





Inclusive vs exclusive B 
decays
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The total width in the OPE

OPE valid for inclusive enough measurements, away 
from perturbative singularities ➠ moments

Present implementations include all terms through      
O(αs2,1/mb3): mb,c, µ2π,G,  ρ3D,LS  6 parameters 
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Fitting OPE parameters 
to the moments 

Total rate gives |Vcb|, global shape parameters (first moments 
of  the distributions) tell us about B structure, mb and mc 

 
OPE parameters describe universal properties of  the B meson and of 

the quarks → useful in many applications

mx spectrumEl spectrum



fits and mass constraints

Recent sum rules studies of  σ(e+e- → hadrons)
and lattice calculations give very precise 
NNNLO determinations of  mc (and mb).
They are consistent with our NNLO fit
and can be used to improve precision 

 

SL fit with only mc constraint (Kuhn)

Kuhn et al 2009
Hoang et al 2011

Inputs |Vcb| 103 mbkin χ2/ndf
b→c & 
b→sγ 41.94(43)(58) 4.574(32) 29.7/59

b→c &
mc 

41.88(44)(58) 4.560(23) 33.3/48

Schwanda,PG 2012, using mc from Hoang et al

mc(3GeV)=0.986(13)GeV
mb(mb)=4.163(16)GeV

Similar results in 1S scheme (Bauer et al)



Theoretical errors dominate



higher order effects
• The reliability of  the inclusive method depends on our ability 

to control higher order effect and quark-hadron duality 
violations. 

• Purely perturbative corrections complete  
known.                                                          Melnikov, Czarnecki, Pak, PG

• Power corrections included up to                        
known but involve many new parameters, numerical relevance 
under study. In vacuum saturation approx small effect on Vcb                                                    
Mannel,Turczyk,Uraltsev

• Mixed perturbative corrections to power suppressed 
coefficients at                  almost finished, already known for  
b → sγ                                 Becher, Boos, Lunghi, Alberti, Ewerth, Nandi, PG
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effects                O(αs/m
2
b)

Boos,Becher,Lunghi 2007
Alberti,Ewerth,Nandi,PG 2012

They can be computed using reparameterization invariance which 
relates different orders in the HQET 

Manohar 2010

good testing ground for the 
calculation. 
Proliferation of  power 
divergences, up to 1/u3, 
and complex
kinematics (q2,q0, mc,mb)

where the structure functions Wi are functions of q̂2, q̂0 or equivalently of q̂2, û, vµ is the

four-velocity of the B meson, and q̂µ = qµ/mb.

In the limit of massless leptons only W1,2,3 contribute to the decay rate and one has
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where we have neglected terms of higher order in the expansion parameters. µ2
π and µ2

G are

the B-meson matrix elements of the only gauge-invariant dimension 5 operators that can

be formed from the b quark and gluon fields [1, 2]. The leading order coefficients are given

by
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The perturbative corrections to the free quark decay have been computed in [14] and refs.
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û

�

+

+
θ(û)
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result for W1
and we have checked that this result applies to the case of massive quarks as well. Another
possibility, which leads to the same result without an extra finite renormalization, is to
anticommute γ5 to the extreme left of the Dirac string in all diagrams and then to replace
it by its four-dimensional definition.

After combining all the diagrams, the infrared divergences are cancelled and the ultraviolet
divergences are removed by the b quark wave function renormalization and the charm mass
renormalization. The charm mass renormalization also removes all the δ���(û) terms. No
renormalization is necessary in the effective theory [23].

4 The O(αsµ
2
π/m

2
b
) results

We now report our results for the O(αs) corrections to the Wilson coefficients of the kinetic
operator. The most singular part of the Wis has a universal structure
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δ��(û)− 4 (1− E0I1,0)

�
1

û3
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δ(û).

In the above expressions the coefficients of the derivatives of δ(û) have been reduced using
integration by parts: for instance
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The functions R(π)
i are related to real gluon emission and are given by

R(π)
1 =

8

3
E0

�(1−E0)(E0 − 2û)
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Exclusive decay  B→D*ℓν
At zero recoil, where rate vanishes, the ff is

Recent progress in measurement of slopes and shape parameters, exp error only ~2% 

The ff F(1) cannot be experimentally determined.  Lattice QCD is the best hope to 
compute it.  Only one unquenched Lattice calculation:   

                          F(1) =0.902(17)   Laiho et al 2010

    2.1% error (adding in quadrature)

~2σ or ~5% from inclusive determination

|Vcb|=39.6(0.7)(0.6)x10-3

F(1) = ηA

�
1 +O

�
1

m2
c

�
+ ...

�

B→Dlv has larger errors  |Vcb|=39.1(1.4)(1.3)x10-3  



zero recoil sum rule

• Starting point OPE for axial vector current at zero recoil: 
expansion of  I0 in 1/mc and 1/mb  and αs

• Recent calculation incorporates higher order effects and 
estimates inelastic contributions                       Mannel, Uraltsev, PG 2012

• Estimate of  inelastic (non-resonant) contribution is hard

F(1) =
�

I0(εM )− Iinel(εM ) F(1) ≤
�

I0(εM )

Unitarity bound

Heavy quark sum rules put bounds on the zero recoil form factor 
F(1) for B→ D*                                                  Shifman,Vainshtein, Uraltsev 1996 

F(1) < 0.935



The inelastic contribution

I1(εM ) = − 1
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T (ε) ε dε Iinel(εM ) =
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ε̄

OPE:

ε represents the average excitation energy mainly controlled by the   
_

lowest radial (1/2+) and D-wave (3/2+) excitations,  therefore 
about 700MeV

in terms of  little known non-local correlators of  the form

ρ3ππ + ρ3πG + ρ3S + ρ3A ≥ 0
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each of  them is integral of  spectral function 
with specific spin 
structure e.g.

O ∼ b̄πkπl b



estimating the non-local guys

∆M
2
Q = M

2
Q∗ −M

2
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4

3
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2
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2

3

ρ3πG + ρ3A − ρ3LS + 2Λ̄µ2
G

mQ
+O

�
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m2
Q

�Hyperfine splitting

∆M2
B � ∆M2

DExperimentally

within a ∼25% uncertainty

ρ3πG + ρ3A ≈ −0.45GeV3

ρ3πG + ρ3A <∼ − 0.33GeV3

with somewhat larger uncertainty

From MB-MD and moments fits
_   _

These are strong indications that non-local guys are larger than expected. 
Based on a BPS expansion we get a minimum  Iinel(εM ∼ 0.75GeV) >∼ 0.14± 0.03

using the lowest value of  Iinel   and 
interpreting the total uncertainty as 
gaussian in perfect agreement with inclusive Vcb which would lead to 0.85±0.03 

F(1) = 0.86± 0.02



“radial” contributions 
to total width

• Non-local guys determined by transitions to + parity light         
d.o.f.: 

•  Large Iinel  implies strong transitions to “radial” excitations (radial & 
D-wave states)

• Assuming a single multiplet of  “radials” for each jq hyperfine 
splitting constrains the strength of  B→“radials” 

• At leading order in the heavy quark expansion and neglecting v  
dependence of  the form factors one typically gets

1

2

+

,
3

2

+

,
5

2

+

Γrad

Γsl
≈ 6÷ 7%

see also Bernlochner, Ligeti,Turczyk

suggesting “radials” contribute significantly to the broad 
resonances, a possible solution of  1/2>3/2 puzzle

Mannel,Uraltsev, PG



Inclusive: 5-6% total error

 |Vub| determinations

Average |Vub|x103

 DGE 4.45(15)ex
+15-16

 BLNP 4.40(15)ex+19-21

 GGOU 4.39(15)ex
+12-14

HFAG 2012

Exclusive: 10-15% total error

|Vub| = (3.25± 0.31)× 10−3

2.7-3σ from B→πlν (MILC-FNAL)

2σ from B→πlν (LCSR, Siegen)
2.5-3σ from UTFit 2011    

UT fit (without direct Vub):
Vub=3.62(14) 10-3

MILC

LCSR, Khodjamirian et al, see also Bharucha

The discrepancy here is around 30% !!

B→πlν data poorly consistent!
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BABAR (p*>1.3GeV) 
 0.27 + 0.10 - 0.11±4.33 

Average +/- exp + theory - theory
 0.15 + 0.12 - 0.14±4.39 

HFAG
End Of 2011

P. Gambino, P. Giordano, G. Ossola, N. Uraltsev 
JHEP 0710:058,2007 (GGOU)

/dof = 11.2/10 (CL = 34.00 %)2"

Vub in the GGOU approach      

Good consistency & small th error.

4.7% total error

PG,Giordano,Ossola,Uraltsev

 strong dependence on mb

recent experimental results 
are theoretically cleanest

but signal simulation relies on 
theoretical models



Perturbative effects

Greub,Neubert,Pecjak  arXiv:0909.1609

• O(αs) implemented by all groups  De Fazio,Neubert

• Running coupling O(αs2β0) (PG,Gardi,Ridolfi) in GGOU, DGE lead to -5% & +2%, 
resp.  in |Vub|

• Complete O(αs2) in the SF region Asatrian,Greub,Pecjak-Bonciani,Ferroglia-Beneke,Huber, Li - G. Bell 2008

• In BLNP leads to up 8% increase in Vub related to resummation, not yet included by 
HFAG. It is an artefact of  this approach.

NEW: full phase space O(αs2) calculation 
                                                                  Brucherseifer,Caola,Melnikov, arXiv:1302.0444

Confirms non-BLM/BLM approx 20% over relevant phase space



summary
• Theoretical efforts to develop the OPE approach to 

semileptonic decays goes on. More results soon. No sign of 
inconsistency in this approach.

• HQSR determination of  zero recoil B→D*  form factor 
agrees with inclusive determination.

• Exclusive/incl. tension in Vub remains misterious (2-3σ). It 
could be explained by right-handed current...

• Belle-II will increase significantly the statistics for b →ulν 
decays. Measurement of  spectra will enable direct 
constraints on shape function(s), see e.g. SIMBA.



Nikolai Uraltsev
 a first class physicist, an enthusiastic 

colleague, a good friend has died on Feb 13.



back-up slides



heavy quark masses



OPE: power corrections

matrix elements from moments fits & sum rule constraints
1∕m4 and 1∕m5 also known, matrix elements have been estimated
by ground state saturation

∆A � 0.090 + 0.029− 0.023− 0.013 + . . .

heavy quark expansion converges reasonably well
Including all errors for εM=0.75GeV

F(1) < 0.935

Mannel, Turczyk, Uraltsev



New physics?

Buras, Gemmler, Isidori  1007.1993

LR models can explain a 
difference between inclusive and 
exclusive Vub determinations             
(Chen,Nam) 

Also in MSSM   (Crivellin)

BUT the RH currents affect 
predominantly the exclusive Vub, 
making the conflict between Vub 
and sin2β (ψKS) stronger...



exclusive Vub from B→πlν

 Precision is improved by fitting 
lattice/LCSR together with data

Experimental data are not well consistent

Here there is no preferred point in phase space. Lattice and 
light-cone sum rules estimate form factor. 

Recent lattice based: |Vub| = (3.25± 0.31)× 10−3

Recent sum-rules based: 
Khodjamirian, Mannel,Offen,Wang 2011

see also Bharucha

MILC collaboration



The total B→Xuℓν width

2 Calculation of C

Like all inclusive widths, the ratio C can be calculated using the OPE and expressed as a

double expansion in αs and inverse powers of the b quark mass, currently known through

O(α2
s) and O(Λ3

QCD/m3
b). C depends sensitively on the b and c quark masses, as well as on the

matrix elements of the dimension 5 and 6 operators. This is where the recent experimental

studies of the inclusive moments of B → Xceν̄ and B → Xsγ enter in a crucial way.

Indeed, the moments of various kinematic distributions provide information on the non-

perturbative parameters of the OPE. Global fits to the moments describe successfully a

variety of moments and allow for a 40− 50MeV determination of mc and mb, a ∼ 10− 20%

determination of the 1/m2
b and 1/m3

b matrix elements, and a ∼ 2% determination of |Vcb|
[2, 10]. There are different ways to take into account the available information, relying on

different assumptions and schemes. We work in the kinetic scheme [11], where a ‘hard’ cutoff

µ separates perturbative and non-perturbative effects respecting heavy quark relations, and

non-perturbative parameters are well-defined and perturbatively stable.

Our starting point are the NNLO expressions for the charmed and charmless total

semileptonic widths

Γ[B̄ → Xceν̄] =
G2

F m5
b

192π3
|Vcb|2g(r)

�
1 +

αs

π
p

(1)
c (r, µ) +

α2
s

π2
p

(2)
c (r, µ)

− µ2
π

2m2
b

+

�
1

2
− 2(1− r)4

g(r)

�
µ2

G −
ρ3

LS+ρ3
D

mb

m2
b

+

�
8 ln r − 10r4

3
+

32r3

3
− 8r

2 − 32r

3
+

34

3

�
ρ3

D

g(r) m3
b

�
, (4)

Γ[B̄ → Xueν̄] =
G2

F m5
b

192π3
|Vub|2

�
1 +

αs

π
p

(1)
u (µ) +

α2
s

π2
p

(2)
u (r, µ)− µ2

π

2m2
b

− 3µ2
G

2m2
b

+

�
77

6
+ 8 ln

µ2
WA

m2
b

�
ρ3

D

m3
b

+
3ρ3

LS

2m3
b

+
32π2

m3
b

BWA(µWA)

�
, (5)

where αs ≡ α
(nf=5)
s (mb), r = (mc/mb)

2, g(r) = 1−8r+8r3−r4−12r2 ln r, and all the masses

and OPE parameters are defined in the kinetic scheme at finite mb with µ ∼ 1GeV. The

non-perturbative corrections have been computed in [12] and are expressed in terms of the

parameters µ2
π, µ2

G, ρ3
D, ρ3

LS. The matrix element of the Weak Annihilation (WA) operator

BWA ≡ �B|Ou
WA|B� is poorly known. It is here renormalized in the MS scheme at the scale

µWA, see [13, 14]. We recall that BWA vanishes in the factorization approximation, and that

WA is phenomenologically important only to the extent factorization is actually violated.

There is however an O(1) mixing between WA and Darwin operators, and at lowest order

in perturbation theory one has BWA(µ�) = BWA(µ) − ρ3
D/2π2 ln µ�/µ. As factorization may

hold only for a certain value µWA = µf for which BWA(µf ) = 0, a change of the scale µf

provides a rough measure of the (minimal) violation of factorization induced perturbatively.

We neglect intrinsic charm contributions [15]. WA uncertainties make a precise prediction

of C problematic at present. Fortunately, they cancel out in Eq.(1) since the radiative BR

cannot depend on the non-perturbative features of the charmless semileptonic decay.

2

O(αs

µ2
π,G

m2
b

) +O(
1

m4
b

)+

Using the results of  the fit, Vub 
could be extracted if  we had the 

total width...
Weak Annihilation, severely 
constrained from D decays, 
see Kamenik, PG,  arXiv:1004.0114
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A global comparison 0907.5386, Phys Rept

DGE

ADFR

BLNP

GGOU

GGOU

✴  common inputs (except ADFR) 
✴  Overall good agreement  SPREAD WITHIN 

THEORY ERRORS
✴  NNLO BLNP still missing: will push it up a bit
✴  Systematic offset of  central values: 

normalization? to be investigated

only theory errors 
(without common parametric)
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OPE: Perturbative effects 

the cutoff  μ separates pert and non-pert physics

Power corrections start with 1/mc2 ΛQCD � εM , µ � 2mc

�
ξpertA (0.75GeV) = 0.98± 0.01

εM = µ = 0.75GeVWe choose
and include 1, 2 loop and 
higher BLM corrections
with no expansion in μ∕mc 

complete O(α2
s)

O(α2
sβ0)

O(αs) with αs = 0.3

O(α3
sβ0)



zero recoil sum rule

ε = MX −MD∗

T (ε) =
i

6MB

�
d4xe−ix0(MB−MD∗−ε)�B|TJk

A(x)JAk(0)|B�

I0(εM ) = − 1

2πi

�

|ε|=εM

T (ε) dε = F2(1) + Iinel(ε)

Iinel(εM ) =
1

2πi

� εM

0+
discT (ε)dε

F(1) =
�

I0(εM )− Iinel(εM ) F(1) ≤
�

I0(εM )

Inelastic non-resonant piece

Unitarity bound

discT(ε)

ε
M


