RECENT DEVELOPMENTS IN SEMILEPTONIC B DECAYS

PAOLO GAMBINO UNIVERSITÀ DI TORINO

PORTOROZ, 15/4/2013

S.L. DECAYS DETERMINE $|V_{ub}|$ and $|V_{cb}|$

Since several years, exclusive decays prefer smaller $|V_{ub}|$ and $|V_{cb}|$

inclusives vs exclusives

Marcella Bona QMUI

INCLUSIVE VS EXCLUSIVE B DECAYS

THE TOTAL WIDTH IN THE OPE

$$\begin{split} \Gamma[B \to X_c l\bar{\nu}] = &\Gamma_0 \ g(r) \Big[1 + \frac{\alpha_s}{\pi} c_1(r) + \left(\frac{\alpha_s^2}{\pi^2} c_2(r) - \frac{\mu_\pi^2}{2m_b^2} \right) + c_G(r) \frac{\mu_G^2}{m_b^2} \\ &+ c_D(r) \frac{\rho_D^3}{m_b^3} + c_{LS}(r) \frac{\rho_{LS}^3}{m_b^3} + O\Big(\alpha_s \frac{\mu_{\pi,G}^2}{m_b^2} \Big) + O\Big(\frac{1}{m_b^4} \Big) \Big] \\ &r = \frac{m_c^2}{m_b^2} \qquad \Gamma_0 = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} \end{split}$$

OPE valid for inclusive enough measurements, away from perturbative singularities moments

Present implementations include all terms through $O(\alpha_s^2, 1/m_b^3)$: $m_{b,c,} \mu^2_{\pi,G,} \rho^3_{D,LS}$ 6 parameters

FITTING OPE PARAMETERS TO THE MOMENTS

E₁ spectrum m_x spectrum Entries per 0.1 GeV/c 2200Belle 2000BABAR entries / 80 MeV/c² oreliminary 600 1400 12001000800 600 400 200 2000 $m_x [GeV/c^2]$ 0.4 0.6 0.8 1.2 E^{*B} (GeV/c)

Total **rate** gives $|V_{cb}|$, global **shape** parameters (first moments of the distributions) tell us about B structure, m_b and m_c

OPE parameters describe universal properties of the B meson and of the quarks -> useful in many applications

FITS AND MASS CONSTRAINTS

Inputs	V _{cb} 10 ³	m _b kin	χ²/ndf
b→c & b→sγ	41.94(43)(58)	4.574(32)	29.7/59
b→c & m _c	41.88(44)(58)	4.560(23)	33.3/48

Schwanda, PG 2012, using m_c from Hoang et al Similar results in 1S scheme (Bauer et al)

Recent sum rules studies of $\sigma(e^+e^- \rightarrow hadrons)$ and lattice calculations give very precise NNNLO determinations of m_c (and m_b). They are consistent with our NNLO fit and can be used to improve precision

THEORETICAL ERRORS DOMINATE

HIGHER ORDER EFFECTS

- The reliability of the inclusive method depends on our ability to control higher order effect and quark-hadron duality violations.
- Purely perturbative corrections complete $O(\alpha_s^2)$ known.
- **Power corrections** included up to $O(1/m_b^3)$, $O(1/m_b^{4,5})$ known but involve many new parameters, numerical relevance under study. In vacuum saturation approx small effect on V_{cb} Mannel,Turczyk,Uraltsev
- **Mixed** perturbative corrections to power suppressed coefficients at $O(\alpha_s/m_b^2)$ almost finished, already known for $b \rightarrow s\gamma$ Becher, Boos, Lunghi, Alberti, Ewerth, Nandi, PG

$O(\alpha_s/m_b^2)$ EFFECTS

Boos,Becher,Lunghi 2007 Alberti,Ewerth,Nandi,PG 2012

They can be computed using reparameterization invariance which relates different orders in the HQET

$$W_{i} = W_{i}^{(0)} + \frac{\mu_{\pi}^{2}}{2m_{b}^{2}}W_{i}^{(\pi,0)} + \frac{\mu_{G}^{2}}{2m_{b}^{2}}W_{i}^{(G,0)} + \frac{C_{F}\alpha_{s}}{\pi} \left[W_{i}^{(1)} + \frac{\mu_{\pi}^{2}}{2m_{b}^{2}}W_{i}^{(\pi,1)} + \frac{\mu_{G}^{2}}{2m_{b}^{2}}W_{i}^{(G,1)}\right]$$

For *i=3* at all orders $W_{3}^{(\pi,n)} = \frac{5}{3}\hat{q}_{0}\frac{dW_{3}^{(n)}}{d\hat{q}_{0}} - \frac{\hat{q}^{2} - \hat{q}_{0}^{2}}{3}\frac{d^{2}W_{3}^{(n)}}{d\hat{q}_{0}^{2}}$ Manohar 2010

good testing ground for the calculation. Proliferation of power divergences, up to $1/u^3$, and complex kinematics (q^2, q_0, m_c, m_b)

RESULT FOR W₁

$$W_{1}^{(\pi,1)} = 2E_{0}B_{(1,\pi)} + \frac{8}{3}(1 - E_{0}I_{1,0})(1 - E_{0})\left(E_{0}\left[\frac{1}{\hat{u}^{2}}\right]_{+} - 2\left[\frac{1}{\hat{u}}\right]_{+}\right) + R_{1}^{(\pi)}\theta(\hat{u}) \\ + \frac{8E_{0}}{3}\left[\frac{1 - E_{0}}{2}S_{1} - \lambda_{0}(1 - E_{0}I_{1,0}) - \frac{E_{0}^{2}}{\rho} + (3E_{0}^{2} - \rho)I_{1,0} - 2E_{0}(1 + I_{1,0}) + 3\right]\delta'(\hat{u}) \\ + \frac{8}{3}\left[S_{2} - E_{0}S_{1} + E_{0}(1 - E_{0}I_{1,0})\left(\frac{\lambda_{0}}{2} - \frac{(1 - E_{0})^{2}}{\lambda_{0}} + E_{0}\right) + \left(E_{0}^{2} - \frac{3}{4}E_{0} - \frac{\rho}{4}\right)I_{1,0} \\ + \frac{\frac{3}{4}E_{0}^{3} - \frac{\rho}{4}(E_{0}^{2} + 2E_{0} - 2\rho(1 - E_{0}))}{\rho^{2}}\right]\delta(\hat{u}),$$

$$(4.2)$$

$$\begin{split} B_{(i,\pi)} &= \frac{\lambda_0}{3} \Big\{ \Big[S_i + 3(1 - H_0 I_{1,0}) \Big] \delta''(\hat{u}) + 4 \left(1 - E_0 I_{1,0} \right) \Big[\frac{1}{\hat{u}^3} \Big]_+ \Big\} \\ R_1^{(\pi)} &= \frac{8}{3} E_0 \Big(\frac{(1 - E_0)(E_0 - 2\hat{u})}{\hat{u}^2} - \frac{E_0 \lambda_0}{\hat{u}^3} \Big) I_{1,0} - \frac{\frac{4}{3} \hat{u}^2 + 2(1 - 5E)\hat{u} + \frac{28}{3}(E^2 - E)}{\lambda} \Big(I_1 - \frac{1}{E} \Big) \\ &+ \frac{8}{3} \left(\frac{7}{8} E - \frac{3}{8} - \frac{\hat{u}}{4} + \frac{E - z}{\hat{u}} + \frac{E^2 \lambda}{\hat{u}^3} + \frac{E(E - E^2 - \lambda)}{\hat{u}^2} \right) I_1 + \frac{16E^2(E - z)}{3\hat{u}^2 z} \\ &- \frac{\hat{u}^2 \left(4E^2 - Ez - 2z^2 \right)}{6Ez^3} + \frac{-8E^3 - 3E^2 z + 5Ez(z + 1) + (5 - 2z)z^2}{3z^3} \\ &+ \frac{4E(2E^2 - 5Ez + 4z^2)}{3\hat{u}z^2} + \frac{\hat{u} \left(24E^4 - 12E^3 z + 4E^2(z - 3)z + E(z^2 - 6z^3) + 3z^3 \right)}{6Ez^4}, \end{split}$$

EXCLUSIVE DECAY $B \rightarrow D^* \ell \nu$

At zero recoil, where rate vanishes, the ff is

$$\mathcal{F}(1) = \eta_A \left[1 + O\left(\frac{1}{m_c^2}\right) + \dots \right]$$

Recent progress in measurement of slopes and shape parameters, exp error only ~2% The ff F(1) cannot be experimentally determined. Lattice QCD is the best hope to compute it. Only one unquenched Lattice calculation:

> F(1) =0.902(17) Laiho et al 2010 V_{cb} = $39.6(0.7)(0.6)x10^{-3}$

> > 2.1% error (adding in quadrature)

 $\sim 2\sigma$ or $\sim 5\%$ from inclusive determination

B \rightarrow DIv has larger errors $|V_{cb}| = 39.1(1.4)(1.3) \times 10^{-3}$

ZERO RECOIL SUM RULE

Heavy quark sum rules put bounds on the zero recoil form factor F(1) for $B \rightarrow D^*$ Shifman, Vainshtein, Uraltsev 1996

$$\mathcal{F}(1) = \sqrt{I_0(\varepsilon_M) - I_{inel}(\varepsilon_M)} \qquad \qquad \mathcal{F}(1) \le \sqrt{I_0(\varepsilon_M)}$$

Unitarity bound $\mathcal{F}(1) < 0.935$

- Starting point OPE for axial vector current at zero recoil: expansion of *I*₀ in 1/*m*_c and 1/*m*_b and α_s
- Recent calculation incorporates higher order effects and estimates inelastic contributions Mannel, Uraltsev, PG 2012
- Estimate of inelastic (non-resonant) contribution is hard

THE INELASTIC CONTRIBUTION

$$I_1(\varepsilon_M) = -\frac{1}{2\pi i} \oint_{|\varepsilon| = \varepsilon_M} T(\varepsilon) \varepsilon d\varepsilon \qquad I_{inel}(\varepsilon_M) = \frac{I_1(\varepsilon_M)}{\bar{\varepsilon}}$$

 $\overline{\epsilon}$ represents the average excitation energy mainly controlled by the lowest radial (1/2⁺) and D-wave (3/2⁺) excitations, therefore about 700MeV

OPE:
$$I_1 = \frac{-(\rho_{\pi G}^3 + \rho_A^3)}{3m_c^2} + \frac{-2\rho_{\pi \pi}^3 - \rho_{\pi G}^3}{3m_c m_b} + \frac{\rho_{\pi \pi}^3 + \rho_{\pi G}^3 + \rho_A^3}{4} \left(\frac{1}{m_c^2} + \frac{2}{3m_c m_b} + \frac{1}{m_b^2}\right) + \mathcal{O}\left(\frac{1}{m_Q^3}\right)$$

in terms of little known non-local correlators of the form

$$\frac{i}{2M_B} \int d^4x \langle B|T\{O_i(x), O_j(x)\}|B\rangle' \qquad O \sim \bar{b} \,\pi_k \pi_l \, b$$

 $\rho_{\pi\pi}^{3} + \rho_{\pi G}^{3} + \rho_{S}^{3} + \rho_{A}^{3} \ge 0$

each of them is integral of spectral function with specific spin structure e.g. $\rho_{\pi\pi}^3 = \int_{\omega>0} d\omega \frac{\rho_p^{(\frac{1}{2}^+)}}{\omega}$

ESTIMATING THE NON-LOCAL GUYS

Hyperfine splitting

$$\Delta M_Q^2 = M_{Q^*}^2 - M_Q^2 = \frac{4}{3} c_G(m_Q) \mu_G^2 + \frac{2}{3} \frac{\rho_{\pi G}^3 + \rho_A^3 - \rho_{LS}^3 + 2\bar{\Lambda}\mu_G^2}{m_Q} + O\left(\frac{1}{m_Q^2}\right)$$

Experimentally $\Delta M_B^2 \simeq \Delta M_D^2$

within a ~25% uncertainty

 $\rho_{\pi G}^3 + \rho_A^3 \approx -0.45 {\rm GeV}^3$

From $\overline{M}_B - \overline{M}_D$ and moments fits $\rho_{\pi G}^3$

$$ho_{\pi G}^3 +
ho_A^3 \lesssim -0.33 \mathrm{GeV}^3$$

with somewhat larger uncertainty

These are strong indications that non-local guys are larger than expected. Based on a BPS expansion we get a minimum $I_{inel}(\varepsilon_M \sim 0.75 \text{GeV}) \gtrsim 0.14 \pm 0.03$

using the <u>lowest</u> value of I_{inel} and interpreting the total uncertainty as gaussian in perfect agre

$$\mathcal{F}(1) = 0.86 \pm 0.02$$

in perfect agreement with inclusive V_{cb} which would lead to 0.85 ± 0.03

"RADIAL" CONTRIBUTIONS TO TOTAL WIDTH

- Non-local guys determined by transitions to + parity light
 d.o.f.: 1 + 3 + 5 +
 2 , 2 , 2
- Large *I_{inel}* implies strong transitions to "radial" excitations (radial & *D*-wave states)
- Assuming a single multiplet of "radials" for each j_q hyperfine splitting constrains the strength of B→"radials"
- At leading order in the heavy quark expansion and neglecting *v* dependence of the form factors one typically gets

$$\frac{\Gamma_{rad}}{\Gamma_{sl}}\approx 6\div 7\%$$

Mannel, Uraltsev, PG

suggesting "radials" contribute significantly to the broad resonances, a possible solution of 1/2>3/2 puzzle

see also Bernlochner, Ligeti, Turczyk

Vub DETERMINATIONS

Inclusive: 5-6% total error

HFAG 2012	Average $ V_{ub} x10^3$
DGE	$4.45(15)_{\rm ex}^{+15}$ -16
BLNP	$4.40(15)_{\rm ex}^{+19}$ -21
GGOU	$4.39(15)_{\rm ex}^{+12}$ -14

Exclusive: 10-15% total error

$$|V_{ub}| = (3.25 \pm 0.31) \times 10^{-3}$$
MILC
$$|V_{ub}| = \left(3.50^{+0.38}_{-0.33}\Big|_{th.} \pm 0.11\Big|_{exp.}\right) \times 10^{-3}$$

LCSR, Khodjamirian et al, see also Bharucha $B \rightarrow \pi l \nu$ data poorly consistent!

2.7-3 σ from B $\rightarrow\pi$ lv (MILC-FNAL) 2 σ from B $\rightarrow\pi$ lv (LCSR, Siegen) 2.5-3 σ from UTFit 2011

UT fit (without direct V_{ub}): V_{ub} =3.62(14) 10⁻³

The discrepancy here is around 30% !!

Vub IN THE GGOU APPROACH

PG,Giordano,Ossola,Uraltsev

PERTURBATIVE EFFECTS

- $O(\alpha_s)$ implemented by all groups De Fazio, Neubert
- Running coupling $O(\alpha_s{}^2\beta_0)$ (PG,Gardi,Ridolfi) in GGOU, DGE lead to -5% & +2%, resp. in $|V_{ub}|$
- Complete $O(\alpha_s^2)$ in the SF region Asatrian, Greub, Pecjak-Bonciani, Ferroglia-Beneke, Huber, Li G. Bell 2008
- In BLNP leads to up 8% increase in V_{ub} related to resummation, not yet included by HFAG. It is an **artefact** of this approach.

	$\Gamma_u^{(0)}$	μ_h	μ_i
NLO	60.37	$^{+3.52}_{-3.37}$	$^{+3.81}_{-6.67}$
NNLO	52.92	$^{+1.46}_{-1.72}$	$^{+0.09}_{-2.79}$

Greub, Neubert, Pecjak arXiv:0909.1609

• $P_+ < 0.66$ GeV:

Fixed-Order	$\Gamma_u^{(0)}$	μ
NLO	49.11	$^{+5.43}_{-9.41}$
NNLO	49.53	$^{+0.13}_{-4.01}$

NEW: full phase space O(α_s²) calculation Brucherseifer, Caola, Melnikov, arXiv:1302.0444

Confirms non-BLM/BLM approx 20% over relevant phase space

SUMMARY

- Theoretical efforts to develop the OPE approach to semileptonic decays goes on. More results soon. No sign of inconsistency in this approach.
- HQSR determination of zero recoil $B \rightarrow D^*$ form factor agrees with inclusive determination.
- Exclusive/incl. tension in V_{ub} remains misterious (2-3 σ). It could be explained by right-handed current...
- Belle-II will increase significantly the statistics for $b \rightarrow ulv$ decays. Measurement of spectra will enable direct constraints on shape function(s), see e.g. SIMBA.

NIKOLAI URALTSEV

a first class physicist, an enthusiastic colleague, a good friend has died on Feb 13.

BACK-UP SLIDES

HEAVY QUARK MASSES

Table 17.1.5. Recent results for the charm-quark mass. An asterisk indicates that we have obtained this number fr of m_c quoted as the main result of the paper using four-loop accuracy (together with $\alpha_s(M_Z) = 0.1184$ (Nakamur

$m_c(3 \text{ GeV}) \text{ (GeV)}$	$m_c(m_c)$ (GeV)	Method	Reference
0.986 ± 0.013	$1.275 \pm 0.013^{*}$	LESR	Kühn, Steinhauser, and Sturm (2007)
$0.96 \pm 0.04^*$	1.25 ± 0.04	NRSR	Signer (2009)
0.986 ± 0.006	$1.275 \pm 0.006^{*}$	LQCD	McNeile, Davies, Follana, Hornbostel, and Lepage (2010)
0.998 ± 0.029	1.277 ± 0.026	LESR	Dehnadi, Hoang, Mateu, and Zebarjad (2011)
0.987 ± 0.009	1.278 ± 0.009	FESR	Bodenstein, Bordes, Dominguez, Penarrocha, and Schilche
$0.972 \pm 0.006^{*}$	1.262 ± 0.006	FESR	Narison (2012)

Table 17.1.6. Recent results for the bottom-quark mass.

$m_b(m_b)$	Method	Reference
4.19 ± 0.06	NRSR	Pineda and Signer (2006)
4.163 ± 0.016	LESR	Chetyrkin et al. (2009)
4.164 ± 0.023	LQCD	McNeile, Davies, Follana, Hornbostel, and Lepage (2010)
4.167 ± 0.013	LESR	Narison (2012)

OPE: POWER CORRECTIONS

$$\begin{split} \Delta_{1/m^2} &= \frac{\mu_G^2}{3m_c^2} + \frac{\mu_\pi^2 - \mu_G^2}{4} \left(\frac{1}{m_c^2} + \frac{2}{3m_c m_b} + \frac{1}{m_b^2} \right), \\ \Delta_{1/m^3} &= \frac{\rho_D^3 - \frac{1}{3}\rho_{LS}^3}{4m_c^3} + \frac{1}{12m_b} \left(\frac{1}{m_c^2} + \frac{1}{m_c m_b} + \frac{3}{m_b^2} \right) \left(\rho_D^3 + \rho_{LS}^3 \right) \end{split}$$

matrix elements from moments fits & sum rule constraints $1/m^4$ and $1/m^5$ also known, matrix elements have been estimated by ground state saturation Mannel, Turczyk, Uraltsev

 $\Delta_A \simeq 0.090 + 0.029 - 0.023 - 0.013 + \dots$

heavy quark expansion converges reasonably well Including all errors for ε_M =0.75GeV

$$\mathcal{F}(1) < 0.935$$

NEW PHYSICS?

LR models can explain a difference between inclusive and exclusive V_{ub} determinations (Chen,Nam)

Also in MSSM (Crivellin)

BUT the RH currents affect predominantly the exclusive V_{ub} , making the conflict between V_{ub} and sin2 β (ψ Ks) stronger...

Buras, Gemmler, Isidori 1007.1993

EXCLUSIVE V_{ub} **FROM** $B \rightarrow \pi l v$

Here there is no preferred point in phase space. Lattice and light-cone sum rules estimate form factor.

Recent lattice based: MILC collaboration

Recent sum-rules based:

Khodjamirian, Mannel,Offen,Wang 2011 see also Bharucha

Precision is improved by fitting lattice/LCSR together with data

Experimental data are not well consistent

 $|V_{ub}| = (3.25 \pm 0.31) \times 10^{-3}$

$$|V_{ub}| = \left(3.50^{+0.38}_{-0.33}\Big|_{th.} \pm 0.11\Big|_{exp.}\right) \times 10^{-3}$$

THE TOTAL $B \rightarrow X_{u} \ell \nu$ WIDTH

$$\Gamma[\bar{B} \to X_{u}e\bar{\nu}] = \frac{G_{I}^{2}m_{b}^{5}}{192\pi^{3}}|V_{ub}|^{2} \left[1 + \frac{\alpha_{s}}{\pi}p_{u}^{(1)}(\mu) + \frac{\alpha_{s}^{2}}{\pi^{2}}p_{u}^{(2)}(r,\mu) - \frac{\mu_{\pi}^{2}}{2m_{b}^{2}} - \frac{3\mu_{G}^{2}}{2m_{b}^{2}} + \left(\frac{77}{6} + 8\ln\frac{\mu_{WA}^{2}}{m_{b}^{2}}\right)\frac{\rho_{D}^{3}}{m_{b}^{3}} + \frac{3\rho_{LS}^{3}}{2m_{b}^{3}} + \frac{32\pi^{2}}{m_{b}^{3}}B_{WA}(\mu_{WA})\right]$$

$$+ O(\alpha_{s}\frac{\mu_{\pi,G}^{2}}{m_{b}^{2}}) + O(\frac{1}{m_{b}^{4}})^{\bullet}$$
Using the results of the fit, V_{ub}

$$B = \frac{\mu_{MA}^{2}}{\mu_{MA}^{2}} \int_{0}^{0} \frac{\mu_{MA}^{2}}{\mu_{MA}^{$$

total width...

CC

Weak Annihilation, severely constrained from D decays, see Kamenik, PG, arXiv:1004.0114

A GLOBAL COMPARISON 0907.5386, Phys Rept

4.5

4.0

3.5

1

2

3

4

analysis

5

6

7

GGOU

8

 $|V_{\rm ub}|10^{3}$

- ***** common inputs (except ADFR)
- * Overall good agreement SPREAD WITHIN THEORY ERRORS
- * NNLO BLNP still missing: will push it up a bit
- * Systematic offset of central values: normalization? to be investigated

OPE: PERTURBATIVE EFFECTS

$$I_0(\varepsilon_M) = \xi_A^{\text{pert}}(\varepsilon_M, \mu) + \sum_k C_k(\varepsilon_M, \mu) \frac{\frac{1}{2M_B} \langle B|O_k|B \rangle_\mu}{m_Q^{d_k - 3}}$$

the cutoff μ separates pert and non-pert physics

Power corrections start with $1/m_c^2$ $\Lambda_{QCD} \ll \varepsilon_M, \mu \ll 2m_c$

We choose $\varepsilon_M = \mu = 0.75 \text{GeV}$ and include 1, 2 loop and higher BLM corrections with no expansion in μ/m_c

$$\sqrt{\xi_A^{\text{pert}}(0.75 \text{GeV})} = 0.98 \pm 0.01$$

ZERO RECOIL SUM RULE

 $T(\varepsilon) = \frac{i}{6M_B} \int d^4x e^{-ix_0(M_B - M_D^* - \varepsilon)} \langle B|TJ_A^k(x)J_{Ak}(0)|B\rangle$

$$\varepsilon = M_X - M_{D^*}$$

$$I_0(\varepsilon_M) = -\frac{1}{2\pi i} \oint_{|\varepsilon| = \varepsilon_M} T(\varepsilon) d\varepsilon = \mathcal{F}^2(1) + I_{inel}(\varepsilon_M)$$

$$Inelastic non-resonant piece I_{inel}(\varepsilon_M) = \frac{1}{2\pi i} \int_{0+}^{\varepsilon_M} \operatorname{disc} T(\varepsilon) d\varepsilon$$

$$\varepsilon$$

$$\mathcal{F}(1) = \sqrt{I_0(\varepsilon_M) - I_{inel}(\varepsilon_M)}$$

$$\mathcal{F}(1) \leq \sqrt{I_0(\varepsilon_M)}$$

Unitarity bound