RECENT DEVELOPMENTS IN SEMILEPTONIC B DECAYS

PAOLO GAMBINO

UNIVERSITA DI TORINO

PORTOROZ, $15 / 4 / 2013$

S.L. DECAYS DETERMINE $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$

Since several years, exclusive decays prefer smaller $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$

inclusives vs exclusives

Inclusive vs exclusive B

DECAYS

THE TOTAL WIDTH IN THE OPE

$$
\begin{aligned}
& \Gamma\left[B \rightarrow X_{c} l \bar{\nu}\right]= \Gamma_{0} g(r)\left[1+\frac{\alpha_{s}}{\pi} c_{1}(r)+\frac{\alpha_{s}^{2}}{\pi^{2}} \oint_{2}(r)-\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}\right)+c_{G}(r) \frac{\mu_{G}^{2}}{m_{b}^{2}} \\
&\left.+c_{D}(r) \frac{\rho_{D}^{3}}{m_{b}^{3}}+c_{L S}(r) \frac{\rho_{L S}^{3}}{m_{b}^{3}}+O\left(\alpha_{s} \frac{\mu_{\pi, G}^{2}}{m_{b}^{2}}\right)+O\left(\frac{1}{m_{b}^{4}}\right)\right] \\
& r=\frac{m_{c}^{2}}{m_{b}^{2}} \quad \Gamma_{0}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2} m_{b}^{5}}{192 \pi^{3}}
\end{aligned}
$$

OPE valid for inclusive enough measurements, away from perturbative singularities ${ }^{110}$ moments

Present implementations include all terms through $O\left(\alpha_{s}^{2}, 1 / m_{b}^{3}\right): m_{b, c,} \mu^{2} \pi, G, \rho^{3}{ }_{D, L S} 6$ parameters

FITTING OPE PARAMETERS TO THE MOMENTS

El spectrum

m_{x} spectrum

Total rate gives $\left|V_{c b}\right|$, global shape parameters (first moments of the distributions) tell us about B structure, m_{b} and m_{c}

OPE parameters describe universal properties of the B meson and of the quarks \rightarrow useful in many applications

FITS AND MASS CONSTRAINTS

Inputs	$\left\|V_{c b}\right\| 10^{3}$	$m_{b}^{\text {kin }}$	$\chi^{2 / n d f}$
$\mathrm{b} \rightarrow \mathrm{c} \&$ $\mathrm{~b} \rightarrow \mathrm{~s} \gamma$	$4 \mathrm{I} .94(43)(58)$	$4.574(32)$	$29.7 / 59$
$\mathrm{b} \rightarrow \mathrm{c} \&$ $\mathrm{~m}_{\mathrm{c}}$	$4 \mathrm{I} .88(44)(58)$	$4.560(23)$	$33.3 / 48$

Schwanda,PG 2012, using m_{c} from Hoang et al Similar results in 1S scheme (Bauer et al)

Recent sum rules studies of $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\right.$ hadrons $)$ and lattice calculations give very precise NNNLO determinations of m_{c} (and m_{b}). They are consistent with our NNLO fit and can be used to improve precision

$$
\text { SL fit with only } \mathrm{m}_{\mathrm{c}} \text { constraint (Kuhn) }
$$

$$
\begin{aligned}
& \text { Kuhn et al } 2009 \\
& \mathrm{~m}_{\mathrm{c}}(3 \mathrm{GeV})=0.986(13) \mathrm{GeV} \\
& \mathrm{~m}_{\mathrm{b}}\left(\mathrm{~m}_{\mathrm{b}}\right)=4.163(16) \mathrm{GeV}
\end{aligned}
$$

THEORETICAL ERRORS DOMINATE

HIGHER ORDER EFFECTS

- The reliability of the inclusive method depends on our ability to control higher order effect and quark-hadron duality violations.
- Purely perturbative corrections complete $O\left(\alpha_{s}^{2}\right)$ known.
- Power corrections included up to $O\left(1 / m_{b}^{3}\right), O\left(1 / m_{b}^{4,5}\right)$ known but involve many new parameters, numerical relevance under study. In vacuum saturation approx small effect on V_{cb} Mannel,Turczyk,Uraltsev
- Mixed perturbative corrections to power suppressed coefficients at $O\left(\alpha_{s} / m_{b}^{2}\right)$ almost finished, already known for
$b \rightarrow s \gamma$
Becher, Boos, Lunghi, Alberti, Ewerth, Nandi, PG

$O\left(\alpha_{s} / m_{b}^{2}\right)$ EFFECTS

They can be computed using reparameterization invariance which relates different orders in the HQET

$$
W_{i}=W_{i}^{(0)}+\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}} W_{i}^{(\pi, 0)}+\frac{\mu_{G}^{2}}{2 m_{b}^{2}} W_{i}^{(G, 0)}+\frac{C_{F} \alpha_{s}}{\pi}\left[W_{i}^{(1)}+\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}} W_{i}^{(\pi, 1)}+\frac{\mu_{G}^{2}}{2 m_{b}^{2}} W_{i}^{(G, 1)}\right]
$$

For $i=3$ at all orders $\quad W_{3}^{(\pi, n)}=\frac{5}{3} \hat{q}_{0} \frac{d W_{3}^{(n)}}{d \hat{q}_{0}}-\frac{\hat{q}^{2}-\hat{q}_{0}^{2}}{3} \frac{d^{2} W_{3}^{(n)}}{d \hat{q}_{0}^{2}}$
Manohar 2010
good testing ground for the calculation.
Proliferation of power divergences, up to $1 / u^{3}$, and complex kinematics $\left(q^{2}, q_{0}, m_{c}, m_{b}\right)$

RESULT FOR W ${ }_{1}$

$$
\begin{align*}
W_{1}^{(\pi, 1)} & =2 E_{0} B_{(1, \pi)}+\frac{8}{3}\left(1-E_{0} I_{1,0}\right)\left(1-E_{0}\right)\left(E_{0}\left[\frac{1}{\hat{u}^{2}}\right]_{+}-2\left[\frac{1}{\hat{u}}\right]_{+}\right)+R_{1}^{(\pi)} \theta(\hat{u}) \\
& +\frac{8 E_{0}}{3}\left[\frac{1-E_{0}}{2} S_{1}-\lambda_{0}\left(1-E_{0} I_{1,0}\right)-\frac{E_{0}^{2}}{\rho}+\left(3 E_{0}^{2}-\rho\right) I_{1,0}-2 E_{0}\left(1+I_{1,0}\right)+3\right] \delta^{\prime}(\hat{u}) \\
& +\frac{8}{3}\left[S_{2}-E_{0} S_{1}+E_{0}\left(1-E_{0} I_{1,0}\right)\left(\frac{\lambda_{0}}{2}-\frac{\left(1-E_{0}\right)^{2}}{\lambda_{0}}+E_{0}\right)+\left(E_{0}^{2}-\frac{3}{4} E_{0}-\frac{\rho}{4}\right) I_{1,0}\right. \\
& \left.+\frac{\frac{3}{4} E_{0}^{3}-\frac{\rho}{4}\left(E_{0}^{2}+2 E_{0}-2 \rho\left(1-E_{0}\right)\right)}{\rho^{2}}\right] \delta(\hat{u}), \tag{4.2}\\
B_{(i, \pi)}= & \left.\frac{\lambda_{0}}{3}\left\{\left[S_{i}+3\left(1-E_{0} I_{1,0}\right)\right] \delta^{\prime \prime}(\hat{u})-4\left(1-E_{0} I_{1,0}\right)\left[\frac{1}{\hat{u}^{3}}\right]+\right\}\right) \\
R_{1}^{(\pi)}= & \frac{8}{3} E_{0}\left(\frac{\left(1-E_{0}\right)\left(E_{0}-2 \hat{u}\right)}{\hat{u}^{2}}-\frac{E_{0} \lambda_{0}}{\hat{u}^{3}}\right) I_{1,0}-\frac{\frac{4}{3} \hat{u}^{2}+2(1-5 E) \hat{u}+\frac{28}{3}\left(E^{2}-E\right)}{\lambda}\left(I_{1}-\frac{1}{E}\right) \\
& +\frac{8}{3}\left(\frac{7}{8} E-\frac{3}{8}-\frac{\hat{u}}{4}+\frac{E-z}{\hat{u}}+\frac{E^{2} \lambda}{\hat{u}^{3}}+\frac{E\left(E-E^{2}-\lambda\right)}{\hat{u}^{2}}\right) I_{1}+\frac{16 E^{2}(E-z)}{3 \hat{u}^{2} z} \\
& -\frac{\hat{u}^{2}\left(4 E^{2}-E z-2 z^{2}\right)}{6 E z^{3}}+\frac{-8 E^{3}-3 E^{2} z+5 E z(z+1)+(5-2 z) z^{2}}{3 z^{3}} \\
& +\frac{4 E\left(2 E^{2}-5 E z+4 z^{2}\right)}{3 \hat{u} z^{2}}+\frac{\hat{u}\left(24 E^{4}-12 E^{3} z+4 E^{2}(z-3) z+E\left(z^{2}-6 z^{3}\right)+3 z^{3}\right)}{6 E z^{4}},
\end{align*}
$$

EXCLUSIVE DECAY $B \rightarrow D^{*} \ell$

At zero recoil, where rate vanishes, the ff is

$$
\mathcal{F}(1)=\eta_{A}\left[1+O\left(\frac{1}{m_{c}^{2}}\right)+\ldots\right]
$$

Recent progress in measurement of slopes and shape parameters, exp error only $\sim 2 \%$
The ff $F(I)$ cannot be experimentally determined. Lattice QCD is the best hope to compute it. Only one unquenched Lattice calculation:

2.1\% error (adding in quadrature)
~2 σ or $\sim \mathbf{5 \%}$ from inclusive determination
$B \rightarrow$ Dlv has larger errors $\left|V_{c b}\right|=39 . \mid(\mid .4)(\mid .3) \times 10^{-3}$

ZERO RECOIL SUM RULE

Heavy quark sum rules put bounds on the zero recoil form factor $\mathrm{F}(1)$ for $\mathrm{B} \rightarrow \mathrm{D}^{*}$

$$
\begin{array}{r}
\mathcal{F}(1)=\sqrt{I_{0}\left(\varepsilon_{M}\right)-I_{\text {inel }}\left(\varepsilon_{M}\right)} \quad \mathcal{F}(1) \leq \sqrt{I_{0}\left(\varepsilon_{M}\right)} \\
\text { Unitarity bound } \\
\mathcal{F}(1)<0.935
\end{array}
$$

- Starting point OPE for axial vector current at zero recoil: expansion of I_{0} in $1 / m_{c}$ and $1 / m_{b}$ and α_{s}
- Recent calculation incorporates higher order effects and estimates inelastic contributions
- Estimate of inelastic (non-resonant) contribution is hard

THE INELASTIC CONTRIBUTION

$$
I_{1}\left(\varepsilon_{M}\right)=-\frac{1}{2 \pi i} \oint_{|\varepsilon|=\varepsilon_{M}} T(\varepsilon) \varepsilon d \varepsilon \quad I_{\text {inel }}\left(\varepsilon_{M}\right)=\frac{I_{1}\left(\varepsilon_{M}\right)}{\bar{\varepsilon}}
$$

$\bar{\varepsilon}$ represents the average excitation energy mainly controlled by the lowest radial $\left(1 / 2^{+}\right)$and D-wave $\left(3 / 2^{+}\right)$excitations, therefore about 700 MeV
$\mathrm{OPE}: \quad I_{1}=\frac{-\left(\rho_{\pi G}^{3}+\rho_{A}^{3}\right)}{3 m_{c}^{2}}+\frac{-2 \rho_{\pi \pi}^{3}-\rho_{\pi G}^{3}}{3 m_{c} m_{b}}+\frac{\rho_{\pi \pi}^{3}+\rho_{\pi G}^{3}+\rho_{S}^{3}+\rho_{A}^{3}}{4}\left(\frac{1}{m_{c}^{2}}+\frac{2}{3 m_{c} m_{b}}+\frac{1}{m_{b}^{2}}\right)+\mathcal{O}\left(\frac{1}{m_{Q}^{3}}\right)$
in terms of little known non-local correlators of the form

$$
\begin{array}{cc}
\frac{i}{2 M_{B}} \int d^{4} x\langle B| T\left\{O_{i}(x), O_{j}(x)\right\}|B\rangle & O \sim \bar{b} \pi_{k} \pi_{l} b \\
\rho_{\pi \pi}^{3}+\rho_{\pi G}^{3}+\rho_{S}^{3}+\rho_{A}^{3} \geq 0 & \begin{array}{l}
\text { each of them is integral of spectral function } \\
\text { with specific spin } \\
\text { structure e.g. }
\end{array} \quad \rho_{\pi \pi}^{3}=\int_{\omega>0} d \omega \frac{\left.\rho_{p}^{\left(\frac{1}{2}+\right.}\right)}{\omega}
\end{array}
$$

ESTIMATING the NON-LOCAL GUYS

Hyperfine splitting
$\Delta M_{Q}^{2}=M_{Q^{*}}^{2}-M_{Q}^{2}=\frac{4}{3} c_{G}\left(m_{Q}\right) \mu_{G}^{2}+\frac{2}{3} \frac{\rho_{T G}^{3}+\rho_{A}^{3}-\rho_{L S}^{3}+2 \bar{\Lambda} \mu_{G}^{2}}{m_{Q}}+O\left(\frac{1}{m_{Q}^{2}}\right)$ Experimentally $\Delta M_{B}^{2} \simeq \Delta M_{D}^{2} \quad \underbrace{\rho_{\pi G}^{3}+\rho_{A}^{3} \approx-0.45 \mathrm{GeV}^{3}}_{\text {within a } \sim 25 \% \text { uncertainty }}$

From $\bar{M}_{B}-\bar{M}_{D}$ and moments fits

$$
\rho_{\pi G}^{3}+\rho_{A}^{3} \lesssim-0.33 \mathrm{GeV}^{3}
$$

with somewhat larger uncertainty
These are strong indications that non-local guys are larger than expected. Based on a BPS expansion we get a minimum $\quad I_{\text {inel }}\left(\varepsilon_{M} \sim 0.75 \mathrm{GeV}\right) \geq 0.14 \pm 0.03$ using the lowest value of $I_{\text {inel }}$ and interpreting the total uncertainty as

$$
\mathcal{F}(1)=0.86 \pm 0.02
$$

"RADIAL" CONTRIBUTIONS TO TOTAL WIDTH

- Non-local guys determined by transitions to + parity light d.o.f.: $\frac{1}{2}^{+}, \frac{3}{2}^{+}, \frac{5}{2}^{+}$
- Large $I_{\text {inel }}$ implies strong transitions to "radial" excitations (radial \& D-wave states)
- Assuming a single multiplet of "radials" for each j_{q} hyperfine splitting constrains the strength of $\mathrm{B} \rightarrow$ "radials"
- At leading order in the heavy quark expansion and neglecting v dependence of the form factors one typically gets

$$
\frac{\Gamma_{r a d}}{\Gamma_{s l}} \approx 6 \div 7 \%
$$

suggesting "radials" contribute significantly to the broad resonances, a possible solution of $1 / 2>3 / 2$ puzzle

$\left|V_{u b}\right|$ DETERMINATIONS

Inclusive: 5-6\% total error

HFAG 2012	Average $\left\|\mathrm{V}_{\mathrm{ub}}\right\| \times 10^{3}$
DGE	$4.45(15)_{\mathrm{ex}}{ }^{+15}{ }^{-16}$
BLNP	$4.40(15)_{\mathrm{ex}}{ }^{+19}-21$
GGOU	$4.39(15)_{\mathrm{ex}}{ }^{+12}{ }^{-14}$

2.7-3 σ from B $\rightarrow \pi l v$ (MILC-FNAL)
2σ from $\beta \rightarrow \pi l v$ (LCSR, Siegen)
2.5-3\% from UTFit 2011

Exclusive: 10-15\% total error

$$
\begin{gathered}
\left|V_{u b}\right|=(3.25 \pm 0.31) \times 10^{-3} \\
\text { MILC } \\
\left|V_{u b}\right|=\left(\left.3.50_{-0.33}^{+0.38}\right|_{t h .} \pm\left. 0.11\right|_{\text {exp. }}\right) \times 10^{-3}
\end{gathered}
$$

LCSR, Khodjamirian et al, see also Bharucha
$\mathrm{B} \rightarrow \pi \mathrm{l} \nu$ data poorly consistent!
UT fit (without direct V_{ub} :

$$
\mathrm{V}_{\mathrm{ub}}=3.62(14) 10^{-3}
$$

The discrepancy here is around 30% !!

$V_{u b}$ IN THE GGOU APPROACH

PG,Giordano,Ossola,Uraltsev

Good consistency \& small th error.
4.7\% total error
strong dependence on mb
recent experimental results are theoretically cleanest
but signal simulation relies on theoretical models

PERTURBATIVE EFFECTS

- $\mathrm{O}\left(\alpha_{s}\right)$ implemented by all groups De Fazio,Neubert
- Running coupling $\mathrm{O}\left(\alpha_{s}^{2} \beta_{0}\right)$ (pg,Gardi,Ridolfi) in GGOU, DGE lead to $-5 \% \&+2 \%$, resp. in $\left|V_{\mathrm{ub}}\right|$
- Complete $\mathrm{O}\left(\alpha_{s}{ }^{2}\right)$ in the SF region Asartian,Greub,Peciak-Bonciani,Ferroglia-Beneke,Huber, Li- G. Bell 2008
- In BLNP leads to up 8% increase in $V_{b b}$ related to resummation, not yet included by HFAG. It is an artefact of this approach.
- $P_{+}<0.66 \mathrm{GeV}:$

	$\Gamma_{u}^{(0)}$	μ_{h}	μ_{i}
NLO	60.37	${ }_{-3.37}^{+3.52}$	${ }_{-6.67}^{+3.81}$
NNLO	52.92	${ }_{-1.72}^{+1.46}$	${ }_{-2.79}^{+0.09}$

Greub,Neubert,Pecjak arXiv:0909.1609

- $P_{+}<0.66 \mathrm{GeV}$:

Fixed-Order	$\Gamma_{u}^{(0)}$	μ
NLO	49.11	${ }_{-9.41}^{+5.43}$
NNLO	49.53	${ }_{-4.01}^{+0.13}$

NEW: full phase space $\mathrm{O}\left(\alpha_{s}{ }^{2}\right)$ calculation
Brucherseifer,Caola,Melnikov, arXiv:1302.0444
Confirms non-BLM/BLM approx 20\% over relevant phase space

SUMMARY

- Theoretical efforts to develop the OPE approach to semileptonic decays goes on. More results soon. No sign of inconsistency in this approach.
- HQSR determination of zero recoil $B \rightarrow D^{*}$ form factor agrees with inclusive determination.
- Exclusive/incl. tension in $V_{u b}$ remains misterious (2-30). It could be explained by right-handed current...
- Belle-II will increase significantly the statistics for $b \rightarrow u l v$ decays. Measurement of spectra will enable direct constraints on shape function(s), see e.g. SIMBA.

NIKOLAI URALTSEV

a first class physicist, an enthusiastic colleague, a good friend has died on Feb 13.

BACK-UP SLIDES

HEAVY QUARK MASSES

Table 17.1.5. Recent results for the charm-quark mass. An asterisk indicates that we have obtained this number fr of m_{c} quoted as the main result of the paper using four-loop accuracy (together with $\alpha_{s}\left(M_{Z}\right)=0.1184$ (Nakamur

$m_{c}(3 \mathrm{GeV})(\mathrm{GeV})$	$m_{c}\left(m_{c}\right)(\mathrm{GeV})$	Method	Reference
0.986 ± 0.013	$1.275 \pm 0.013^{*}$	LESR	Kühn, Steinhauser, and Sturm (2007)
$0.96 \pm 0.04^{*}$	1.25 ± 0.04	NRSR	Signer (2009)
0.986 ± 0.006	$1.275 \pm 0.006^{*}$	LQCD	McNeile, Davies, Follana, Hornbostel, and Lepage (2010)
0.998 ± 0.029	1.277 ± 0.026	LESR	Dehnadi, Hoang, Mateu, and Zebarjad (2011)
0.987 ± 0.009	1.278 ± 0.009	FESR	Bodenstein, Bordes, Dominguez, Penarrocha, and Schilche
$0.972 \pm 0.006^{*}$	1.262 ± 0.006	FESR	Narison (2012)

Table 17.1.6. Recent results for the bottom-quark mass.

$m_{b}\left(m_{b}\right)$	Method	Reference
4.19 ± 0.06	NRSR	Pineda and Signer (2006)
4.163 ± 0.016	LESR	Chetyrkin et al. (2009)
4.164 ± 0.023	LQCD	McNeile, Davies, Follana, Hornbostel, and Lepage (2010)
4.167 ± 0.013	LESR	Narison (2012)

OPE: POWER CORRECTIONS

$$
\begin{aligned}
\Delta_{1 / m^{2}} & =\frac{\mu_{G}^{2}}{3 m_{c}^{2}}+\frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{4}\left(\frac{1}{m_{c}^{2}}+\frac{2}{3 m_{c} m_{b}}+\frac{1}{m_{b}^{2}}\right), \\
\Delta_{1 / m^{3}} & =\frac{\rho_{D}^{3}-\frac{1}{3} \rho_{L S}^{3}}{4 m_{c}^{3}}+\frac{1}{12 m_{b}}\left(\frac{1}{m_{c}^{2}}+\frac{1}{m_{c} m_{b}}+\frac{3}{m_{b}^{2}}\right)\left(\rho_{D}^{3}+\rho_{L S}^{3}\right)
\end{aligned}
$$

matrix elements from moments fits \& sum rule constraints
$1 / m^{4}$ and $1 / m^{5}$ also known, matrix elements have been estimated by ground state saturation

$$
\Delta_{A} \simeq 0.090+0.029-0.023-0.013+\ldots
$$

heavy quark expansion converges reasonably well
Including all errors for $\varepsilon_{\mathrm{M}}=0.75 \mathrm{GeV}$

$$
\mathcal{F}(1)<0.935
$$

NEW PHYSICS?

LR models can explain a difference between inclusive and exclusive V_{ub} determinations (Chen,Nam)

Also in MSSM (Crivellin)
BUT the RH currents affect predominantly the exclusive V_{ub}, making the conflict between V_{ub} and $\sin 2 \beta\left(\psi \mathrm{~K}_{\mathrm{S}}\right)$ stronger...

Buras, Gemmler, Isidori 1007.1993

EXCLUSIVE $V_{u b}$ FROM $\boldsymbol{B} \rightarrow \boldsymbol{\pi} \boldsymbol{l} \boldsymbol{v}$

Here there is no preferred point in phase space. Lattice and light-cone sum rules estimate form factor.

Recent lattice based:
MILC collaboration
Recent sum-rules based:
Khodjamirian, Mannel,Offen,Wang 2011 see also Bharucha

Precision is improved by fitting lattice/LCSR together with data

Experimental data are not well consistent

$$
\left|V_{u b}\right|=(3.25 \pm 0.31) \times 10^{-3}
$$

$$
\left|V_{u b}\right|=\left(\left.3.50_{-0.33}^{+0.38}\right|_{\text {th. }} \pm\left. 0.11\right|_{\text {exp. }}\right) \times 10^{-3}
$$

THE TOTAL B $\rightarrow X_{u} \ell \vee$ WIDTH

$$
\begin{aligned}
& \qquad \begin{aligned}
& \Gamma\left[\bar{B} \rightarrow X_{u} e \bar{\nu}\right]=\left.\frac{G_{I}^{2}}{192 \pi^{3}} T_{u b}^{5}\right|^{2}\left[1+\frac{\alpha_{s}}{\pi} p_{u}^{(1)}(\mu)+\frac{\alpha_{s}^{2}}{\pi^{2}} p_{u}^{(2)}(r, \mu)-\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}-\frac{3 \mu_{G}^{2}}{2 m_{b}^{2}}\right. \\
&\left.+\left(\frac{77}{6}+8 \ln \frac{\mu_{\mathrm{wA}}^{2}}{m_{b}^{2}}\right) \frac{\rho_{D}^{3}}{m_{b}^{3}}+\frac{3 \rho_{L S}^{3}}{2 m_{b}^{3}}+\frac{32 \pi^{2}}{m_{b}^{3}} B_{\mathrm{wA}}\left(\mu_{\mathrm{wA}}\right)\right] \\
&+O\left(\alpha_{s} \frac{\mu_{\pi, G}^{2}}{m_{b}^{2}}\right)+O\left(\frac{1}{m_{b}^{4}}\right) \\
& \text { Using the results of the fit, } \mathrm{V}_{\mathrm{ub}}
\end{aligned} \\
& \text { Could be extracted if we had the } \\
& \text { total width... }
\end{aligned}
$$

Weak Annihilation, severely constrained from D decays, see Kamenik, PG, arXiv:1004.0114

A GLOBAL COMPARISON

* common inputs (except ADFR)
* Overall good agreement SPREAD WITHIN THEORY ERRORS
* NNLO BLNP still missing: will push it up a bit
* Systematic offset of central values: normalization? to be investigated
only theory errors
(without common parametric)

OPE: PERTURBATIVE EFFECTS

$$
I_{0}\left(\varepsilon_{M}\right)=\xi_{A}^{\text {pert }}\left(\varepsilon_{M}, \mu\right)+\sum_{k} C_{k}\left(\varepsilon_{M}, \mu\right) \frac{\frac{1}{2 M_{B}}\langle B| O_{k}|B\rangle_{\mu}}{m_{Q}^{d_{k}-3}}
$$

the cutoff μ separates pert and non-pert physics
Power corrections start with $1 / m_{c}{ }^{2} \quad \Lambda_{Q C D} \ll \varepsilon_{M}, \mu \ll 2 m_{c}$
We choose $\varepsilon_{M}=\mu=0.75 \mathrm{GeV}$ and include 1, 2 loop and higher BLM corrections with no expansion in μ / m_{c}
$\sqrt{\xi_{A}^{\text {pert }}(0.75 \mathrm{GeV})}=0.98 \pm 0.01$

ZERO RECOIL SUM RULE

$$
\begin{gathered}
T(\varepsilon)=\frac{i}{6 M_{B}} \int d^{4} x e^{-i x_{0}\left(M_{B}-M_{D^{*}}-\varepsilon\right)}\langle B| T J_{A}^{k}(x) J_{A k}(0)|B\rangle \\
\varepsilon=M_{X}-M_{D^{*}} \\
\underbrace{I_{0}\left(\varepsilon_{M}\right)=-\frac{1}{2 \pi i} \oint_{|\varepsilon|=\varepsilon_{M}} T(\varepsilon) d \varepsilon=\mathcal{F}^{2}(1)+I_{\text {inel }}\left(\varepsilon_{k}\right)}
\end{gathered}
$$

Inelastic non-resonant piece $I_{\text {inel }}\left(\varepsilon_{M}\right)=\frac{1}{2 \pi i} \int_{0+}^{\varepsilon_{M}} \operatorname{disc} T(\varepsilon) d \varepsilon$

$$
\mathcal{F}(1)=\sqrt{I_{0}\left(\varepsilon_{M}\right)-I_{\text {inel }}\left(\varepsilon_{M}\right)}
$$

$\mathcal{F}(1) \leq \sqrt{I_{0}\left(\varepsilon_{M}\right)}$
Unitarity bound

