Contribution ID: 8

Type: not specified

Probing New Physics with B⁰_s -> mu+ mu-

Monday 15 April 2013 11:22 (22 minutes)

The rare decay $B_s \rightarrow \mu^+ \mu^-$ plays a key role for the testing of the Standard Model. It is discussed that the sizable decay width difference $\Delta\Gamma_s$ of the B_s -meson system affects this channel. As a consequence, its calculated Standard Model branching ratio has to be upscaled by about 10% to $(3.56 \pm 0.18) \times 10^{-9}$. This prediction is the reference value for the comparison with the time-integrated experimental branching ratio, where LHCb has recently reported $(3.2^{+1.5}_{-1.2}) \times 10^{-9}$ corresponding to the first evidence for $B_s \rightarrow \mu^+ \mu^-$. The sizable $\Delta\Gamma_s$ makes a new observable through the effective $B_s \rightarrow \mu^+ \mu^-$ lifetime accessible, which probes New Physics in a way complementary to the branching ratio and adds an exciting new topic to the agenda for the high-luminosity upgrade of the LHC.

Further probes of New Physics are offered by a CP-violating rate asymmetry. Correlations between these observables and the

 $B_s \rightarrow \mu^+ \mu^-$ branching ratio are illustrated for specific models of New Physics.

Author: FLEISCHER, Robert (Nikhef and Vrije Universiteit Amsterdam)

Presenter: FLEISCHER, Robert (Nikhef and Vrije Universiteit Amsterdam)

Session Classification: Flavor and CP II