The anatomy of quark flavour observables in the flavour precision era

Fulvia De Fazio INFN- Bari

Portoroz 2013

Two topics

- Improving data precision and reducing theoretical uncertainties (FPE) would it be possible to understand from flavour observables if the lightest NP messanger is a new Z^{\prime} gauge boson?
- an existing tension: exclusive semileptonic $\mathrm{b} \rightarrow \mathrm{c}$ decays: anomalous enhancement of modes with a τ in the final state

> Based on works in collaboration with
> A.J. Buras, J. Girrbach (Munich)
> \&
> P. Biancofiore, P. Colangelo (Bari)

- CKM parameters have been determined by means of tree-level decays
- Non-perturbative parameters are affected by very small uncertainties and fixed

Let us consider the following case

- There exists a new neutral gauge boson Z^{\prime} mediating tree-level FCNC processes $M_{Z^{\prime}}=1 \mathrm{TeV}$ for definiteness
- Couplings to quarks are arbitrary while those to leptons are assumed already determined by purely leptonic modes

Existing data constrain Z^{\prime} couplings to quarks
Four possible scenarios for such couplings can be considered
Predictions on correlations among flavour observables provide the path to identify which, in any, of them is realized in nature

Anatomy of Z^{\prime} with FCNC in the FPE

1. Left-handed Scenario (LHS) with complex $\Delta_{L}^{b q} \neq 0$ and $\Delta_{R}^{b q}=0$,
2. Right-handed Scenario (RHS) with complex $\Delta_{R}^{b q} \neq 0$ and $\Delta_{L}^{b q}=0$,
3. Left-Right symmetric Scenario (LRS) with complex $\Delta_{L}^{b q}=\Delta_{R}^{b q} \neq 0$,
4. Left-Right asymmetric Scenario (ALRS) with complex $\Delta_{L}^{b q}=-\Delta_{R}^{b q} \neq 0$

Analogous scenarios can be considered for the quark pairs (bs) and (sd)
Two cases

1. \mid Vub| fixed to the exclusive (smaller) value
2. $|V u b|$ fixed to the inclusive (larger) value

Anatomy of Z^{\prime} with FCNC in the FPE: the B_{s} system

We consider the four observables:

They depend all on

$$
\frac{\Delta_{L}^{b s}\left(Z^{\prime}\right)}{M_{Z^{\prime}}}=-\frac{\tilde{s}_{23}}{M_{Z^{\prime}}} e^{-i \delta_{23}}
$$

Imposing the experimental constraints:

$$
16.9 / \mathrm{ps} \leq \Delta M_{s} \leq 18.7 / \mathrm{ps}, \quad-0.18 \leq S_{\psi \phi} \leq 0.18
$$

SM effective hamiltonian \rightarrow one master function $\mathrm{Y}_{0}\left(\mathrm{x}_{\mathrm{t}}\right)$

$$
x_{t}=m_{t}^{2} / M_{W}^{2}
$$

$$
Y_{0}\left(x_{t}\right)=\frac{x_{t}}{8}\left(\frac{x_{t}-4}{x_{t}-1}+\frac{3 x_{t} \log x_{t}}{\left(x_{t}-1\right)^{2}}\right) \rightarrow \begin{aligned}
& \text { independent on the decaying meson } \\
& \text { and on the lepton flavour }
\end{aligned}
$$

Z' contribution modifies this function to:

The various scenarios predict different results

Theoretically clean observable:

$$
\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.2_{-1.2}^{+1.5}\right) \times 10^{-9}
$$

$$
\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)^{\mathrm{SM}}=(3.23 \pm 0.27) \times 10^{-9}
$$

Anatomy of Z^{\prime} with FCNC in the FPE:

 the B_{d} systemWe consider the four observables:

They depend all on

$$
\frac{\Delta_{L}^{b d}\left(Z^{\prime}\right)}{M_{Z^{\prime}}}=\frac{\tilde{s}_{13}}{M_{Z^{\prime}}} e^{-i \delta_{13}}
$$

Imposing the experimental constraints:

$$
0.48 / \mathrm{ps} \leq \Delta M_{d} \leq 0.53 / \mathrm{ps}, \quad 0.64 \leq S_{\psi K_{S}} \leq 0.72
$$ we find allowed ranges for the parameters

$$
s_{13}>0 \quad \& \quad 0<\delta_{13}<2 \pi
$$

B_{d} system in LHS1 \& LHS2 scenarios

	\tilde{s}_{13}	δ_{13}
$B_{1}(S 1)$	$0.00062-0.00117$	$76^{\circ}-105^{\circ}$
$B_{2}(S 1)$	$0.00322-0.00337$	$89^{\circ}-91^{\circ}$
$B_{3}(S 1)$	$0.00062-0.00117$	$256^{\circ}-285^{\circ}$
$B_{4}(S 1)$	$0.00322-0.00337$	$269^{\circ}-271^{\circ}$
$B_{1}(S 2)$	$0.00081-0.00128$	$128^{\circ}-150^{\circ}$
$B_{2}(S 2)$	$0.00306-0.00322$	$92^{\circ}-95^{\circ}$
$B_{3}(S 2)$	$0.00081-0.00128$	$308-330^{\circ}$
$B_{4}(S 2)$	$0.00306-0.00322$	$272^{\circ}-275^{\circ}$

B_{d} system in LHS1 \& LHS2 scenarios

- in the small oases $B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)$is always larger than in SM - the sign of $S_{\mu+\mu-}$ distinguishes B1 from B3 and B2 from B4

Correlation between $\mathrm{S}_{\mu+\mu_{-}}$and $\mathrm{B}\left(\mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)$: LHS1 vs LHS2
LHS1: in B1 $S_{\mu+\mu_{-}}>0$ \& $B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)>B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)_{S M}$
in B3 $S_{\mu+\mu^{-}}<0$ \& $B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)<B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)_{S M}$
LHS2 : in B1 $S_{\mu+\mu^{-}}>0$ \& $B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)<\mathrm{B}\left(\mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)_{S M}$
in B3 $S_{\mu+\mu^{-}}<0$ \& $B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)>B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)_{S M}$

RHS1 \& RHS2 scenarios

Means Z' with exclusively RH couplings to quarks

QCD is parity conserving \Rightarrow hadronic matrix elements of operators with RH currents \& QCD corrections remain unchanged
$\Delta F=2$ constraints appear the same as in LHS scenarios \Rightarrow the oases remain the same
$\Delta \mathrm{F}=1$ observables: decays to muons governed by the function Y

$$
\left.Y_{\mathrm{A}}\left(B_{q}\right)=\eta_{Y} Y_{0}\left(x_{t}\right)+\frac{\left[\Delta_{A}^{\mu \bar{\mu}}\left(Z^{\prime}\right)\right]}{M_{Z^{\prime}}^{2}, g_{S M}^{2}}\left[\frac{\Delta_{L}^{q b}\left(Z^{\prime}\right)-\Delta_{R}^{q b}\left(Z^{\prime}\right)}{\left.V_{t q}^{*}\right\rangle t_{t b}}\right] \equiv\left|Y_{A}\left(B_{q}\right)\right| e^{i \theta_{Y}^{B_{q}}} \right\rvert\,
$$

There is a change of sign of NP contributions in a given oasis

RHS1 \& RHS2 scenarios

B_{s} system

B_{d} system

Correlation between $\mathrm{S}_{\mu+\mu-}$ and $\mathrm{B}\left(\mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)$: LHS1 vs LHS2 LHS1: in B1 $\mathrm{S}_{\mu+\mu^{-}}>0$ \& $\mathrm{B}\left(\mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)>\mathrm{B}\left(\mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)_{S M}$ in B3 $S_{\mu+\mu_{-}^{-}}<0 \quad \& \quad B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)<B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)_{S M}$

LHS2 : in B1 $\mathrm{S}_{\mu+\mu_{-}}>0$ \& $\mathrm{B}\left(\mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)<\mathrm{B}\left(\mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)_{S M}$ in B3 $S_{\mu+\mu_{-}^{-}}<0$ \& $B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)>B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)_{S M}$

On the basis of these observables it would not be possible to know whether LHS in oases A1 (B1) is realized or RHS in oases A3 (B3)

LRS1 \& LRS2 scenarios

Main difference with respect to the previous cases:
No NP contribution to $\mathrm{B}_{\mathrm{d}, \mathrm{s}} \rightarrow \mu^{+} \mu^{-}$
\Rightarrow We cannot rely on this observable to identify the right oases

ALRS1 \& ALRS2 scenarios

Similar to LHS scenario, but NP effects much smaller
$\mathrm{b} \rightarrow \mathrm{s} \ell^{+} \ell$

$$
\mathcal{H}_{\mathrm{eff}}(b \rightarrow s \ell \bar{\ell})=\mathcal{H}_{\mathrm{eff}}(b \rightarrow s \gamma)-\frac{4 G_{\mathrm{F}}}{\sqrt{2}} \frac{\alpha}{4 \pi} V_{t s}^{*} V_{t b} \sum_{i=9,10}\left[C_{i}(\mu) Q_{i}(\mu)+C_{i}^{\prime}(\mu) Q_{i}^{\prime}(\mu)\right]
$$

operators

$$
\begin{aligned}
Q_{9}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), & Q_{10}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right) \\
Q_{9}^{\prime} & =\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right),
\end{aligned} Q_{10}^{\prime}=\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right),
$$

SM
coefficients

$$
\begin{aligned}
\sin ^{2} \theta_{W} C_{9} & =\left[\eta_{Y} Y_{0}\left(x_{t}\right)-4 \sin ^{2} \theta_{W} Z_{0}\left(x_{t}\right)\right]-\frac{1}{g_{\mathrm{SM}}^{2}} \frac{1}{M_{Z^{\prime}}^{2}} \frac{\Delta_{L}^{s b}\left(Z^{\prime}\right) \Delta_{V}^{\mu \bar{\mu}}\left(Z^{\prime}\right)}{V_{t s}^{*} V_{t b}} \\
\sin ^{2} \theta_{W} C_{10} & =-\eta_{Y} Y_{0}\left(x_{t}\right)-\frac{1}{g_{\mathrm{SM}}^{2}} \frac{1}{M_{Z^{\prime}}^{2}} \frac{\Delta_{L}^{s b}\left(Z^{\prime}\right) \Delta_{A}^{\mu \mu}\left(Z^{\prime}\right)}{V_{t s}^{*} V_{t b}}, \\
\sin ^{2} \theta_{W} C_{9}^{\prime} & =-\frac{1}{g_{\mathrm{SM}}^{2}} \frac{1}{M_{Z^{\prime}}^{2}} \frac{\Delta_{R}^{s b}\left(Z^{\prime}\right) \Delta_{V}^{\mu \bar{u}}\left(Z^{\prime}\right)}{V_{t s}^{*} V_{t b}}, \\
\sin ^{2} \theta_{W} C_{10}^{\prime} & =-\frac{1}{g_{\mathrm{SM}}^{2}} \frac{1}{M_{Z^{\prime}}^{2}} \frac{\Delta_{R}^{s b}\left(Z^{\prime}\right) \Delta_{A}^{\mu \bar{\mu}}\left(Z^{\prime}\right)}{V_{t s}^{*} V_{t b}},
\end{aligned}
$$

$$
\mathrm{b} \rightarrow \mathrm{~s} \ell^{+} \ell
$$

Exploiting present data constraints can be obtained:
W. Altmannshofer \& D. Straub, JHEP 1208 (2012) 121

$$
-2 \leq \Re\left(C_{10}^{\prime}\right) \leq 0, \quad-2.5 \leq \Im\left(C_{10}^{\prime}\right) \leq 2.5
$$

Oasis A1 excluded in LRS

$$
b \rightarrow s \ell^{+} t
$$

Black regions are excluded due to the constraint on $\mathrm{C}_{10}{ }^{\prime}$

An enhancement of $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$with respect to $S M$ is excluded
$\sin ^{2} \theta_{W} C_{10}^{\prime}=-\frac{1}{g_{\text {SM }}^{2}} \frac{1}{M_{Z^{\prime}}^{2}} \underbrace{V_{t b}^{*} V_{t}}_{\left.V_{\text {ts }}^{s b}()^{\prime}\right) \Delta_{A}^{\mu \bar{\mu}}\left(Z^{\prime}\right)}$ ONLY in RHS!!

Possibility to differentiate between LHS and RHS scenarios, but only if $\mathrm{B}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)>\mathrm{B}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SM}}$

Clear distinction between LHS and RHS

$$
\mathrm{B} \rightarrow \mathrm{D}^{(*)} \tau \bar{v}_{\tau}
$$

BaBar measurements:

$$
\begin{aligned}
& \mathcal{R}^{-}(D)=\frac{\mathcal{B}\left(B^{-} \rightarrow D^{0} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B^{-} \rightarrow D^{0} \ell^{-} \bar{\nu}_{\ell}\right)}=0.429 \pm 0.082 \pm 0.052, \mathcal{R}^{-}\left(D^{*}\right)=\frac{\mathcal{B}\left(B^{-} \rightarrow D^{* 0} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B^{-} \rightarrow D^{* 0} \ell^{-} \bar{\nu}_{\ell}\right)}=0.322 \pm 0.032 \pm 0.022, \\
& \mathcal{R}^{0}(D)=\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{+} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{+} \ell^{-} \bar{\nu}_{\ell}\right)}=0.469 \pm 0.084 \pm 0.053, \mathcal{R}^{0}\left(D^{*}\right)=\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{\left.*+\ell^{-}-\bar{\nu}_{\ell}\right)}\right.}=0.355 \pm 0.039 \pm 0.021
\end{aligned}
$$

SM

$$
\left.\mathcal{R}^{0}(D)\right|_{S M}=\left.\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{+} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{+} \ell^{-} \bar{\nu}_{\ell}\right)}\right|_{S M}=0.324 \pm\left. 0.022 \quad \quad \mathcal{R}^{0}\left(D^{*}\right)\right|_{S M}=\left.\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}\right)}\right|_{S M}=0.250 \pm 0.003
$$

- BaBar quotes a 3.4 o deviation from SM predictions
- is this related to the enhancement of $B\left(B \rightarrow \tau v_{\tau}\right)$?

$$
\left.\mathrm{B} \rightarrow \mathrm{D}^{*}\right) \tau \overline{\mathrm{v}}_{\tau}
$$

```
Most natural explanation: new scalars with couplings to leptons proportional to their mass
- would explain the enhancement of \tau modes
- would enhance both semileptonic and purely leptonic modes
```

The simplest of such models (2HDM) has been excluded by BaBar: No possibility to simultaneously reproduce $R(D)$ and $R\left(D^{*}\right)$

Alternative explanations using several variants of effective hamiltonian - S. Fajfer et al, PRD 85 (2012) 094025; PRL 109 (2012) 161801

- A. Crivellin et al., PRD 86 (2012) 054014
- A. Datta et al., PRD 86 (2012) 034027
- A. Celis et al., JHEP 1301 (2013) 054
- D. Choudhury et al, PRD 86 (2012) 114037

$$
\left.\mathrm{B} \rightarrow \mathrm{D}^{*}\right) \tau \bar{v}_{\tau}
$$

A different strategy:

- consider a NP scenario that enhances semileptonic modes but not leptonic ones
- predict similar effects in other analogous modes

$$
H_{e f f}=H_{e f f}^{S M}+H_{e f f}^{N P}=\frac{G_{F}}{\sqrt{2}} V_{c b}\left[\bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu}\left(1-\gamma_{5}\right) \bar{\nu}_{\ell}+\epsilon_{T}^{\ell} \bar{\sigma} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) b \bar{\ell} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) \bar{\nu}_{\ell}\right]
$$

Charmed meson
new complex coupling: $\varepsilon_{T}{ }^{\mu, \mathrm{e}}=\mathbf{0}, \varepsilon_{T}{ }^{\tau} \neq 0$
$\frac{d \Gamma}{d q^{2}}\left(B \rightarrow M_{c} \ell \bar{\nu}_{\ell}\right)=C\left(q^{2}\right)\left[\left.\frac{d \tilde{\Gamma}}{d q^{2}}\left(B \rightarrow M_{c} \ell \bar{\nu}_{\ell}\right)\right|_{S M}+\left.\frac{d \tilde{\Gamma}}{d q^{2}}\left(B \rightarrow M_{c} \ell \bar{\nu}_{\ell}\right)\right|_{N P}+\left.\frac{d \tilde{\Gamma}}{d q^{2}}\left(B \rightarrow M_{c} \ell \bar{\nu}_{\ell}\right)\right|_{I N T}\right]$

$$
C\left(q^{2}\right)=\frac{G_{F}^{2}\left|V_{c b}\right|^{2} \lambda^{1 / 2}\left(m_{B}^{2}, m_{M_{c}}^{2}, q^{2}\right)}{192 \pi^{3} m_{B}^{3}}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2}
$$

A simlar strategy in

$$
\mathrm{B} \rightarrow \mathrm{D}^{(*)} \tau \bar{v}_{\tau}
$$

Including a new tensor operator in $\mathrm{H}_{\text {eff }}$: is it possible to reproduce both $R(D)$ and $R\left(D^{*}\right)$?

$$
\mathrm{B} \rightarrow \mathrm{D}^{(*)} \tau \bar{v}_{\tau}: \text { which observables are the most sensitive ? }
$$

Comparison with the latest BaBar results:

The spectra $\mathrm{d} \Gamma / \mathrm{dq}^{2}$ cannot distinguish the SM from the NP case

$$
\mathrm{B} \rightarrow \mathrm{D}^{*} \tau \bar{v}_{\tau}
$$

Forward-Backward asymmetry

$$
\mathcal{A}_{F B}\left(q^{2}\right)=\frac{\int_{0}^{1} d \cos \theta_{\ell} \frac{d \Gamma}{d q^{2} d \cos \theta_{\ell}}-\int_{-1}^{0} d \cos \theta_{\ell} \frac{d \Gamma}{d q^{2} d \cos \theta_{\ell}}}{\frac{d \Gamma}{d q^{2}}}
$$

angle between the charged lepton and the D^{*} in the lepton pair rest-frame

The SM predicts a zero at $q^{2} \approx 6.15 \mathrm{GeV}^{2}$ In NP the zero is shifted to $q^{2} \in[8.1,9.3] \mathrm{GeV}^{2}$

- Uncertainty in the SM prediction is due to $1 / \mathrm{m}_{\mathrm{Q}}$ corrections and to the parameters of the IW function fitted by Belle
- NP includes uncertainty on ε_{T}

$$
\mathrm{B} \rightarrow \mathrm{D}^{* *} \tau \overline{\mathrm{v}}_{\tau}
$$

$$
\mathrm{D}^{* *}=\text { positive parity excited charmed mesons }
$$

Two doublets:

$$
\left(\mathrm{D}_{(\mathrm{s}) 0}{ }^{*}, \mathrm{D}_{(\mathrm{s}) 1}{ }^{\prime}\right) \text { with } \mathrm{J}^{\mathrm{P}}=\left(0^{+}, 1^{+}\right) \text {and }\left(\mathrm{D}_{(\mathrm{s}) 1}, \mathrm{D}_{(\mathrm{s}) 2}{ }^{*}\right) \text { with } \mathrm{JP}=\left(1^{+}, 2^{+}\right)
$$

Form factors for semileptonic B decays to these states can be expressed in terms of universal functions analogous to the IW

$$
\begin{array}{|lll}
\hline \mathrm{B} \rightarrow\left(\mathrm{D}_{(\mathrm{s}) 0}{ }^{*}, \mathrm{D}_{(\mathrm{s}) 1}{ }^{\prime}\right) & \longrightarrow & \tau_{1 / 2}(\mathrm{w}) \\
& \\
& \\
& & \\
& \tau_{3 / 2}(\mathrm{w}) \\
\hline
\end{array}
$$

We consider again ratios in which the dependence on the model for the τ functions mostly drops out

$$
\mathcal{R}\left(D^{* *}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{* *} \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D^{* *} \mu \bar{\nu}_{\mu}\right)}
$$

Orange= non strange Blue circle= SM Green= strange
Triangle= SM

The inclusion of the tensor operator produces a sizable increase in the ratios

Forward-backward asymmetries

shift in the position of the zero
the zero disappears

Studying correlations between flavour observables may lead us to select the right scenario (if any) for Z^{\prime} couplings to quarks for $M_{z^{\prime}}=1 \mathrm{TeV}$ Larger masses (>5 TeV) have negligible impact on the observables considered

The most constrained system is that of B_{s} - important role is played by $S_{\psi \phi}$ and $B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$ - highest sensitivity to RHC is that of $b \rightarrow s \ell^{+} \ell$ and $b \rightarrow s \bar{v} v$

Anomalous enhancement of $R\left(D^{(*)}\right)$ could be explained introducing a new tensor operator in the effective hamiltonian.
Differential distributions help to discriminate this scenario from SM
Large effects forseen in $B \rightarrow D^{* *} \tau \bar{v}_{\tau}$

