On the structure of the charged lepton mass matrix
 Andrea Romanino
 SISSA/ISAS

work in progress with David Marzocca

Rise and fall of correlations

$$
\left.\begin{array}{c}
m_{\nu}=\left(\begin{array}{ccc}
x & y & y \\
y & x+v & y-v \\
y & y-v & x+v
\end{array}\right) \quad U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
\begin{array}{l}
3 \text { independent correlations } \\
m_{12}=m_{13} \\
m_{22}=m_{33} \\
m_{11}+m_{12}=m_{22}+m_{23}
\end{array} \\
\sin ^{2} \theta_{13}=0 \\
\sin ^{2} \theta_{23}=1 / 2 \\
\sin ^{2} \theta_{12}=1 / 3
\end{array}\right] .
$$

symmetry?
non-abelian, discrete full lagrangian

- Data do not seem to show hints of TBM or of other correlations in m_{v}
- Waiting for those to appear...
- Study possible corrections (from charged leptons)
- Face the possibility that no correlations are forced by symmetries
- Data do not seem to show any hint of TBM or of other correlations in m_{v}
- Waiting for those to appear...
- Study possible corrections (from charged leptons)

Xing, Giunti Tanimoto, Frampton Petcov Rodejohann, Altarelli Feruglio Masina, Romanino, King, Antusch King, Dev Gupta Gautam, Antusch Maurer, Meroni Petcov Spinrath, Duarah Das Singh, Chao Zheng, Meloni, Antusch Gross, Maurer Sluka, Altarelli Feruglio Merlo Stamou, Gollu Deepthi Mohanta

- Face the possibility that no correlations are forced by symmetries
- Data do not seem to show any hint of TBM or of other correlations in m_{v}
- Waiting for those to appear...
- Study possible corrections (from charged leptons)
- Face the possibility that no correlations are forced by symmetries

Corrections to θ_{13} from charged leptons

- $U=U_{e} U_{0}^{\dagger}$: assume both U_{e}, U_{U} would give $\theta_{13}=0$:

$$
U_{e}=\Psi_{e} R_{12}\left(\theta_{12}^{e}\right) R_{23}\left(\theta_{23}^{e}\right) \Phi_{e}
$$

$$
U_{\nu}=\Psi_{\nu} R_{12}\left(\theta_{12}^{\nu}\right) R_{23}\left(\theta_{23}^{\nu}\right) \Phi_{\nu} \quad \text { (TBM, BM specific cases) }
$$

- Physical parameters: $U=R_{12}\left(\theta_{12}^{e}\right) \Phi R_{23}\left(\hat{\theta}_{23}\right) R_{12}\left(\theta_{12}^{\nu}\right) Q$
- $\sin \theta_{13}=\sin \theta_{12}^{e} \sin \hat{\theta}_{23}, \quad \leftarrow$ generated from the interplay of $12 / 23$

$$
\sin ^{2} \theta_{23}=\frac{\sin ^{2} \hat{\theta}_{23}-\sin ^{2} \theta_{13}}{1-\sin ^{2} \theta_{13} \sin ^{2} \hat{\theta}_{23}}
$$

Correction to θ_{23}

Is needed if θ_{23} is indeed significantly $<\pi / 4$

- If $\sin ^{2} \theta_{12}^{\nu}$ is given (TBM: $1 / 3, B M: 1 / 2$): 1 prediction

Standard Ordering - Normal Hierarchy

(a)

- bimaximal, $\theta_{12}^{\nu}=\frac{\pi}{4}$:

$$
\sin ^{2} \theta_{12} \sim \frac{1}{2}+\cot \theta_{23} \sin \theta_{13} \cos \phi
$$

- tri-bimaximal, $\sin ^{2} \theta_{12}^{\nu}=\frac{1}{3}$:

$$
\sin ^{2} \theta_{12} \sim \frac{1}{3}\left[1+2 \sqrt{2} \cot \theta_{23} \sin \theta_{13} \cos \phi\right]
$$

- Data do not seem to show any hint of TBM or of other correlations in m_{v}
- Waiting for those to appear...
- Study possible corrections (from charged leptons)
- Face the possibility that no correlations are forced by symmetries

Neutrino mixing without correlations

- (No correlations does not mean anarchy. Symmetries to control small matrix entries. Charged leptons highly disciplined)
- If no correlations are forced by a symmetry (and do not arise accidentally) what is the most general form of a mass matrix?
- What are the charged leptons contributions to neutrino mixing that can be obtained "naturally"?
- New model-building avenues

Example: θ_{23} from charged leptons

$$
\begin{gathered}
M_{[23]}^{E}=\left(\begin{array}{ll}
m_{22} & m_{23} \\
m_{32} & m_{33}
\end{array}\right) \quad \text { (RL convention) } \\
m_{\mu} m_{\tau}=\left|m_{33} m_{22}-m_{23} m_{32}\right| \quad \text { no correlations: } \begin{array}{l}
\left|m_{33} m_{22}\right| \lesssim m_{\mu} m_{\tau} \\
\left|m_{23} m_{32}\right| \lesssim m_{\mu} m_{\tau}
\end{array} \\
\left|\frac{m_{32}}{m_{33}}\right|=\tan \theta_{23}=\mathcal{O}(1) \quad\left|m_{32}\right| \sim\left|m_{33}\right| \sim m_{\tau} \\
M_{[23]}^{E} \sim\left(\begin{array}{ll}
m_{\mu} & m_{\mu} \\
m_{\tau} & m_{\tau}
\end{array}\right)
\end{gathered}
$$

"Uncorrelated" m_{E}

- Notation:
- " \approx " : approximately equal
- "~" : equal up to $O(1)$
- " \leq " : less up to $O(1)$, opposite of "»"
- Notation:
- $M_{\left[i_{1} \ldots i_{n}\right]\left[j_{1} \ldots j_{m}\right]}$:
$\left(M_{\left[i_{1} \ldots i_{n}\right]\left[j_{1} \ldots j_{m}\right]}\right)_{k l}=M_{i_{k} j_{l}}$
- $M_{\left[i_{1} \ldots i_{n}\right]} \equiv M_{\left[i_{1} \ldots i_{n}\right]\left[i_{1} \ldots i_{n}\right]}$
- Observation:
- $\quad\left|m_{33}\right|=\left|\operatorname{det} M_{[3]}\right| \sim m_{3}$
- $\quad\left|\operatorname{det} M_{[23]}\right| \sim m_{2} m_{3}$
(up to permutation of rows and columns)
- $|\operatorname{det} M|=\left|\operatorname{det} M_{[123]}\right|=m_{1} m_{2} m_{3}$
- Theorem
- $\left|M_{i j}\right| \leq m_{3}$
- $\mid \operatorname{det} M_{[i j]}[h k] \leq m_{2} m_{3}$
- Definition
- M is "uncorrelated" if the sum of all terms in the expression of $\operatorname{det} M_{[i j]}[h k]$ and $\operatorname{det} M$ is not much smaller than the individual terms

What is the most general form of an uncorrelated M ?

$$
\begin{gathered}
\left|M_{E}\right|=\left(\begin{array}{ccc}
\sqrt{k_{11}} m_{1} & \sqrt{k_{12} m_{1} m_{2}} / R_{12} & \sqrt{k_{13} m_{1} m_{3}} / R_{13} \\
\sqrt{k_{12} m_{1} m_{2}} R_{12} & \sqrt{k_{22} m_{2}} & \sqrt{k_{23} m_{2} m_{3}} / R_{23} \\
\sqrt{k_{13} m_{1} m_{3}} R_{13} & \sqrt{k_{23} m_{2} m_{3}} R_{23} & \sqrt{k_{33} m_{3}}
\end{array}\right) \\
k_{i j}=\left|M_{i j} M_{j i}\right| /\left(m_{i} m_{j}\right) \quad R_{i j}^{2}=\left|M_{i j} / M_{j i}\right|
\end{gathered}
$$

$k_{i j} \lesssim 1$ except $k_{13} \lesssim m_{2} / m_{1} \quad k_{13} \sqrt{k_{22}} \lesssim 1 \quad k_{33} \sim 1$

$$
\sqrt{\frac{m_{i}}{m_{j}} k_{i j}} \lesssim R_{i j} \lesssim \sqrt{\frac{m_{j}}{m_{i} k_{i j}}} \sqrt{\frac{m_{1}}{m_{2}} k_{13} k_{23}} \lesssim \frac{R_{13}}{R_{23}} \lesssim \sqrt{\frac{m_{2}}{m_{1} k_{13} k_{23}}}
$$

$$
\sqrt{k_{12} k_{23} k_{13}} \lesssim \frac{R_{23} R_{12}}{R_{13}} \lesssim \frac{1}{\sqrt{k_{12} k_{23} k_{13}}}
$$

Charged lepton contribution to U

$$
\begin{gathered}
U=U_{e} U_{\nu}^{\dagger} \\
M_{E}=U_{e^{c}}^{T} M_{E}^{\text {diag }} U_{e}=\left(\begin{array}{ccc}
\ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots \\
U_{31}^{e} & U_{32}^{e} & U_{33}^{e}
\end{array}\right) U_{33}^{e^{c}} m_{\tau}+\mathcal{O}\left(m_{\mu}, m_{e}\right) \\
\left|m_{31}\right|:\left|m_{32}\right|:\left|m_{33}\right|=\left|U_{31}^{e}\right|:\left|U_{32}^{e}\right|:\left|U_{33}^{e}\right| \quad \text { up to } \mathcal{O}\left(\frac{m_{\mu}}{m_{\tau}}\right) \sim 0.05
\end{gathered}
$$

All from U_{e} ?

($U_{V}=1 \quad U=U_{e} \quad$ Altarelli Feruglio Masina: NO

- $\left|m_{31}\right|:\left|m_{32}\right|:\left|m_{33}\right|=\left|U_{31}\right|:\left|U_{32}\right|:\left|U_{33}\right| \approx 0.4: 0.5: 0.8$

Same up to $O(1)$

- $\left|M_{E}\right|=\left(\begin{array}{ccc}\sqrt{k_{11}} m_{1} & \sqrt{k_{12} m_{1} m_{2}} / R_{12} & m_{1} k_{13} \\ \sqrt{k_{12} m_{1} m_{2}} R_{12} & \sqrt{k_{22} m_{2}} & m_{2} k_{23} \\ \mathcal{O}\left(m_{3}\right) & \mathcal{O}\left(m_{3}\right) & \mathcal{O}\left(m_{3}\right)\end{array}\right)$
$k_{i j} \lesssim 1$ except $k_{13} \lesssim m_{2} / m_{1} \quad k_{13} \sqrt{k_{22}} \lesssim 1$

$$
\sqrt{\frac{m_{1}}{m_{2}} k_{12}} \lesssim R_{12} \lesssim \sqrt{\frac{m_{2}}{m_{1} k_{12}}} \min \left(1, k_{13}^{-1}\right)
$$

A simple example

$$
\left|M_{E}\right| \sim\left(\begin{array}{lll}
m_{1} & m_{1} & m_{1} \\
m_{2} & m_{2} & m_{2} \\
m_{3} & m_{3} & m_{3}
\end{array}\right) \rightarrow\left\{\begin{array}{l}
U=R_{12}\left(\omega_{12}\right) R_{23}\left(\omega_{23}\right) R_{12}\left(\omega_{12}^{\prime}\right) \\
\omega_{12}, \omega_{23}, \omega_{12}^{\prime}=\mathcal{O}(1)
\end{array}\right.
$$

$$
\begin{array}{ll}
\sin \omega_{23} \approx 0.6 & \\
\sin \omega_{12} \approx 0.25 & (\text { smallish, by a factor } 2) \\
\sin \omega_{12}^{\prime} \sim 0.5 & (\text { depending on } \delta)
\end{array}
$$

A simple example with $k_{13}>1$

$$
\left|M_{E}\right| \sim\left(\begin{array}{ccc}
m_{1} & m_{1} & m_{1} k_{13} \\
m_{2} / k_{13} & m_{2} / k_{13} & m_{2} \\
m_{3} & m_{3} & m_{3}
\end{array}\right) \rightarrow\left\{\begin{array}{l}
U=R_{12}\left(\omega_{12}\right) R_{23}\left(\omega_{23}\right) R_{12}\left(\omega_{12}^{\prime}\right) \\
\omega_{12} \sim 1 / k_{13}, \quad \omega_{23}, \omega_{12}^{\prime}=\mathcal{O}(1)
\end{array}\right.
$$

$$
\begin{array}{ll}
\sin \omega_{23} \approx 0.6 & \\
\sin \omega_{12} \approx 0.25 & \left(k_{13}=\mathcal{O}(4)\right) \\
\sin \omega_{12}^{\prime} \sim 0.5 & (\text { depending on } \delta)
\end{array}
$$

$k_{13} \gg 1$: counter example to AFM

$k_{13} \sim m_{\mu} / m_{e} \sim 200\left(\right.$ needs $\left.U_{v} \neq 1\right)$

$$
\left|M_{E}\right| \sim\left(\begin{array}{lll}
m_{1} & m_{1} & m_{2} \\
m_{1} & m_{1} & m_{2} \\
m_{3} & m_{3} & m_{3}
\end{array}\right) \rightarrow\left\{\begin{array}{l}
U \approx R_{23}\left(\omega_{23}\right) R_{12}\left(\omega_{12}^{\prime}\right) \\
\omega_{23}, \omega_{12}^{\prime}=\mathcal{O}(1)
\end{array}\right.
$$

natural "inverted ordering"
can be used if $U_{v} \neq 1$

Uv provides a maximal solar angle

$$
\left|M_{E}\right| \sim\left(\begin{array}{ccc}
m_{1} & m_{1} / \theta_{C} & m_{1} / \theta_{C} \\
\theta_{C} m_{2} & m_{2} & m_{2} \\
\theta_{C} m_{3} & m_{3} & m_{3}
\end{array}\right) \rightarrow\left\{\begin{array}{l}
U=R_{12}\left(\omega_{12}\right) R_{23}\left(\omega_{23}\right) R_{12}\left(\omega_{12}^{\prime}\right) \\
\omega_{12}, \omega_{12}^{\prime}=\mathcal{O}\left(\theta_{C}\right), \quad \omega_{23}=\mathcal{O}(1)
\end{array}\right.
$$

accounts for quark-lepton complementarity and for $\theta_{13} \sim \theta_{c} / \sqrt{ } 2$

In summary

- Despite the large amount of work devoted to charged lepton corrections to neutrino mixing, not all the potential of the charged lepton mass matrix has been explored yet

